--- Título: Existen infinitos números primos Autor: José A. Alonso --- [mathjax] Demostrar con Lean4 que existen infinitos números primos. Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Tactic
import Mathlib.Data.Nat.Prime
open Nat
example
(n : ℕ) :
∃ p, n ≤ p ∧ Nat.Prime p :=
by sorry
import Mathlib.Tactic
import Mathlib.Data.Nat.Prime
open Nat
-- 1ª demostración
-- ===============
example
(n : ℕ) :
∃ p, n ≤ p ∧ Nat.Prime p :=
by
let p := minFac (n ! + 1)
have h1 : Nat.Prime p := by
apply minFac_prime
-- ⊢ n ! + 1 ≠ 1
have h3 : n ! > 0 := factorial_pos n
have h4 : n ! + 1 > 1 := Nat.lt_add_of_pos_left h3
show n ! + 1 ≠ 1
exact Nat.ne_of_gt h4
use p
constructor
. -- ⊢ n ≤ p
apply le_of_not_ge
-- ⊢ ¬n ≥ p
intro h5
-- h5 : n ≥ p
-- ⊢ False
have h6 : p ∣ n ! := dvd_factorial (minFac_pos _) h5
have h7 : p ∣ 1 := (Nat.dvd_add_iff_right h6).mpr (minFac_dvd _)
show False
exact (Nat.Prime.not_dvd_one h1) h7
. -- ⊢ Nat.Prime p
exact h1
done
-- 2ª demostración
-- ===============
example
(n : ℕ) :
∃ p, n ≤ p ∧ Nat.Prime p :=
exists_infinite_primes n
-- Lemas usados
-- ============
-- variable (k m n : ℕ)
-- #check (Nat.Prime.not_dvd_one : Nat.Prime n → ¬n ∣ 1)
-- #check (Nat.dvd_add_iff_right : k ∣ m → (k ∣ n ↔ k ∣ m + n))
-- #check (Nat.dvd_one : n ∣ 1 ↔ n = 1)
-- #check (Nat.lt_add_of_pos_left : 0 < k → n < k + n)
-- #check (Nat.ne_of_gt : k < n → n ≠ k)
-- #check (dvd_factorial : 0 < k → k ≤ n → k ∣ n !)
-- #check (factorial_pos n: n ! > 0)
-- #check (le_of_not_ge : ¬k ≥ n → k ≤ n)
-- #check (minFac_dvd n : minFac n ∣ n)
-- #check (minFac_pos n : 0 < minFac n)
-- #check (minFac_prime : n ≠ 1 → Nat.Prime (minFac n))