--- Título: Si u ⊆ v, entonces f⁻¹[u] ⊆ f⁻¹[v]. Autor: José A. Alonso --- [mathjax] Demostrar con Lean4 que si \\(u ⊆ v\\), entonces \\(f⁻¹[u] ⊆ f⁻¹[v]\\). Para ello, completar la siguiente teoría de Lean4: <pre lang="lean"> import Mathlib.Data.Set.Function open Set variable {α β : Type _} variable (f : α → β) variable (u v : Set β) example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v := by sorry </pre> <!--more--> <h2>1. Demostración en lenguaje natural</h2> Por la siguiente cadena de implicaciones: \\begin{align} x ∈ f⁻¹[u] &⟹ f(x) ∈ u \\\\ &⟹ f(x) ∈ v &&\\text{[porque \\(u ⊆ v\\)]} \\\\ &⟹ x ∈ f⁻¹[v] \\end{align} <h2>2. Demostraciones con Lean4</h2> <pre lang="lean"> import Mathlib.Data.Set.Function open Set variable {α β : Type _} variable (f : α → β) variable (u v : Set β) -- 1ª demostración -- =============== example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v := by intros x hx -- x : α -- hx : x ∈ f ⁻¹' u -- ⊢ x ∈ f ⁻¹' v have h1 : f x ∈ u := mem_preimage.mp hx have h2 : f x ∈ v := h h1 show x ∈ f ⁻¹' v exact mem_preimage.mpr h2 -- 2ª demostración -- =============== example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v := by intros x hx -- x : α -- hx : x ∈ f ⁻¹' u -- ⊢ x ∈ f ⁻¹' v apply mem_preimage.mpr -- ⊢ f x ∈ v apply h -- ⊢ f x ∈ u apply mem_preimage.mp -- ⊢ x ∈ f ⁻¹' u exact hx -- 3ª demostración -- =============== example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v := by intros x hx -- x : α -- hx : x ∈ f ⁻¹' u -- ⊢ x ∈ f ⁻¹' v apply h -- ⊢ f x ∈ u exact hx -- 4ª demostración -- =============== example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v := by intros x hx -- x : α -- hx : x ∈ f ⁻¹' u -- ⊢ x ∈ f ⁻¹' v exact h hx -- 5ª demostración -- =============== example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v := fun _ hx ↦ h hx -- 6ª demostración -- =============== example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v := by intro x; apply h -- 7ª demostración -- =============== example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v := preimage_mono h -- 8ª demostración -- =============== example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v := by tauto -- Lemas usados -- ============ -- variable (a : α) -- #check (mem_preimage : a ∈ f ⁻¹' u ↔ f a ∈ u) -- #check (preimage_mono : u ⊆ v → f ⁻¹' u ⊆ f ⁻¹' v) </pre> Se puede interactuar con las demostraciones anteriores en <a href="https://live.lean-lang.org/#url=https://raw.githubusercontent.com/jaalonso/Calculemus2/main/src/Monotonia_de_la_imagen_inversa.lean" rel="noopener noreferrer" target="_blank">Lean 4 Web</a>. <h2>3. Demostraciones con Isabelle/HOL</h2> <pre lang="isar"> theory Monotonia_de_la_imagen_inversa imports Main begin (* 1ª demostración *) lemma assumes "u ⊆ v" shows "f -` u ⊆ f -` v" proof (rule subsetI) fix x assume "x ∈ f -` u" then have "f x ∈ u" by (rule vimageD) then have "f x ∈ v" using ‹u ⊆ v› by (rule set_rev_mp) then show "x ∈ f -` v" by (simp only: vimage_eq) qed (* 2ª demostración *) lemma assumes "u ⊆ v" shows "f -` u ⊆ f -` v" proof fix x assume "x ∈ f -` u" then have "f x ∈ u" by simp then have "f x ∈ v" using ‹u ⊆ v› by (rule set_rev_mp) then show "x ∈ f -` v" by simp qed (* 3ª demostración *) lemma assumes "u ⊆ v" shows "f -` u ⊆ f -` v" using assms by (simp only: vimage_mono) (* 4ª demostración *) lemma assumes "u ⊆ v" shows "f -` u ⊆ f -` v" using assms by blast end </pre>