--- title: Si G es un grupo y a, b ∈ G tales que ab = 1 entonces a⁻¹ = b date: 2024-05-13 06:00:00 UTC+02:00 category: Grupos has_math: true --- [mathjax] Demostrar con Lean4 que si \\(a\\) es un elemento de un grupo \\(G\\), entonces \\(a\\) tiene un único inverso; es decir, si \\(b\\) es un elemento de \\(G\\) tal que \\(a·b = 1\\), entonces \\(a⁻¹ = b\\). Para ello, completar la siguiente teoría de Lean4: <pre lang="lean"> import Mathlib.Algebra.Group.Basic variable {G : Type} [Group G] variable {a b : G} example (h : a * b = 1) : a⁻¹ = b := by sorry </pre> <!--more--> <h2>1. Demostración en lenguaje natural</h2> Por la siguiente cadena de igualdades \\begin{align} a⁻¹ &= a⁻¹·1 &&\\text{[porque 1 es neutro]} \\\\ &= a⁻¹·(a·b) &&\\text{[por hipótesis]} \\\\ &= (a⁻¹·a)·b &&\\text{[por la asociativa]} \\\\ &= 1·b &&\\text{[porque a⁻¹ es el inverso de a]} \\\\ &= b &&\\text{[porque 1 es neutro]} \\end{align} <h2>2. Demostraciones con Lean4</h2> <pre lang="lean"> import Mathlib.Algebra.Group.Basic variable {G : Type} [Group G] variable {a b : G} -- 1ª demostración -- =============== example (h : a * b = 1) : a⁻¹ = b := calc a⁻¹ = a⁻¹ * 1 := (mul_one a⁻¹).symm _ = a⁻¹ * (a * b) := congrArg (a⁻¹ * .) h.symm _ = (a⁻¹ * a) * b := (mul_assoc a⁻¹ a b).symm _ = 1 * b := congrArg (. * b) (inv_mul_self a) _ = b := one_mul b -- 2ª demostración -- =============== example (h : a * b = 1) : a⁻¹ = b := calc a⁻¹ = a⁻¹ * 1 := by simp only [mul_one] _ = a⁻¹ * (a * b) := by simp only [h] _ = (a⁻¹ * a) * b := by simp only [mul_assoc] _ = 1 * b := by simp only [inv_mul_self] _ = b := by simp only [one_mul] -- 3ª demostración -- =============== example (h : a * b = 1) : a⁻¹ = b := calc a⁻¹ = a⁻¹ * 1 := by simp _ = a⁻¹ * (a * b) := by simp [h] _ = (a⁻¹ * a) * b := by simp _ = 1 * b := by simp _ = b := by simp -- 4ª demostración -- =============== example (h : a * b = 1) : a⁻¹ = b := calc a⁻¹ = a⁻¹ * (a * b) := by simp [h] _ = b := by simp -- 5ª demostración -- =============== example (h : b * a = 1) : b = a⁻¹ := eq_inv_iff_mul_eq_one.mpr h -- Lemas usados -- ============ -- variable (c : G) -- #check (eq_inv_iff_mul_eq_one : a = b⁻¹ ↔ a * b = 1) -- #check (inv_mul_self a : a⁻¹ * a = 1) -- #check (mul_assoc a b c : (a * b) * c = a * (b * c)) -- #check (mul_one a : a * 1 = a) -- #check (one_mul a : 1 * a = a) </pre> Se puede interactuar con las demostraciones anteriores en [Lean 4 Web](https://live.lean-lang.org/#url=https://raw.githubusercontent.com/jaalonso/Calculemus2/main/src/Unicidad_de_los_inversos_en_los_grupos.lean). <h2>3. Demostraciones con Isabelle/HOL</h2> <pre lang="isar"> theory Unicidad_de_los_inversos_en_los_grupos imports Main begin context group begin (* 1ª demostración *) lemma assumes "a * b = 1" shows "inverse a = b" proof - have "inverse a = inverse a * 1" by (simp only: right_neutral) also have "… = inverse a * (a * b)" by (simp only: assms(1)) also have "… = (inverse a * a) * b" by (simp only: assoc [symmetric]) also have "… = 1 * b" by (simp only: left_inverse) also have "… = b" by (simp only: left_neutral) finally show "inverse a = b" by this qed (* 2ª demostración *) lemma assumes "a * b = 1" shows "inverse a = b" proof - have "inverse a = inverse a * 1" by simp also have "… = inverse a * (a * b)" using assms by simp also have "… = (inverse a * a) * b" by (simp add: assoc [symmetric]) also have "… = 1 * b" by simp also have "… = b" by simp finally show "inverse a = b" . qed (* 3ª demostración *) lemma assumes "a * b = 1" shows "inverse a = b" proof - from assms have "inverse a * (a * b) = inverse a" by simp then show "inverse a = b" by (simp add: assoc [symmetric]) qed (* 4ª demostración *) lemma assumes "a * b = 1" shows "inverse a = b" using assms by (simp only: inverse_unique) end end </pre>