(* Union_con_su_interseccion.thy -- s \ (s \ t) = s. -- José A. Alonso Jiménez -- Sevilla, 26-mayo-2021 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- Demostrar que s \ (s \ t) = s -- ------------------------------------------------------------------ *) theory Union_con_su_interseccion imports Main begin (* 1\ demostración *) lemma "s \ (s \ t) = s" proof (rule equalityI) show "s \ (s \ t) \ s" proof (rule subsetI) fix x assume "x \ s \ (s \ t)" then show "x \ s" proof assume "x \ s" then show "x \ s" by this next assume "x \ s \ t" then show "x \ s" by (simp only: IntD1) qed qed next show "s \ s \ (s \ t)" proof (rule subsetI) fix x assume "x \ s" then show "x \ s \ (s \ t)" by (simp only: UnI1) qed qed (* 2\ demostración *) lemma "s \ (s \ t) = s" proof show "s \ s \ t \ s" proof fix x assume "x \ s \ (s \ t)" then show "x \ s" proof assume "x \ s" then show "x \ s" by this next assume "x \ s \ t" then show "x \ s" by simp qed qed next show "s \ s \ (s \ t)" proof fix x assume "x \ s" then show "x \ s \ (s \ t)" by simp qed qed (* 3\ demostración *) lemma "s \ (s \ t) = s" by auto end