(* Union_de_pares_e_impares.thy -- pares ∪ impares = naturales. -- José A. Alonso Jiménez -- Sevilla, 31-mayo-2021 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- Los conjuntos de los números naturales, de los pares y de los impares se definen por def naturales : set \ := {n | true} def pares : set \ := {n | even n} def impares : set \ := {n | \ even n} Demostrar que pares \ impares = naturales ------------------------------------------------------------------- *) theory Union_de_pares_e_impares imports Main begin definition naturales :: "nat set" where "naturales = {n\\ . True}" definition pares :: "nat set" where "pares = {n\\ . even n}" definition impares :: "nat set" where "impares = {n\\ . \ even n}" (* 1\ demostración *) lemma "pares \ impares = naturales" proof - have "\ n \ \ . even n \ \ even n \ True" by simp then have "{n \ \. even n} \ {n \ \. \ even n} = {n \ \. True}" by auto then show "pares \ impares = naturales" by (simp add: naturales_def pares_def impares_def) qed (* 2\ demostración *) lemma "pares \ impares = naturales" unfolding naturales_def pares_def impares_def by auto end