(* Imagen_de_la_imagen_inversa.thy -- f[f⁻¹[u]] ⊆ u. -- José A. Alonso Jiménez -- Sevilla, 10-junio-2021 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Demostrar que -- f ` (f -` u) \ u -- ------------------------------------------------------------------ *) theory Imagen_de_la_imagen_inversa imports Main begin (* 1\ demostración *) lemma "f ` (f -` u) \ u" proof (rule subsetI) fix y assume "y \ f ` (f -` u)" then show "y \ u" proof (rule imageE) fix x assume "y = f x" assume "x \ f -` u" then have "f x \ u" by (rule vimageD) with \y = f x\ show "y \ u" by (rule ssubst) qed qed (* 2\ demostración *) lemma "f ` (f -` u) \ u" proof fix y assume "y \ f ` (f -` u)" then show "y \ u" proof fix x assume "y = f x" assume "x \ f -` u" then have "f x \ u" by simp with \y = f x\ show "y \ u" by simp qed qed (* 3\ demostración *) lemma "f ` (f -` u) \ u" by (simp only: image_vimage_subset) (* 4\ demostración *) lemma "f ` (f -` u) \ u" by auto end