(* Interseccion_de_intersecciones.thy -- (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) -- José A. Alonso Jiménez -- Sevilla, 3-junio-2021 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- Demostrar que (\ i, A i \ B i) = (\ i, A i) \ (\ i, B i) ------------------------------------------------------------------- *) theory Interseccion_de_intersecciones imports Main begin (* 1\ demostración *) lemma "(\ i \ I. A i \ B i) = (\ i \ I. A i) \ (\ i \ I. B i)" proof (rule equalityI) show "(\ i \ I. A i \ B i) \ (\ i \ I. A i) \ (\ i \ I. B i)" proof (rule subsetI) fix x assume h1 : "x \ (\ i \ I. A i \ B i)" have "x \ (\ i \ I. A i)" proof (rule INT_I) fix i assume "i \ I" with h1 have "x \ A i \ B i" by (rule INT_D) then show "x \ A i" by (rule IntD1) qed moreover have "x \ (\ i \ I. B i)" proof (rule INT_I) fix i assume "i \ I" with h1 have "x \ A i \ B i" by (rule INT_D) then show "x \ B i" by (rule IntD2) qed ultimately show "x \ (\ i \ I. A i) \ (\ i \ I. B i)" by (rule IntI) qed next show "(\ i \ I. A i) \ (\ i \ I. B i) \ (\ i \ I. A i \ B i)" proof (rule subsetI) fix x assume h2 : "x \ (\ i \ I. A i) \ (\ i \ I. B i)" show "x \ (\ i \ I. A i \ B i)" proof (rule INT_I) fix i assume "i \ I" have "x \ A i" proof - have "x \ (\ i \ I. A i)" using h2 by (rule IntD1) then show "x \ A i" using \i \ I\ by (rule INT_D) qed moreover have "x \ B i" proof - have "x \ (\ i \ I. B i)" using h2 by (rule IntD2) then show "x \ B i" using \i \ I\ by (rule INT_D) qed ultimately show "x \ A i \ B i" by (rule IntI) qed qed qed (* 2\ demostración *) lemma "(\ i \ I. A i \ B i) = (\ i \ I. A i) \ (\ i \ I. B i)" proof show "(\ i \ I. A i \ B i) \ (\ i \ I. A i) \ (\ i \ I. B i)" proof fix x assume h1 : "x \ (\ i \ I. A i \ B i)" have "x \ (\ i \ I. A i)" proof fix i assume "i \ I" then show "x \ A i" using h1 by simp qed moreover have "x \ (\ i \ I. B i)" proof fix i assume "i \ I" then show "x \ B i" using h1 by simp qed ultimately show "x \ (\ i \ I. A i) \ (\ i \ I. B i)" by simp qed next show "(\ i \ I. A i) \ (\ i \ I. B i) \ (\ i \ I. A i \ B i)" proof fix x assume h2 : "x \ (\ i \ I. A i) \ (\ i \ I. B i)" show "x \ (\ i \ I. A i \ B i)" proof fix i assume "i \ I" then have "x \ A i" using h2 by simp moreover have "x \ B i" using \i \ I\ h2 by simp ultimately show "x \ A i \ B i" by simp qed qed qed (* 3\ demostración *) lemma "(\ i \ I. A i \ B i) = (\ i \ I. A i) \ (\ i \ I. B i)" by auto end