(* Monotonia_de_la_imagen_de_conjuntos.thy -- Si s ⊆ t, entonces f[s] ⊆ f[t]. -- José A. Alonso Jiménez -- Sevilla, 12-junio-2021 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Demostrar que si s \ t, entonces -- f ` s \ f ` t -- ------------------------------------------------------------------- *) theory Monotonia_de_la_imagen_de_conjuntos imports Main begin (* 1\ demostración *) lemma assumes "s \ t" shows "f ` s \ f ` t" proof (rule subsetI) fix y assume "y \ f ` s" then show "y \ f ` t" proof (rule imageE) fix x assume "y = f x" assume "x \ s" then have "x \ t" using \s \ t\ by (simp only: set_rev_mp) then have "f x \ f ` t" by (rule imageI) with \y = f x\ show "y \ f ` t" by (rule ssubst) qed qed (* 2\ demostración *) lemma assumes "s \ t" shows "f ` s \ f ` t" proof fix y assume "y \ f ` s" then show "y \ f ` t" proof fix x assume "y = f x" assume "x \ s" then have "x \ t" using \s \ t\ by (simp only: set_rev_mp) then have "f x \ f ` t" by simp with \y = f x\ show "y \ f ` t" by simp qed qed (* 3\ demostración *) lemma assumes "s \ t" shows "f ` s \ f ` t" using assms by blast (* 4\ demostración *) lemma assumes "s \ t" shows "f ` s \ f ` t" using assms by (simp only: image_mono) end