(* Monotonia_de_la_imagen_inversa.thy -- Si u ⊆ v, entonces f⁻¹[u] ⊆ f⁻¹[v]. -- José A. Alonso Jiménez -- Sevilla, 13-junio-2021 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Demostrar que si u \ v, entonces -- f -` u \ f -` v -- ------------------------------------------------------------------- *) theory Monotonia_de_la_imagen_inversa imports Main begin (* 1\ demostración *) lemma assumes "u \ v" shows "f -` u \ f -` v" proof (rule subsetI) fix x assume "x \ f -` u" then have "f x \ u" by (rule vimageD) then have "f x \ v" using \u \ v\ by (rule set_rev_mp) then show "x \ f -` v" by (simp only: vimage_eq) qed (* 2\ demostración *) lemma assumes "u \ v" shows "f -` u \ f -` v" proof fix x assume "x \ f -` u" then have "f x \ u" by simp then have "f x \ v" using \u \ v\ by (rule set_rev_mp) then show "x \ f -` v" by simp qed (* 3\ demostración *) lemma assumes "u \ v" shows "f -` u \ f -` v" using assms by (simp only: vimage_mono) (* 4\ demostración *) lemma assumes "u \ v" shows "f -` u \ f -` v" using assms by blast end