(* Imagen_de_imagen_inversa_de_aplicaciones_suprayectivas.thy Si f es suprayectiva, entonces u ⊆ f[f⁻¹[u]]. José A. Alonso Jiménez <https://jaalonso.github.io> Sevilla, 2-abril-2024 ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- Demostrar que si f es suprayectiva, entonces u \<subseteq> f ` (f -` u) ------------------------------------------------------------------- *) theory Imagen_de_imagen_inversa_de_aplicaciones_suprayectivas imports Main begin (* 1\<ordfeminine> demostración *) lemma assumes "surj f" shows "u \<subseteq> f ` (f -` u)" proof (rule subsetI) fix y assume "y \<in> u" have "\<exists>x. y = f x" using \<open>surj f\<close> by (rule surjD) then obtain x where "y = f x" by (rule exE) then have "f x \<in> u" using \<open>y \<in> u\<close> by (rule subst) then have "x \<in> f -` u" by (simp only: vimage_eq) then have "f x \<in> f ` (f -` u)" by (rule imageI) with \<open>y = f x\<close> show "y \<in> f ` (f -` u)" by (rule ssubst) qed (* 2\<ordfeminine> demostración *) lemma assumes "surj f" shows "u \<subseteq> f ` (f -` u)" proof fix y assume "y \<in> u" have "\<exists>x. y = f x" using \<open>surj f\<close> by (rule surjD) then obtain x where "y = f x" by (rule exE) then have "f x \<in> u" using \<open>y \<in> u\<close> by simp then have "x \<in> f -` u" by simp then have "f x \<in> f ` (f -` u)" by simp with \<open>y = f x\<close> show "y \<in> f ` (f -` u)" by simp qed (* 3\<ordfeminine> demostración *) lemma assumes "surj f" shows "u \<subseteq> f ` (f -` u)" using assms by (simp only: surj_image_vimage_eq) (* 4\<ordfeminine> demostración *) lemma assumes "surj f" shows "u \<subseteq> f ` (f -` u)" using assms unfolding surj_def by auto (* 5\<ordfeminine> demostración *) lemma assumes "surj f" shows "u \<subseteq> f ` (f -` u)" using assms by auto end