(* Imagen_de_la_imagen_inversa.thy f[f⁻¹[u]] \<subseteq> u. José A. Alonso Jiménez <https://jaalonso.github.io> Sevilla, 19-marzo-2024 ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- Demostrar que f ` (f -` u) \<subseteq> u ------------------------------------------------------------------- *) theory Imagen_de_la_imagen_inversa imports Main begin (* 1\<ordfeminine> demostración *) lemma "f ` (f -` u) \<subseteq> u" proof (rule subsetI) fix y assume "y \<in> f ` (f -` u)" then show "y \<in> u" proof (rule imageE) fix x assume "y = f x" assume "x \<in> f -` u" then have "f x \<in> u" by (rule vimageD) with \<open>y = f x\<close> show "y \<in> u" by (rule ssubst) qed qed (* 2\<ordfeminine> demostración *) lemma "f ` (f -` u) \<subseteq> u" proof fix y assume "y \<in> f ` (f -` u)" then show "y \<in> u" proof fix x assume "y = f x" assume "x \<in> f -` u" then have "f x \<in> u" by simp with \<open>y = f x\<close> show "y \<in> u" by simp qed qed (* 3\<ordfeminine> demostración *) lemma "f ` (f -` u) \<subseteq> u" by (simp only: image_vimage_subset) (* 4\<ordfeminine> demostración *) lemma "f ` (f -` u) \<subseteq> u" by auto end