(* Imagen_de_la_interseccion_general.thy -- Imagen de la intersección general -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 26-abril-2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Demostrar que -- f[\<Inter>ᵢ Aᵢ] \<subseteq> \<Inter>ᵢ f[Aᵢ] -- ------------------------------------------------------------------ *) theory Imagen_de_la_interseccion_general imports Main begin (* 1\<ordfeminine> demostración *) lemma "f ` (\<Inter> i \<in> I. A i) \<subseteq> (\<Inter> i \<in> I. f ` A i)" proof (rule subsetI) fix y assume "y \<in> f ` (\<Inter> i \<in> I. A i)" then show "y \<in> (\<Inter> i \<in> I. f ` A i)" proof (rule imageE) fix x assume "y = f x" assume xIA : "x \<in> (\<Inter> i \<in> I. A i)" have "f x \<in> (\<Inter> i \<in> I. f ` A i)" proof (rule INT_I) fix i assume "i \<in> I" with xIA have "x \<in> A i" by (rule INT_D) then show "f x \<in> f ` A i" by (rule imageI) qed with \<open>y = f x\<close> show "y \<in> (\<Inter> i \<in> I. f ` A i)" by (rule ssubst) qed qed (* 2\<ordfeminine> demostración *) lemma "f ` (\<Inter> i \<in> I. A i) \<subseteq> (\<Inter> i \<in> I. f ` A i)" proof fix y assume "y \<in> f ` (\<Inter> i \<in> I. A i)" then show "y \<in> (\<Inter> i \<in> I. f ` A i)" proof fix x assume "y = f x" assume xIA : "x \<in> (\<Inter> i \<in> I. A i)" have "f x \<in> (\<Inter> i \<in> I. f ` A i)" proof fix i assume "i \<in> I" with xIA have "x \<in> A i" by simp then show "f x \<in> f ` A i" by simp qed with \<open>y = f x\<close> show "y \<in> (\<Inter> i \<in> I. f ` A i)" by simp qed qed (* 3\<ordfeminine> demostración *) lemma "f ` (\<Inter> i \<in> I. A i) \<subseteq> (\<Inter> i \<in> I. f ` A i)" by blast end