(* Imagen_de_la_interseccion_general.thy -- Imagen de la intersección general -- José A. Alonso Jiménez -- Sevilla, 26-abril-2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Demostrar que -- f[\ᵢ Aᵢ] \ \ᵢ f[Aᵢ] -- ------------------------------------------------------------------ *) theory Imagen_de_la_interseccion_general imports Main begin (* 1\ demostración *) lemma "f ` (\ i \ I. A i) \ (\ i \ I. f ` A i)" proof (rule subsetI) fix y assume "y \ f ` (\ i \ I. A i)" then show "y \ (\ i \ I. f ` A i)" proof (rule imageE) fix x assume "y = f x" assume xIA : "x \ (\ i \ I. A i)" have "f x \ (\ i \ I. f ` A i)" proof (rule INT_I) fix i assume "i \ I" with xIA have "x \ A i" by (rule INT_D) then show "f x \ f ` A i" by (rule imageI) qed with \y = f x\ show "y \ (\ i \ I. f ` A i)" by (rule ssubst) qed qed (* 2\ demostración *) lemma "f ` (\ i \ I. A i) \ (\ i \ I. f ` A i)" proof fix y assume "y \ f ` (\ i \ I. A i)" then show "y \ (\ i \ I. f ` A i)" proof fix x assume "y = f x" assume xIA : "x \ (\ i \ I. A i)" have "f x \ (\ i \ I. f ` A i)" proof fix i assume "i \ I" with xIA have "x \ A i" by simp then show "f x \ f ` A i" by simp qed with \y = f x\ show "y \ (\ i \ I. f ` A i)" by simp qed qed (* 3\ demostración *) lemma "f ` (\ i \ I. A i) \ (\ i \ I. f ` A i)" by blast end