(* Imagen_de_la_interseccion_general_mediante_inyectiva.thy -- Imagen de la interseccion general mediante inyectiva -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 29-abril-2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Demostrar que si f es inyectiva, entonces -- \<Inter>ᵢf[Aᵢ] \<subseteq> f[\<Inter>ᵢAᵢ] -- ------------------------------------------------------------------ *) theory Imagen_de_la_interseccion_general_mediante_inyectiva imports Main begin (* 1\<ordfeminine> demostración *) lemma assumes "i \<in> I" "inj f" shows "(\<Inter> i \<in> I. f ` A i) \<subseteq> f ` (\<Inter> i \<in> I. A i)" proof (rule subsetI) fix y assume "y \<in> (\<Inter> i \<in> I. f ` A i)" then have "y \<in> f ` A i" using \<open>i \<in> I\<close> by (rule INT_D) then show "y \<in> f ` (\<Inter> i \<in> I. A i)" proof (rule imageE) fix x assume "y = f x" assume "x \<in> A i" have "x \<in> (\<Inter> i \<in> I. A i)" proof (rule INT_I) fix j assume "j \<in> I" show "x \<in> A j" proof - have "y \<in> f ` A j" using \<open>y \<in> (\<Inter>i\<in>I. f ` A i)\<close> \<open>j \<in> I\<close> by (rule INT_D) then show "x \<in> A j" proof (rule imageE) fix z assume "y = f z" assume "z \<in> A j" have "f z = f x" using \<open>y = f z\<close> \<open>y = f x\<close> by (rule subst) with \<open>inj f\<close> have "z = x" by (rule injD) then show "x \<in> A j" using \<open>z \<in> A j\<close> by (rule subst) qed qed qed then have "f x \<in> f ` (\<Inter> i \<in> I. A i)" by (rule imageI) with \<open>y = f x\<close> show "y \<in> f ` (\<Inter> i \<in> I. A i)" by (rule ssubst) qed qed (* 2\<ordfeminine> demostración *) lemma assumes "i \<in> I" "inj f" shows "(\<Inter> i \<in> I. f ` A i) \<subseteq> f ` (\<Inter> i \<in> I. A i)" proof fix y assume "y \<in> (\<Inter> i \<in> I. f ` A i)" then have "y \<in> f ` A i" using \<open>i \<in> I\<close> by simp then show "y \<in> f ` (\<Inter> i \<in> I. A i)" proof fix x assume "y = f x" assume "x \<in> A i" have "x \<in> (\<Inter> i \<in> I. A i)" proof fix j assume "j \<in> I" show "x \<in> A j" proof - have "y \<in> f ` A j" using \<open>y \<in> (\<Inter>i\<in>I. f ` A i)\<close> \<open>j \<in> I\<close> by simp then show "x \<in> A j" proof fix z assume "y = f z" assume "z \<in> A j" have "f z = f x" using \<open>y = f z\<close> \<open>y = f x\<close> by simp with \<open>inj f\<close> have "z = x" by (rule injD) then show "x \<in> A j" using \<open>z \<in> A j\<close> by simp qed qed qed then have "f x \<in> f ` (\<Inter> i \<in> I. A i)" by simp with \<open>y = f x\<close> show "y \<in> f ` (\<Inter> i \<in> I. A i)" by simp qed qed (* 3\<ordfeminine> demostración *) lemma assumes "i \<in> I" "inj f" shows "(\<Inter> i \<in> I. f ` A i) \<subseteq> f ` (\<Inter> i \<in> I. A i)" using assms by (simp add: image_INT) end