(* Imagen_inversa_de_la_imagen_de_aplicaciones_inyectivas.thy -- Si f es inyectiva, entonces f⁻¹[f[s]] ⊆ s -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 18-marzo-2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Demostrar que si f es inyectiva, entonces -- f⁻¹[f[s]] ⊆ s -- ------------------------------------------------------------------- *) theory Imagen_inversa_de_la_imagen_de_aplicaciones_inyectivas imports Main begin (* 1ª demostración *) lemma assumes "inj f" shows "f -` (f ` s) ⊆ s" proof (rule subsetI) fix x assume "x ∈ f -` (f ` s)" then have "f x ∈ f ` s" by (rule vimageD) then show "x ∈ s" proof (rule imageE) fix y assume "f x = f y" assume "y ∈ s" have "x = y" using ‹inj f› ‹f x = f y› by (rule injD) then show "x ∈ s" using ‹y ∈ s› by (rule ssubst) qed qed (* 2ª demostración *) lemma assumes "inj f" shows "f -` (f ` s) ⊆ s" proof fix x assume "x ∈ f -` (f ` s)" then have "f x ∈ f ` s" by simp then show "x ∈ s" proof fix y assume "f x = f y" assume "y ∈ s" have "x = y" using ‹inj f› ‹f x = f y› by (rule injD) then show "x ∈ s" using ‹y ∈ s› by simp qed qed (* 3ª demostración *) lemma assumes "inj f" shows "f -` (f ` s) ⊆ s" using assms unfolding inj_def by auto (* 4ª demostración *) lemma assumes "inj f" shows "f -` (f ` s) ⊆ s" using assms by (simp only: inj_vimage_image_eq) end