(* Imagen_inversa_de_la_interseccion_general.thy -- Imagen inversa de la intersección general -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 1-mayo-2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Demostrar que -- f⁻¹[\<Inter>ᵢ B i] = \<Inter>ᵢ f⁻¹[Bᵢ] -- ------------------------------------------------------------------ *) theory Imagen_inversa_de_la_interseccion_general imports Main begin (* 1\<ordfeminine> demostración *) lemma "f -` (\<Inter> i \<in> I. B i) = (\<Inter> i \<in> I. f -` B i)" proof (rule equalityI) show "f -` (\<Inter> i \<in> I. B i) \<subseteq> (\<Inter> i \<in> I. f -` B i)" proof (rule subsetI) fix x assume "x \<in> f -` (\<Inter> i \<in> I. B i)" show "x \<in> (\<Inter> i \<in> I. f -` B i)" proof (rule INT_I) fix i assume "i \<in> I" have "f x \<in> (\<Inter> i \<in> I. B i)" using \<open>x \<in> f -` (\<Inter> i \<in> I. B i)\<close> by (rule vimageD) then have "f x \<in> B i" using \<open>i \<in> I\<close> by (rule INT_D) then show "x \<in> f -` B i" by (rule vimageI2) qed qed next show "(\<Inter> i \<in> I. f -` B i) \<subseteq> f -` (\<Inter> i \<in> I. B i)" proof (rule subsetI) fix x assume "x \<in> (\<Inter> i \<in> I. f -` B i)" have "f x \<in> (\<Inter> i \<in> I. B i)" proof (rule INT_I) fix i assume "i \<in> I" with \<open>x \<in> (\<Inter> i \<in> I. f -` B i)\<close> have "x \<in> f -` B i" by (rule INT_D) then show "f x \<in> B i" by (rule vimageD) qed then show "x \<in> f -` (\<Inter> i \<in> I. B i)" by (rule vimageI2) qed qed (* 2\<ordfeminine> demostración *) lemma "f -` (\<Inter> i \<in> I. B i) = (\<Inter> i \<in> I. f -` B i)" proof show "f -` (\<Inter> i \<in> I. B i) \<subseteq> (\<Inter> i \<in> I. f -` B i)" proof (rule subsetI) fix x assume hx : "x \<in> f -` (\<Inter> i \<in> I. B i)" show "x \<in> (\<Inter> i \<in> I. f -` B i)" proof fix i assume "i \<in> I" have "f x \<in> (\<Inter> i \<in> I. B i)" using hx by simp then have "f x \<in> B i" using \<open>i \<in> I\<close> by simp then show "x \<in> f -` B i" by simp qed qed next show "(\<Inter> i \<in> I. f -` B i) \<subseteq> f -` (\<Inter> i \<in> I. B i)" proof fix x assume "x \<in> (\<Inter> i \<in> I. f -` B i)" have "f x \<in> (\<Inter> i \<in> I. B i)" proof fix i assume "i \<in> I" with \<open>x \<in> (\<Inter> i \<in> I. f -` B i)\<close> have "x \<in> f -` B i" by simp then show "f x \<in> B i" by simp qed then show "x \<in> f -` (\<Inter> i \<in> I. B i)" by simp qed qed (* 3 demostración *) lemma "f -` (\<Inter> i \<in> I. B i) = (\<Inter> i \<in> I. f -` B i)" by (simp only: vimage_INT) (* 4\<ordfeminine> demostración *) lemma "f -` (\<Inter> i \<in> I. B i) = (\<Inter> i \<in> I. f -` B i)" by auto end