(* Inverso_del_inverso_en_grupos.thy -- Si G un grupo y a \<in> G, entonces (a⁻¹)⁻¹ = a -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 15-mayo-2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Sea G un grupo y a \<in> G. Demostrar que -- (a⁻¹)⁻¹ = a -- ------------------------------------------------------------------ *) theory Inverso_del_inverso_en_grupos imports Main begin context group begin (* 1\<ordfeminine> demostración *) lemma "inverse (inverse a) = a" proof - have "inverse (inverse a) = (inverse (inverse a)) \<^bold>* \<^bold>1" by (simp only: right_neutral) also have "\<dots> = inverse (inverse a) \<^bold>* (inverse a \<^bold>* a)" by (simp only: left_inverse) also have "\<dots> = (inverse (inverse a) \<^bold>* inverse a) \<^bold>* a" by (simp only: assoc) also have "\<dots> = \<^bold>1 \<^bold>* a" by (simp only: left_inverse) also have "\<dots> = a" by (simp only: left_neutral) finally show "inverse (inverse a) = a" by this qed (* 2\<ordfeminine> demostración *) lemma "inverse (inverse a) = a" proof - have "inverse (inverse a) = (inverse (inverse a)) \<^bold>* \<^bold>1" by simp also have "\<dots> = inverse (inverse a) \<^bold>* (inverse a \<^bold>* a)" by simp also have "\<dots> = (inverse (inverse a) \<^bold>* inverse a) \<^bold>* a" by simp also have "\<dots> = \<^bold>1 \<^bold>* a" by simp finally show "inverse (inverse a) = a" by simp qed (* 3\<ordfeminine> demostración *) lemma "inverse (inverse a) = a" proof (rule inverse_unique) show "inverse a \<^bold>* a = \<^bold>1" by (simp only: left_inverse) qed (* 4\<ordfeminine> demostración *) lemma "inverse (inverse a) = a" proof (rule inverse_unique) show "inverse a \<^bold>* a = \<^bold>1" by simp qed (* 5\<ordfeminine> demostración *) lemma "inverse (inverse a) = a" by (rule inverse_unique) simp (* 6\<ordfeminine> demostración *) lemma "inverse (inverse a) = a" by (simp only: inverse_inverse) (* 7\<ordfeminine> demostración *) lemma "inverse (inverse a) = a" by simp end end