(* Limite_multiplicado_por_una_constante.thy -- Límite multiplicado por una constante -- José A. Alonso Jiménez -- Sevilla, 15 de julio de 2021 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- En Isabelle/HOL, una sucesión u₀, u₁, u₂, ... se puede representar -- mediante una función (u : \<nat> \<rightarrow> \<real>) de forma que u(n) es uₙ. -- -- Se define que a es el límite de la sucesión u, por -- definition limite :: "(nat \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> bool" -- where "limite u c \<longleftrightarrow> (\<forall>\<epsilon>>0. \<exists>k::nat. \<forall>n\<ge>k. \<bar>u n - c\<bar> < \<epsilon>)" -- -- Demostrar que que si el límite de u(i) es a, entonces el de -- c*u(i) es c*a. -- ------------------------------------------------------------------ *) theory Limite_multiplicado_por_una_constante imports Main HOL.Real begin definition limite :: "(nat \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> bool" where "limite u c \<longleftrightarrow> (\<forall>\<epsilon>>0. \<exists>k::nat. \<forall>n\<ge>k. \<bar>u n - c\<bar> < \<epsilon>)" lemma assumes "limite u a" shows "limite (\<lambda> n. c * u n) (c * a)" proof (unfold limite_def) show "\<forall>\<epsilon>>0. \<exists>k. \<forall>n\<ge>k. \<bar>c * u n - c * a\<bar> < \<epsilon>" proof (intro allI impI) fix \<epsilon> :: real assume "0 < \<epsilon>" show "\<exists>k. \<forall>n\<ge>k. \<bar>c * u n - c * a\<bar> < \<epsilon>" proof (cases "c = 0") assume "c = 0" then show "\<exists>k. \<forall>n\<ge>k. \<bar>c * u n - c * a\<bar> < \<epsilon>" by (simp add: \<open>0 < \<epsilon>\<close>) next assume "c \<noteq> 0" then have "0 < \<bar>c\<bar>" by simp then have "0 < \<epsilon>/\<bar>c\<bar>" by (simp add: \<open>0 < \<epsilon>\<close>) then obtain N where hN : "\<forall>n\<ge>N. \<bar>u n - a\<bar> < \<epsilon>/\<bar>c\<bar>" using assms limite_def by auto have "\<forall>n\<ge>N. \<bar>c * u n - c * a\<bar> < \<epsilon>" proof (intro allI impI) fix n assume "n \<ge> N" have "\<bar>c * u n - c * a\<bar> = \<bar>c * (u n - a)\<bar>" by argo also have "\<dots> = \<bar>c\<bar> * \<bar>u n - a\<bar>" by (simp only: abs_mult) also have "\<dots> < \<bar>c\<bar> * (\<epsilon>/\<bar>c\<bar>)" using hN \<open>n \<ge> N\<close> \<open>0 < \<bar>c\<bar>\<close> by (simp only: mult_strict_left_mono) finally show "\<bar>c * u n - c * a\<bar> < \<epsilon>" using \<open>0 < \<bar>c\<bar>\<close> by auto qed then show "\<exists>k. \<forall>n\<ge>k. \<bar>c * u n - c * a\<bar> < \<epsilon>" by (rule exI) qed qed qed end