(* Monotonia_de_la_imagen_de_conjuntos.thy
   Si s \<subseteq> t, entonces f[s] \<subseteq> f[t].
   José A. Alonso Jiménez <https://jaalonso.github.io>
   Sevilla, 3-abril-2024
   ------------------------------------------------------------------ *)

(* ---------------------------------------------------------------------
   Demostrar que si s \<subseteq> t, entonces
      f ` s \<subseteq> f ` t
  ------------------------------------------------------------------- *)

theory Monotonia_de_la_imagen_de_conjuntos
imports Main
begin

(* 1\<ordfeminine> demostración *)
lemma
  assumes "s \<subseteq> t"
  shows "f ` s \<subseteq> f ` t"
proof (rule subsetI)
  fix y
  assume "y \<in> f ` s"
  then show "y \<in> f ` t"
  proof (rule imageE)
    fix x
    assume "y = f x"
    assume "x \<in> s"
    then have "x \<in> t"
      using \<open>s \<subseteq> t\<close> by (simp only: set_rev_mp)
    then have "f x \<in> f ` t"
      by (rule imageI)
    with \<open>y = f x\<close> show "y \<in> f ` t"
      by (rule ssubst)
  qed
qed

(* 2\<ordfeminine> demostración *)
lemma
  assumes "s \<subseteq> t"
  shows "f ` s \<subseteq> f ` t"
proof
  fix y
  assume "y \<in> f ` s"
  then show "y \<in> f ` t"
  proof
    fix x
    assume "y = f x"
    assume "x \<in> s"
    then have "x \<in> t"
      using \<open>s \<subseteq> t\<close> by (simp only: set_rev_mp)
    then have "f x \<in> f ` t"
      by simp
    with \<open>y = f x\<close> show "y \<in> f ` t"
      by simp
  qed
qed

(* 3\<ordfeminine> demostración *)
lemma
  assumes "s \<subseteq> t"
  shows "f ` s \<subseteq> f ` t"
  using assms
  by blast

(* 4\<ordfeminine> demostración *)
lemma
  assumes "s \<subseteq> t"
  shows "f ` s \<subseteq> f ` t"
  using assms
  by (simp only: image_mono)

end