(* Monotonia_de_la_imagen_de_conjuntos.thy Si s \<subseteq> t, entonces f[s] \<subseteq> f[t]. José A. Alonso Jiménez <https://jaalonso.github.io> Sevilla, 3-abril-2024 ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- Demostrar que si s \<subseteq> t, entonces f ` s \<subseteq> f ` t ------------------------------------------------------------------- *) theory Monotonia_de_la_imagen_de_conjuntos imports Main begin (* 1\<ordfeminine> demostración *) lemma assumes "s \<subseteq> t" shows "f ` s \<subseteq> f ` t" proof (rule subsetI) fix y assume "y \<in> f ` s" then show "y \<in> f ` t" proof (rule imageE) fix x assume "y = f x" assume "x \<in> s" then have "x \<in> t" using \<open>s \<subseteq> t\<close> by (simp only: set_rev_mp) then have "f x \<in> f ` t" by (rule imageI) with \<open>y = f x\<close> show "y \<in> f ` t" by (rule ssubst) qed qed (* 2\<ordfeminine> demostración *) lemma assumes "s \<subseteq> t" shows "f ` s \<subseteq> f ` t" proof fix y assume "y \<in> f ` s" then show "y \<in> f ` t" proof fix x assume "y = f x" assume "x \<in> s" then have "x \<in> t" using \<open>s \<subseteq> t\<close> by (simp only: set_rev_mp) then have "f x \<in> f ` t" by simp with \<open>y = f x\<close> show "y \<in> f ` t" by simp qed qed (* 3\<ordfeminine> demostración *) lemma assumes "s \<subseteq> t" shows "f ` s \<subseteq> f ` t" using assms by blast (* 4\<ordfeminine> demostración *) lemma assumes "s \<subseteq> t" shows "f ` s \<subseteq> f ` t" using assms by (simp only: image_mono) end