(* Praeclarum_theorema.thy -- Praeclarum theorema -- José A. Alonso Jiménez -- Seville, January 21, 2025 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Prove the [praeclarum theorema](https://tinyurl.com/25yt3ef9) of -- Leibniz: -- (p \ q) \ (r \ s) \ ((p \ r) \ (q \ s)) -- ------------------------------------------------------------------ *) theory Praeclarum_theorema imports Main begin (* Proof 1 *) lemma "(p \ q) \ (r \ s) \ ((p \ r) \ (q \ s))" proof (rule impI) assume "(p \ q) \ (r \ s)" show "(p \ r) \ (q \ s)" proof (rule impI) assume "p \ r" show "q \ s" proof (rule conjI) have "p \ q" using \(p \ q) \ (r \ s)\ by (rule conjunct1) moreover have "p" using \p \ r\ by (rule conjunct1) ultimately show "q" by (rule mp) next have "r \ s" using \(p \ q) \ (r \ s)\ by (rule conjunct2) moreover have "r" using \p \ r\ by (rule conjunct2) ultimately show "s" by (rule mp) qed qed qed (* Proof 2 *) lemma "(p \ q) \ (r \ s) \ ((p \ r) \ (q \ s))" proof assume "(p \ q) \ (r \ s)" show "(p \ r) \ (q \ s)" proof assume "p \ r" show "q \ s" proof have "p \ q" using \(p \ q) \ (r \ s)\ .. moreover have "p" using \p \ r\ .. ultimately show "q" .. next have "r \ s" using \(p \ q) \ (r \ s)\ .. moreover have "r" using \p \ r\ .. ultimately show "s" .. qed qed qed (* Proof 3 *) lemma "(p \ q) \ (r \ s) \ ((p \ r) \ (q \ s))" apply (rule impI) apply (rule impI) apply (erule conjE)+ apply (rule conjI) apply (erule mp) apply assumption apply (erule mp) apply assumption done (* Proof 4 *) lemma "(p \ q) \ (r \ s) \ ((p \ r) \ (q \ s))" by simp end