(* Praeclarum_theorema.thy -- Praeclarum theorema -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Seville, January 21, 2025 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Prove the [praeclarum theorema](https://tinyurl.com/25yt3ef9) of -- Leibniz: -- (p \<rightarrow> q) \<and> (r \<rightarrow> s) \<rightarrow> ((p \<and> r) \<rightarrow> (q \<and> s)) -- ------------------------------------------------------------------ *) theory Praeclarum_theorema imports Main begin (* Proof 1 *) lemma "(p \<longrightarrow> q) \<and> (r \<longrightarrow> s) \<longrightarrow> ((p \<and> r) \<longrightarrow> (q \<and> s))" proof (rule impI) assume "(p \<longrightarrow> q) \<and> (r \<longrightarrow> s)" show "(p \<and> r) \<longrightarrow> (q \<and> s)" proof (rule impI) assume "p \<and> r" show "q \<and> s" proof (rule conjI) have "p \<longrightarrow> q" using \<open>(p \<longrightarrow> q) \<and> (r \<longrightarrow> s)\<close> by (rule conjunct1) moreover have "p" using \<open>p \<and> r\<close> by (rule conjunct1) ultimately show "q" by (rule mp) next have "r \<longrightarrow> s" using \<open>(p \<longrightarrow> q) \<and> (r \<longrightarrow> s)\<close> by (rule conjunct2) moreover have "r" using \<open>p \<and> r\<close> by (rule conjunct2) ultimately show "s" by (rule mp) qed qed qed (* Proof 2 *) lemma "(p \<longrightarrow> q) \<and> (r \<longrightarrow> s) \<longrightarrow> ((p \<and> r) \<longrightarrow> (q \<and> s))" proof assume "(p \<longrightarrow> q) \<and> (r \<longrightarrow> s)" show "(p \<and> r) \<longrightarrow> (q \<and> s)" proof assume "p \<and> r" show "q \<and> s" proof have "p \<longrightarrow> q" using \<open>(p \<longrightarrow> q) \<and> (r \<longrightarrow> s)\<close> .. moreover have "p" using \<open>p \<and> r\<close> .. ultimately show "q" .. next have "r \<longrightarrow> s" using \<open>(p \<longrightarrow> q) \<and> (r \<longrightarrow> s)\<close> .. moreover have "r" using \<open>p \<and> r\<close> .. ultimately show "s" .. qed qed qed (* Proof 3 *) lemma "(p \<longrightarrow> q) \<and> (r \<longrightarrow> s) \<longrightarrow> ((p \<and> r) \<longrightarrow> (q \<and> s))" apply (rule impI) apply (rule impI) apply (erule conjE)+ apply (rule conjI) apply (erule mp) apply assumption apply (erule mp) apply assumption done (* Proof 4 *) lemma "(p \<longrightarrow> q) \<and> (r \<longrightarrow> s) \<longrightarrow> ((p \<and> r) \<longrightarrow> (q \<and> s))" by simp end