(* Proofs_of_(1+p)^n_ge_1+np.lean -- Proofs of "If p > -1, then (1+p)ⁿ ≥ 1+np" -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Seville, September 12, 2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Let p ∈ ℝ and n ∈ ℕ. Prove that if p > -1, then -- (1 + p)^n \<ge> 1 + n*p -- ------------------------------------------------------------------ *) theory "Proofs_of_(1+p)^n_ge_1+np" imports Main HOL.Real begin lemma fixes p :: real assumes "p > -1" shows "(1 + p)^n \<ge> 1 + n*p" proof (induct n) show "(1 + p) ^ 0 \<ge> 1 + real 0 * p" by simp next fix n assume IH : "(1 + p)^n \<ge> 1 + n * p" have "1 + Suc n * p = 1 + (n + 1) * p" by simp also have "\<dots> = 1 + n*p + p" by (simp add: distrib_right) also have "\<dots> \<le> (1 + n*p + p) + n*(p*p)" by simp also have "\<dots> = (1 + n * p) * (1 + p)" by algebra also have "\<dots> \<le> (1 + p)^n * (1 + p)" using IH assms by simp also have "\<dots> = (1 + p)^(Suc n)" by simp finally show "1 + Suc n * p \<le> (1 + p)^(Suc n)" . qed end