(* Sum_of_arithmetic_progression.thy -- Proofs of a+(a+d)+(a+2d)+\<sqdot>\<sqdot>\<sqdot>+(a+nd)=(n+1)(2a+nd)/2 -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Seville, September 7, 2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Prove that the sum of the terms of the arithmetic progression -- a + (a + d) + (a + 2 × d) + ··· + (a + n × d) -- is (n + 1) × (2 × a + n × d) / 2. -- ------------------------------------------------------------------ *) theory Sum_of_arithmetic_progression imports Main HOL.Real begin fun sumAP :: "real \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real" where "sumAP a d 0 = a" | "sumAP a d (Suc n) = sumAP a d n + (a + (n + 1) * d)" (* Proof 1 *) lemma "2 * sumAP a d n = (n + 1) * (2 * a + n * d)" proof (induct n) show "2 * sumAP a d 0 = (real 0 + 1) * (2 * a + real 0 * d)" by simp next fix n assume IH : "2 * sumAP a d n = (n + 1) * (2 * a + n * d)" have "2 * sumAP a d (Suc n) = 2 * (sumAP a d n + (a + (n + 1) * d))" by simp also have "\<dots> = 2 * sumAP a d n + 2 * (a + (n + 1) * d)" by simp also have "\<dots> = (n + 1) * (2 * a + n * d) + 2 * (a + (n + 1) * d)" using IH by simp also have "\<dots> = (real (Suc n) + 1) * (2 * a + (Suc n) * d)" by (simp add: algebra_simps) finally show "2 * sumAP a d (Suc n) = (real (Suc n) + 1) * (2 * a + (Suc n) * d)" by this qed (* Proof 2 *) lemma "2 * sumAP a d n = (n + 1) * (2*a + n*d)" proof (induct n) case 0 then show ?case by simp next case (Suc n) then show ?case by (simp add: algebra_simps) qed (* Proof 3 *) lemma "2 * sumAP a d n = (n + 1) * (2*a + n*d)" by (induct n) (simp_all add: algebra_simps) end