(* Sum_of_powers_of_two.lean -- Proofs of \k -- Sevilla, September 24, 2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Prove that -- 1 + 2 + 2² + 2³ + ... + 2\<^sup>n⁾= 2\<^sup>n\<^sup>+\<^sup>1 - 1 -- ------------------------------------------------------------------ *) theory Sum_of_powers_of_two imports Main begin (* Proof 1 *) lemma "(\k\n. (2::nat)^k) = 2^(n+1) - 1" proof (induct n) show "(\k\0. (2::nat)^k) = 2^(0+1) - 1" by simp next fix n assume HI : "(\k\n. (2::nat)^k) = 2^(n+1) - 1" have "(\k\Suc n. (2::nat)^k) = (\k\n. (2::nat)^k) + 2^Suc n" by simp also have "\ = (2^(n+1) - 1) + 2^Suc n" using HI by simp also have "\ = 2^(Suc n + 1) - 1" by simp finally show "(\k\Suc n. (2::nat)^k) = 2^(Suc n + 1) - 1" . qed (* Proof 2 *) lemma "(\k\n. (2::nat)^k) = 2^(n+1) - 1" proof (induct n) show "(\k\0. (2::nat)^k) = 2^(0+1) - 1" by simp next fix n assume HI : "(\k\n. (2::nat)^k) = 2^(n+1) - 1" have "(\k\Suc n. (2::nat)^k) = (2^(n+1) - 1) + 2^Suc n" using HI by simp then show "(\k\Suc n. (2::nat)^k) = 2^(Suc n + 1) - 1" by simp qed (* Proof 3 *) lemma "(\k\n. (2::nat)^k) = 2^(n+1) - 1" proof (induct n) case 0 then show ?case by simp next case (Suc n) then show ?case by simp qed (* Proof 4 *) lemma "(\k\n. (2::nat)^k) = 2^(n+1) - 1" by (induct n) simp_all end