(* Union_con_su_diferencia.thy
   Unión con su diferencia
   José A. Alonso Jiménez
   Sevilla, 1 de marzo de 2024
   ---------------------------------------------------------------------
*)

(* ---------------------------------------------------------------------
  Demostrar que
     (s \ t) \<union> t = s \<union> t
  ------------------------------------------------------------------- *)

theory Union_con_su_diferencia
imports Main
begin

(* 1\<ordfeminine> demostración *)
lemma "(s - t) \<union> t = s \<union> t"
proof (rule equalityI)
  show "(s - t) \<union> t \<subseteq> s \<union> t"
  proof (rule subsetI)
    fix x
    assume "x \<in> (s - t) \<union> t"
    then show "x \<in> s \<union> t"
    proof (rule UnE)
      assume "x \<in> s - t"
      then have "x \<in> s"
        by (simp only: DiffD1)
      then show "x \<in> s \<union> t"
        by (simp only: UnI1)
    next
      assume "x \<in> t"
      then show "x \<in> s \<union> t"
        by (simp only: UnI2)
    qed
  qed
next
  show "s \<union> t \<subseteq> (s - t) \<union> t"
  proof (rule subsetI)
    fix x
    assume "x \<in> s \<union> t"
    then show "x \<in> (s - t) \<union> t"
    proof (rule UnE)
      assume "x \<in> s"
      show "x \<in> (s - t) \<union> t"
      proof (cases \<open>x \<in> t\<close>)
        assume "x \<in> t"
        then show "x \<in> (s - t) \<union> t"
          by (simp only: UnI2)
      next
        assume "x \<notin> t"
        with \<open>x \<in> s\<close> have "x \<in> s - t"
          by (rule DiffI)
        then show "x \<in> (s - t) \<union> t"
          by (simp only: UnI1)
      qed
    next
      assume "x \<in> t"
      then show "x \<in> (s - t) \<union> t"
        by (simp only: UnI2)
    qed
  qed
qed

(* 2\<ordfeminine> demostración *)
lemma "(s - t) \<union> t = s \<union> t"
proof
  show "(s - t) \<union> t \<subseteq> s \<union> t"
  proof
    fix x
    assume "x \<in> (s - t) \<union> t"
    then show "x \<in> s \<union> t"
    proof
      assume "x \<in> s - t"
      then have "x \<in> s"
        by simp
      then show "x \<in> s \<union> t"
        by simp
    next
      assume "x \<in> t"
      then show "x \<in> s \<union> t"
        by simp
    qed
  qed
next
  show "s \<union> t \<subseteq> (s - t) \<union> t"
  proof
    fix x
    assume "x \<in> s \<union> t"
    then show "x \<in> (s - t) \<union> t"
    proof
      assume "x \<in> s"
      show "x \<in> (s - t) \<union> t"
      proof
        assume "x \<notin> t"
        with \<open>x \<in> s\<close> show "x \<in> s - t"
          by simp
      qed
    next
      assume "x \<in> t"
      then show "x \<in> (s - t) \<union> t"
        by simp
    qed
  qed
qed

(* 3\<ordfeminine> demostración *)
lemma "(s - t) \<union> t = s \<union> t"
by (fact Un_Diff_cancel2)

(* 4\<ordfeminine> demostración *)
lemma "(s - t) \<union> t = s \<union> t"
  by auto

end