(* Union_con_su_interseccion.thy s \<union> (s \<inter> t) = s. José A. Alonso Jiménez Sevilla, 29 de febrero de 2024 --------------------------------------------------------------------- *) (* --------------------------------------------------------------------- Demostrar que s \<union> (s \<inter> t) = s -- ------------------------------------------------------------------ *) theory Union_con_su_interseccion imports Main begin (* 1\<ordfeminine> demostración *) lemma "s \<union> (s \<inter> t) = s" proof (rule equalityI) show "s \<union> (s \<inter> t) \<subseteq> s" proof (rule subsetI) fix x assume "x \<in> s \<union> (s \<inter> t)" then show "x \<in> s" proof assume "x \<in> s" then show "x \<in> s" by this next assume "x \<in> s \<inter> t" then show "x \<in> s" by (simp only: IntD1) qed qed next show "s \<subseteq> s \<union> (s \<inter> t)" proof (rule subsetI) fix x assume "x \<in> s" then show "x \<in> s \<union> (s \<inter> t)" by (simp only: UnI1) qed qed (* 2\<ordfeminine> demostración *) lemma "s \<union> (s \<inter> t) = s" proof show "s \<union> s \<inter> t \<subseteq> s" proof fix x assume "x \<in> s \<union> (s \<inter> t)" then show "x \<in> s" proof assume "x \<in> s" then show "x \<in> s" by this next assume "x \<in> s \<inter> t" then show "x \<in> s" by simp qed qed next show "s \<subseteq> s \<union> (s \<inter> t)" proof fix x assume "x \<in> s" then show "x \<in> s \<union> (s \<inter> t)" by simp qed qed (* 3\<ordfeminine> demostración *) lemma "s \<union> (s \<inter> t) = s" by auto end