(* Union_de_pares_e_impares.thy pares \<union> impares = naturales José A. Alonso Jiménez Sevilla, 5 de marzo de 2024 --------------------------------------------------------------------- *) (* --------------------------------------------------------------------- Los conjuntos de los números naturales, de los pares y de los impares se definen por def naturales : set \<nat> := {n | true} def pares : set \<nat> := {n | even n} def impares : set \<nat> := {n | \<not> even n} Demostrar que pares \<union> impares = naturales ------------------------------------------------------------------- *) theory Union_de_pares_e_impares imports Main begin definition naturales :: "nat set" where "naturales = {n\<in>\<nat> . True}" definition pares :: "nat set" where "pares = {n\<in>\<nat> . even n}" definition impares :: "nat set" where "impares = {n\<in>\<nat> . \<not> even n}" (* 1\<ordfeminine> demostración *) lemma "pares \<union> impares = naturales" proof - have "\<forall> n \<in> \<nat> . even n \<or> \<not> even n \<longleftrightarrow> True" by simp then have "{n \<in> \<nat>. even n} \<union> {n \<in> \<nat>. \<not> even n} = {n \<in> \<nat>. True}" by auto then show "pares \<union> impares = naturales" by (simp add: naturales_def pares_def impares_def) qed (* 2\<ordfeminine> demostración *) lemma "pares \<union> impares = naturales" unfolding naturales_def pares_def impares_def by auto end