(* le_of_forall_pos_le_add.thy -- If (\<forall> \<epsilon> > 0, y \<le> x + \<epsilon>), then y \<le> x -- José A. Alonso <https://jaalonso.github.io> -- Seville, September 2, 2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Let x, y \<in> \<real>. Prove that -- (\<forall>\<epsilon>>0. y \<le> x + \<epsilon>) \<longrightarrow> y \<le> x -- ------------------------------------------------------------------- *) theory le_of_forall_pos_le_add imports Main HOL.Real begin (* Proof 1 *) lemma fixes x y :: real shows "(\<forall>\<epsilon>>0. y \<le> x + \<epsilon>) \<longrightarrow> y \<le> x" proof (rule impI) assume h1 : "(\<forall>\<epsilon>>0. y \<le> x + \<epsilon>)" show "y \<le> x" proof (rule ccontr) assume "\<not> (y \<le> x)" then have "x < y" by simp then have "(y - x) / 2 > 0" by simp then have "y \<le> x + (y - x) / 2" using h1 by blast then have "2 * y \<le> 2 * x + (y - x)" by argo then have "y \<le> x" by simp then show False using \<open>\<not> (y \<le> x)\<close> by simp qed qed (* Proof 2 *) lemma fixes x y :: real shows "(\<forall>\<epsilon>>0. y \<le> x + \<epsilon>) \<longrightarrow> y \<le> x" proof (rule impI) assume h1 : "(\<forall>\<epsilon>>0. y \<le> x + \<epsilon>)" show "y \<le> x" proof (rule ccontr) assume "\<not> (y \<le> x)" then have "x < y" by simp then obtain z where hz : "x < z \<and> z < y" using Rats_dense_in_real by blast then have "0 < z -x" by simp then have "y \<le> x + (z - x)" using h1 by blast then have "y \<le> z" by simp then show False using hz by simp qed qed (* Proof 3 *) lemma fixes x y :: real shows "(\<forall>\<epsilon>>0. y \<le> x + \<epsilon>) \<longrightarrow> y \<le> x" proof (rule impI) assume h1 : "(\<forall>\<epsilon>>0. y \<le> x + \<epsilon>)" show "y \<le> x" proof (rule dense_le) fix z assume "z < y" then have "0 < y - z" by simp then have "y \<le> x + (y - z)" using h1 by simp then have "0 \<le> x - z" by simp then show "z \<le> x" by simp qed qed (* Proof 4 *) lemma fixes x y :: real shows "(\<forall>\<epsilon>>0. y \<le> x + \<epsilon>) \<longrightarrow> y \<le> x" by (simp add: field_le_epsilon) end