-- Cuadrado_igual_a_uno.lean -- En ℝ, si x² = 1 entonces x = 1 ó x = -1. -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 19-enero-2024 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- Demostrar que si -- x^2 = 1 -- entonces -- x = 1 ∨ x = -1 -- ---------------------------------------------------------------------- -- Demostración en lenguaje natural -- ================================ -- Usaremos los siguientes lemas -- (∀ x ∈ ℝ)[x - x = 0] (L1) -- (∀ x, y ∈ ℝ)[xy = 0 → x = 0 ∨ y = 0] (L2) -- (∀ x, y ∈ ℝ)[x - y = 0 ↔ x = y] (L3) -- (∀ x, y ∈ ℝ)[x + y = 0 → x = -y] (L4) -- -- Se tiene que -- (x - 1)(x + 1) = x² - 1 -- = 1 - 1 [por la hipótesis] -- = 0 [por L1] -- y, por el lema L2, se tiene que -- x - 1 = 0 ∨ x + 1 = 0 -- Acabaremos la demostración por casos. -- -- Primer caso: -- x - 1 = 0 ⟹ x = 1 [por L3] -- ⟹ x = 1 ∨ x = -1 -- -- Segundo caso: -- x + 1 = 0 ⟹ x = -1 [por L4] -- ⟹ x = 1 ∨ x = -1 -- Demostraciones con Lean4 -- ======================== import Mathlib.Data.Real.Basic import Mathlib.Tactic variable (x y : ℝ) -- 1ª demostración -- =============== example (h : x^2 = 1) : x = 1 ∨ x = -1 := by have h1 : (x - 1) * (x + 1) = 0 := by calc (x - 1) * (x + 1) = x^2 - 1 := by ring _ = 1 - 1 := by rw [h] _ = 0 := sub_self 1 have h2 : x - 1 = 0 ∨ x + 1 = 0 := by apply eq_zero_or_eq_zero_of_mul_eq_zero h1 rcases h2 with h3 | h4 . -- h3 : x - 1 = 0 left -- ⊢ x = 1 exact sub_eq_zero.mp h3 . -- h4 : x + 1 = 0 right -- ⊢ x = -1 exact eq_neg_of_add_eq_zero_left h4 -- 2ª demostración -- =============== example (h : x^2 = 1) : x = 1 ∨ x = -1 := by have h1 : (x - 1) * (x + 1) = 0 := by nlinarith have h2 : x - 1 = 0 ∨ x + 1 = 0 := by aesop rcases h2 with h3 | h4 . -- h3 : x - 1 = 0 left -- ⊢ x = 1 linarith . -- h4 : x + 1 = 0 right -- ⊢ x = -1 linarith -- 3ª demostración -- =============== example (h : x^2 = 1) : x = 1 ∨ x = -1 := sq_eq_one_iff.mp h -- 3ª demostración -- =============== example (h : x^2 = 1) : x = 1 ∨ x = -1 := by aesop -- Lemas usados -- ============ -- #check (eq_neg_of_add_eq_zero_left : x + y = 0 → x = -y) -- #check (eq_zero_or_eq_zero_of_mul_eq_zero : x * y = 0 → x = 0 ∨ y = 0) -- #check (sq_eq_one_iff : x ^ 2 = 1 ↔ x = 1 ∨ x = -1) -- #check (sub_eq_zero : x - y = 0 ↔ x = y) -- #check (sub_self x : x - x = 0)