-- Inecuaciones_con_exponenciales.lean -- En ℝ, si 1 ≤ a y b ≤ d, entonces 2 + a + eᵇ ≤ 3a + eᵈ -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 25-agosto-2023 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- Sean a, b, y d números reales. Demostrar que si -- 1 ≤ a -- b ≤ d -- entonces -- 2 + a + exp b ≤ 3 * a + exp d -- ---------------------------------------------------------------------- -- Demostración en lenguaje natural -- ================================ -- De la primera hipótesis (1 ≤ a), multiplicando por 2, se obtiene -- 2 ≤ 2a -- y, sumando a ambos lados, se tiene -- 2 + a ≤ 3a (1) -- De la hipótesis 2 (b ≤ d) y de la monotonía de la función exponencial -- se tiene -- e^b ≤ e^d (2) -- Finalmente, de (1) y (2) se tiene -- 2 + a + e^b ≤ 3a + e^d -- Demostraciones con Lean4 -- ======================== import Mathlib.Analysis.SpecialFunctions.Log.Basic open Real variable (a b d : ℝ) -- 1ª demostración example (h1 : 1 ≤ a) (h2 : b ≤ d) : 2 + a + exp b ≤ 3 * a + exp d := by have h3 : 2 + a ≤ 3 * a := calc 2 + a = 2 * 1 + a := by linarith only [] _ ≤ 2 * a + a := by linarith only [h1] _ ≤ 3 * a := by linarith only [] have h4 : exp b ≤ exp d := by linarith only [exp_le_exp.mpr h2] show 2 + a + exp b ≤ 3 * a + exp d exact add_le_add h3 h4 -- 2ª demostración example (h1 : 1 ≤ a) (h2 : b ≤ d) : 2 + a + exp b ≤ 3 * a + exp d := calc 2 + a + exp b ≤ 3 * a + exp b := by linarith only [h1] _ ≤ 3 * a + exp d := by linarith only [exp_le_exp.mpr h2] -- 3ª demostración example (h1 : 1 ≤ a) (h2 : b ≤ d) : 2 + a + exp b ≤ 3 * a + exp d := by linarith [exp_le_exp.mpr h2] -- Lemas usados -- ============ -- variable (c : ℝ) -- #check (add_le_add : a ≤ b → c ≤ d → a + c ≤ b + d) -- #check (exp_le_exp : exp a ≤ exp b ↔ a ≤ b)