-- Limite_multiplicado_por_una_constante_2.lean -- Si el límite de la sucesión uₙ es a y c ∈ ℝ, entonces el límite de cuₙ es ca -- José A. Alonso Jiménez -- Sevilla, 29 de noviembre de 2024 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- En Lean, una sucesión u₀, u₁, u₂, ... se puede representar mediante -- una función (u : ℕ → ℝ) de forma que u(n) es uₙ. -- -- Se define que a es el límite de la sucesión u, por -- def limite : (ℕ → ℝ) → ℝ → Prop := -- fun u c ↦ ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - c| < ε -- -- Demostrar que que si el límite de uₙ es a, entonces el de -- uₙc es ac. -- --------------------------------------------------------------------- -- Demostración en lenguaje natural -- ================================ -- En un [ejercicio anterior](https://tinyurl.com/2244qcxs) se han -- presentado demostraciones de la siguiente propiedad -- "Si el límite de la sucesión uₙ es a y c ∈ ℝ, entonces el límite -- de cuₙ es ca." -- -- A partir de dicha propiedad se demuestra que -- "Si el límite de la sucesión uₙ es a y c ∈ ℝ, entonces el límite -- de uₙc es ac." -- En efecto, supongamos que -- el límite de uₙ es a -- Entonces, por la propiedad anterior, -- el límite de cuₙ es ca (1) -- Pero, por la conmutatividad del producto, se tiene que -- (∀n ∈ ℕ)[cuₙ = uₙc] (2) -- ca = ac (3) -- Por (1), (2) y (3) se tiene que -- el límite de uₙc es ac -- Demostraciones con Lean4 -- ======================== import Mathlib.Data.Real.Basic import Mathlib.Tactic variable (u : ℕ → ℝ) variable (a c : ℝ) def limite : (ℕ → ℝ) → ℝ → Prop := fun u c ↦ ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - c| < ε -- Se usa el siguiente teorema demostrado en un ejercicio anterior. theorem limite_por_const (h : limite u a) : limite (fun n ↦ c * (u n)) (c * a) := by by_cases hc : c = 0 . -- hc : c = 0 subst hc -- ⊢ limite (fun n => 0 * u n) (0 * a) intros ε hε -- ε : ℝ -- hε : ε > 0 -- ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → |(fun n => 0 * u n) n - 0 * a| < ε aesop . -- hc : ¬c = 0 intros ε hε -- ε : ℝ -- hε : ε > 0 -- ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → |(fun n => c * u n) n - c * a| < ε have hc' : 0 < |c| := abs_pos.mpr hc have hεc : 0 < ε / |c| := div_pos hε hc' specialize h (ε/|c|) hεc -- h : ∃ N, ∀ (n : ℕ), n ≥ N → |u n - a| < ε / |c| cases' h with N hN -- N : ℕ -- hN : ∀ (n : ℕ), n ≥ N → |u n - a| < ε / |c| use N -- ⊢ ∀ (n : ℕ), n ≥ N → |(fun n => c * u n) n - c * a| < ε intros n hn -- n : ℕ -- hn : n ≥ N -- ⊢ |(fun n => c * u n) n - c * a| < ε specialize hN n hn -- hN : |u n - a| < ε / |c| dsimp only calc |c * u n - c * a| = |c * (u n - a)| := congr_arg abs (mul_sub c (u n) a).symm _ = |c| * |u n - a| := abs_mul c (u n - a) _ < |c| * (ε / |c|) := (mul_lt_mul_left hc').mpr hN _ = ε := mul_div_cancel₀ ε (ne_of_gt hc') example (h : limite u a) : limite (fun n ↦ (u n) * c) (a * c) := by have h1 : ∀ n, (u n) * c = c * (u n) := by intro -- n : ℕ -- ⊢ u n * c = c * u n ring have h2 : a * c = c * a := mul_comm a c simp [h1,h2] -- ⊢ limite (fun n => c * u n) (c * a) exact limite_por_const u a c h -- Lemas usados -- ============ -- variable (b c : ℝ) -- #check (abs_mul a b : |a * b| = |a| * |b|) -- #check (abs_pos.mpr : a ≠ 0 → 0 < |a|) -- #check (div_pos : 0 < a → 0 < b → 0 < a / b) -- #check (lt_div_iff₀' : 0 < c → (a < b / c ↔ c * a < b)) -- #check (mul_comm a b : a * b = b * a) -- #check (mul_div_cancel₀ a : b ≠ 0 → b * (a / b) = a) -- #check (mul_lt_mul_left : 0 < a → (a * b < a * c ↔ b < c)) -- #check (mul_sub a b c : a * (b - c) = a * b - a * c)