--- title: Identidad de Brahmagupta-Fibonacci date: 2024-09-25 06:00:00 UTC+02:00 category: Números reales has_math: true --- Demostrar la [identidad de Brahmagupta-Fibonacci](https://is.gd/9PJ56H) \\[ (a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2 \\] Para ello, completar la siguiente teoría de Lean4: ~~~lean import Mathlib.Data.Real.Basic import Mathlib.Tactic variable (a b c d : ℝ) example : (a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2 := sorry ~~~ <!-- TEASER_END --> # 1. Demostración en lenguaje natural Se demuestra por la siguiente cadena de igualdades \\begin{align} (a^2 + b^2)(c^2 + d^2) &= a^2(c^2 + d^2) + b^2(c^2 + d^2) \\newline &= (a^2c^2 + a^2d^2) + (b^2c^2 + b^2d^2) \\newline &= ((ac)^2 + (bd)^2) + ((ad)^2 + (bc)^2) \\newline &= ((ac)^2 - 2acbd + (bd)^2) + ((ad)^2 + 2adbc + (bc)^2) \\newline &= (ac - bd)^2 + (ad + bc)^2 \\end{align} # 2. Demostraciones con Lean4 ~~~lean import Mathlib.Data.Real.Basic import Mathlib.Tactic variable (a b c d : ℝ) -- 1ª demostración -- =============== example : (a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2 := calc (a^2 + b^2) * (c^2 + d^2) = a^2 * (c^2 + d^2) + b^2 * (c^2 + d^2) := right_distrib (a^2) (b^2) (c^2 + d^2) _ = (a^2*c^2 + a^2*d^2) + b^2 * (c^2 + d^2) := congr_arg₂ (. + .) (left_distrib (a^2) (c^2) (d^2)) rfl _ = (a^2*c^2 + a^2*d^2) + (b^2*c^2 + b^2*d^2) := congr_arg₂ (. + .) rfl (left_distrib (b^2) (c^2) (d^2)) _ = ((a*c)^2 + (b*d)^2) + ((a*d)^2 + (b*c)^2) := by ring _ = ((a*c)^2 - 2*a*c*b*d + (b*d)^2) + ((a*d)^2 + 2*a*d*b*c + (b*c)^2) := by ring _ = (a*c - b*d)^2 + (a*d + b*c)^2 := by ring -- 2ª demostración -- =============== example : (a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2 := by ring -- Lemas usados -- ============ -- variable (f : ℝ → ℝ → ℝ) -- variable (x x' y y' : ℝ) -- #check (congr_arg₂ f : x = x' → y = y' → f x y = f x' y') -- #check (left_distrib a b c : a * (b + c) = a * b + a * c) -- #check (right_distrib a b c: (a + b) * c = a * c + b * c) ~~~ Se puede interactuar con las demostraciones anteriores en [Lean 4 Web](https://live.lean-lang.org/#url=https://raw.githubusercontent.com/jaalonso/Calculemus2_es/main/src/Identidad_de_Brahmagupta-Fibonacci.lean). # 3. Demostraciones con Isabelle/HOL ~~~isabelle theory "Identidad_de_Brahmagupta-Fibonacci" imports Main HOL.Real begin (* 1ª demostración *) lemma fixes a b c d :: real shows "(a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2" proof - have "(a^2 + b^2) * (c^2 + d^2) = a^2 * (c^2 + d^2) + b^2 * (c^2 + d^2)" by (simp only: distrib_right) also have "… = (a^2*c^2 + a^2*d^2) + b^2 * (c^2 + d^2)" by (simp only: distrib_left) also have "… = (a^2*c^2 + a^2*d^2) + (b^2*c^2 + b^2*d^2)" by (simp only: distrib_left) also have "… = ((a*c)^2 + (b*d)^2) + ((a*d)^2 + (b*c)^2)" by algebra also have "… = ((a*c)^2 - 2*a*c*b*d + (b*d)^2) + ((a*d)^2 + 2*a*d*b*c + (b*c)^2)" by algebra also have "… = (a*c - b*d)^2 + (a*d + b*c)^2" by algebra finally show "(a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2" . qed (* 2ª demostración *) lemma fixes a b c d :: real shows "(a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2" by algebra end ~~~