--- title: Si M es un monoide, a ∈ M y m, n ∈ ℕ, entonces a^(m·n) = (a^m)^n date: 2024-05-17 06:00:00 UTC+02:00 category: Monoides has_math: true --- [mathjax] Demostrar con Lean4 que si \\(M\\) es un monoide, \\(a ∈ M\\) y \\(m, n ∈ ℕ\\), entonces \\[ a^{m·n} = (a^m)^n \\] Para ello, completar la siguiente teoría de Lean4: <pre lang="lean"> import Mathlib.Algebra.GroupPower.Basic open Nat variable {M : Type} [Monoid M] variable (a : M) variable (m n : ℕ) example : a^(m * n) = (a^m)^n := by sorry </pre> <!--more--> <h2>1. Demostración en lenguaje natural</h2> Por inducción en \\(n\\). **Caso base**: Supongamos que \\(n = 0\\). Entonces, \\begin{align} a^{m·0} &= a^0 \\\\ &= 1 &&\\text{[por pow_zero]} \\\\ &= (a^m)^0 &&\\text{[por pow_zero]} \\end{align} Paso de indución: Supogamos que se verifica para \\(n\\); es decir, \\[ a^{m·n} = (a^m)^n \\tag{HI} \\] Entonces, \\begin{align} a^{m·(n+1)} &= a^{m·n + m} \\\\ &= a^{m·n}·a^m \\\\ &= (a^m)^n·a^m &&\\text{[por HI]} \\\\ &= (a^m)^{n+1} &&\\text{[por pow_succ']} \\end{align} <h2>2. Demostraciones con Lean4</h2> <pre lang="lean"> import Mathlib.Algebra.GroupPower.Basic open Nat variable {M : Type} [Monoid M] variable (a : M) variable (m n : ℕ) -- 1ª demostración -- =============== example : a^(m * n) = (a^m)^n := by induction' n with n HI . calc a^(m * 0) = a^0 := congrArg (a ^ .) (Nat.mul_zero m) _ = 1 := pow_zero a _ = (a^m)^0 := (pow_zero (a^m)).symm . calc a^(m * succ n) = a^(m * n + m) := congrArg (a ^ .) (Nat.mul_succ m n) _ = a^(m * n) * a^m := pow_add a (m * n) m _ = (a^m)^n * a^m := congrArg (. * a^m) HI _ = (a^m)^(succ n) := (pow_succ' (a^m) n).symm -- 2ª demostración -- =============== example : a^(m * n) = (a^m)^n := by induction' n with n HI . calc a^(m * 0) = a^0 := by simp only [Nat.mul_zero] _ = 1 := by simp only [_root_.pow_zero] _ = (a^m)^0 := by simp only [_root_.pow_zero] . calc a^(m * succ n) = a^(m * n + m) := by simp only [Nat.mul_succ] _ = a^(m * n) * a^m := by simp only [pow_add] _ = (a^m)^n * a^m := by simp only [HI] _ = (a^m)^succ n := by simp only [_root_.pow_succ'] -- 3ª demostración -- =============== example : a^(m * n) = (a^m)^n := by induction' n with n HI . calc a^(m * 0) = a^0 := by simp [Nat.mul_zero] _ = 1 := by simp _ = (a^m)^0 := by simp . calc a^(m * succ n) = a^(m * n + m) := by simp [Nat.mul_succ] _ = a^(m * n) * a^m := by simp [pow_add] _ = (a^m)^n * a^m := by simp [HI] _ = (a^m)^succ n := by simp [_root_.pow_succ'] -- 4ª demostración -- =============== example : a^(m * n) = (a^m)^n := by induction' n with n HI . simp [Nat.mul_zero] . simp [Nat.mul_succ, pow_add, HI, _root_.pow_succ'] -- 5ª demostración -- =============== example : a^(m * n) = (a^m)^n := by induction' n with n HI . -- ⊢ a ^ (m * zero) = (a ^ m) ^ zero rw [Nat.mul_zero] -- ⊢ a ^ 0 = (a ^ m) ^ zero rw [_root_.pow_zero] -- ⊢ 1 = (a ^ m) ^ zero rw [_root_.pow_zero] . -- ⊢ a ^ (m * succ n) = (a ^ m) ^ succ n rw [Nat.mul_succ] -- ⊢ a ^ (m * n + m) = (a ^ m) ^ succ n rw [pow_add] -- ⊢ a ^ (m * n) * a ^ m = (a ^ m) ^ succ n rw [HI] -- ⊢ (a ^ m) ^ n * a ^ m = (a ^ m) ^ succ n rw [_root_.pow_succ'] -- 6ª demostración -- =============== example : a^(m * n) = (a^m)^n := by induction' n with n HI . rw [Nat.mul_zero, _root_.pow_zero, _root_.pow_zero] . rw [Nat.mul_succ, pow_add, HI, _root_.pow_succ'] -- 7ª demostración -- =============== example : a^(m * n) = (a^m)^n := pow_mul a m n -- Lemas usados -- ============ -- #check (Nat.mul_succ n m : n * succ m = n * m + n) -- #check (Nat.mul_zero m : m * 0 = 0) -- #check (pow_add a m n : a ^ (m + n) = a ^ m * a ^ n) -- #check (pow_mul a m n : a ^ (m * n) = (a ^ m) ^ n) -- #check (pow_succ' a n : a ^ (n + 1) = a ^ n * a) -- #check (pow_zero a : a ^ 0 = 1) </pre> Se puede interactuar con las demostraciones anteriores en [Lean 4 Web](https://live.lean-lang.org/#url=https://raw.githubusercontent.com/jaalonso/Calculemus2/main/src/Potencias_de_potencias_en_monoides.lean). <h2>3. Demostraciones con Isabelle/HOL</h2> <pre lang="isar"> theory Potencias_de_potencias_en_monoides imports Main begin context monoid_mult begin (* 1ª demostración *) lemma "a^(m * n) = (a^m)^n" proof (induct n) have "a ^ (m * 0) = a ^ 0" by (simp only: mult_0_right) also have "… = 1" by (simp only: power_0) also have "… = (a ^ m) ^ 0" by (simp only: power_0) finally show "a ^ (m * 0) = (a ^ m) ^ 0" by this next fix n assume HI : "a ^ (m * n) = (a ^ m) ^ n" have "a ^ (m * Suc n) = a ^ (m + m * n)" by (simp only: mult_Suc_right) also have "… = a ^ m * a ^ (m * n)" by (simp only: power_add) also have "… = a ^ m * (a ^ m) ^ n" by (simp only: HI) also have "… = (a ^ m) ^ Suc n" by (simp only: power_Suc) finally show "a ^ (m * Suc n) = (a ^ m) ^ Suc n" by this qed (* 2ª demostración *) lemma "a^(m * n) = (a^m)^n" proof (induct n) have "a ^ (m * 0) = a ^ 0" by simp also have "… = 1" by simp also have "… = (a ^ m) ^ 0" by simp finally show "a ^ (m * 0) = (a ^ m) ^ 0" . next fix n assume HI : "a ^ (m * n) = (a ^ m) ^ n" have "a ^ (m * Suc n) = a ^ (m + m * n)" by simp also have "… = a ^ m * a ^ (m * n)" by (simp add: power_add) also have "… = a ^ m * (a ^ m) ^ n" using HI by simp also have "… = (a ^ m) ^ Suc n" by simp finally show "a ^ (m * Suc n) = (a ^ m) ^ Suc n" . qed (* 3ª demostración *) lemma "a^(m * n) = (a^m)^n" proof (induct n) case 0 then show ?case by simp next case (Suc n) then show ?case by (simp add: power_add) qed (* 4ª demostración *) lemma "a^(m * n) = (a^m)^n" by (induct n) (simp_all add: power_add) (* 5ª demostración *) lemma "a^(m * n) = (a^m)^n" by (simp only: power_mult) end end </pre>