--- Título: s ∪ (s ∩ t) = s Autor: José A. Alonso --- [mathjax] Demostrar con Lean4 que \\[ s ∪ (s ∩ t) = s \\] Para ello, completar la siguiente teoría de Lean4: <pre lang="lean"> import Mathlib.Data.Set.Basic open Set variable {α : Type} variable (s t : Set α) example : s ∪ (s ∩ t) = s := by sorry </pre> <!--more--> <h2>1. Demostración en lenguaje natural</h2> Tenemos que demostrar que \\[ (∀ x)[x ∈ s ∪ (s ∩ t) ↔ x ∈ s] \\] y lo haremos demostrando las dos implicaciones. (⟹) Sea \\(x ∈ s ∪ (s ∩ t)\\). Entonces, \\(x ∈ s\\) ó \\(x ∈ s ∩ t\\). En ambos casos, \\(x ∈ s\\). (⟸) Sea \\(x ∈ s\\). Entonces, \\(x ∈ s ∩ t\\) y, por tanto, \\(x ∈ s ∪ (s ∩ t)\\). <h2>2. Demostraciones con Lean4</h2> <pre lang="lean"> import Mathlib.Data.Set.Basic open Set variable {α : Type} variable (s t : Set α) -- 1ª demostración -- =============== example : s ∪ (s ∩ t) = s := by ext x -- x : α -- ⊢ x ∈ s ∪ (s ∩ t) ↔ x ∈ s constructor . -- ⊢ x ∈ s ∪ (s ∩ t) → x ∈ s intro hx -- hx : x ∈ s ∪ (s ∩ t) -- ⊢ x ∈ s rcases hx with (xs | xst) . -- xs : x ∈ s exact xs . -- xst : x ∈ s ∩ t exact xst.1 . -- ⊢ x ∈ s → x ∈ s ∪ (s ∩ t) intro xs -- xs : x ∈ s -- ⊢ x ∈ s ∪ (s ∩ t) left -- ⊢ x ∈ s exact xs -- 2ª demostración -- =============== example : s ∪ (s ∩ t) = s := by ext x -- x : α -- ⊢ x ∈ s ∪ s ∩ t ↔ x ∈ s exact ⟨fun hx ↦ Or.elim hx id And.left, fun xs ↦ Or.inl xs⟩ -- 3ª demostración -- =============== example : s ∪ (s ∩ t) = s := by ext x -- x : α -- ⊢ x ∈ s ∪ (s ∩ t) ↔ x ∈ s constructor . -- ⊢ x ∈ s ∪ (s ∩ t) → x ∈ s rintro (xs | ⟨xs, -⟩) <;> -- xs : x ∈ s -- ⊢ x ∈ s exact xs . -- ⊢ x ∈ s → x ∈ s ∪ (s ∩ t) intro xs -- xs : x ∈ s -- ⊢ x ∈ s ∪ s ∩ t left -- ⊢ x ∈ s exact xs -- 4ª demostración -- =============== example : s ∪ (s ∩ t) = s := sup_inf_self -- Lemas usados -- ============ -- variable (a b c : Prop) -- #check (And.left : a ∧ b → a) -- #check (Or.elim : a ∨ b → (a → c) → (b → c) → c) -- #check (sup_inf_self : s ∪ (s ∩ t) = s) </pre> Se puede interactuar con las demostraciones anteriores en <a href="https://live.lean-lang.org/#url=https://raw.githubusercontent.com/jaalonso/Calculemus2/main/src/Union_con_su_interseccion.lean" rel="noopener noreferrer" target="_blank">Lean 4 Web</a>. <h2>3. Demostraciones con Isabelle/HOL</h2> <pre lang="isar"> theory Union_con_su_interseccion imports Main begin (* 1ª demostración *) lemma "s ∪ (s ∩ t) = s" proof (rule equalityI) show "s ∪ (s ∩ t) ⊆ s" proof (rule subsetI) fix x assume "x ∈ s ∪ (s ∩ t)" then show "x ∈ s" proof assume "x ∈ s" then show "x ∈ s" by this next assume "x ∈ s ∩ t" then show "x ∈ s" by (simp only: IntD1) qed qed next show "s ⊆ s ∪ (s ∩ t)" proof (rule subsetI) fix x assume "x ∈ s" then show "x ∈ s ∪ (s ∩ t)" by (simp only: UnI1) qed qed (* 2ª demostración *) lemma "s ∪ (s ∩ t) = s" proof show "s ∪ s ∩ t ⊆ s" proof fix x assume "x ∈ s ∪ (s ∩ t)" then show "x ∈ s" proof assume "x ∈ s" then show "x ∈ s" by this next assume "x ∈ s ∩ t" then show "x ∈ s" by simp qed qed next show "s ⊆ s ∪ (s ∩ t)" proof fix x assume "x ∈ s" then show "x ∈ s ∪ (s ∩ t)" by simp qed qed (* 3ª demostración *) lemma "s ∪ (s ∩ t) = s" by auto end </pre>