(* Propiedad_de_monotonia_de_la_interseccion.lean Si s \<subseteq> t, entonces s \<inter> u \<subseteq> t \<inter> u. José A. Alonso Jiménez Sevilla, 20 de febrero de 2024 --------------------------------------------------------------------- *) (* --------------------------------------------------------------------- -- Demostrar que si -- s \<subseteq> t -- entonces -- s \<inter> u \<subseteq> t \<inter> u -- ------------------------------------------------------------------ *) theory Propiedad_de_monotonia_de_la_interseccion imports Main begin (* 1\<ordfeminine> solución *) lemma assumes "s \<subseteq> t" shows "s \<inter> u \<subseteq> t \<inter> u" proof (rule subsetI) fix x assume hx: "x \<in> s \<inter> u" have xs: "x \<in> s" using hx by (simp only: IntD1) then have xt: "x \<in> t" using assms by (simp only: subset_eq) have xu: "x \<in> u" using hx by (simp only: IntD2) show "x \<in> t \<inter> u" using xt xu by (simp only: Int_iff) qed (* 2 solución *) lemma assumes "s \<subseteq> t" shows "s \<inter> u \<subseteq> t \<inter> u" proof fix x assume hx: "x \<in> s \<inter> u" have xs: "x \<in> s" using hx by simp then have xt: "x \<in> t" using assms by auto have xu: "x \<in> u" using hx by simp show "x \<in> t \<inter> u" using xt xu by simp qed (* 3\<ordfeminine> solución *) lemma assumes "s \<subseteq> t" shows "s \<inter> u \<subseteq> t \<inter> u" using assms by auto (* 4\<ordfeminine> solución *) lemma "s \<subseteq> t \<Longrightarrow> s \<inter> u \<subseteq> t \<inter> u" by auto end