(* Monotonia_de_la_imagen_inversa.thy Si u \<subseteq> v, entonces f⁻¹[u] \<subseteq> f⁻¹[v]. José A. Alonso Jiménez <https://jaalonso.github.io> Sevilla, 4-abril-2024 ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- Demostrar que si u \<subseteq> v, entonces f -` u \<subseteq> f -` v ------------------------------------------------------------------- *) theory Monotonia_de_la_imagen_inversa imports Main begin (* 1\<ordfeminine> demostración *) lemma assumes "u \<subseteq> v" shows "f -` u \<subseteq> f -` v" proof (rule subsetI) fix x assume "x \<in> f -` u" then have "f x \<in> u" by (rule vimageD) then have "f x \<in> v" using \<open>u \<subseteq> v\<close> by (rule set_rev_mp) then show "x \<in> f -` v" by (simp only: vimage_eq) qed (* 2\<ordfeminine> demostración *) lemma assumes "u \<subseteq> v" shows "f -` u \<subseteq> f -` v" proof fix x assume "x \<in> f -` u" then have "f x \<in> u" by simp then have "f x \<in> v" using \<open>u \<subseteq> v\<close> by (rule set_rev_mp) then show "x \<in> f -` v" by simp qed (* 3\<ordfeminine> demostración *) lemma assumes "u \<subseteq> v" shows "f -` u \<subseteq> f -` v" using assms by (simp only: vimage_mono) (* 4\<ordfeminine> demostración *) lemma assumes "u \<subseteq> v" shows "f -` u \<subseteq> f -` v" using assms by blast end