(* Suma_de_potencias_de_dos.lean -- Pruebas de \<Sum>k<n. 2^k = 2^n-1 -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 23-septiembre-2024 -- ------------------------------------------------------------------ *) (* --------------------------------------------------------------------- -- Demostrar que -- 1 + 2 + 2² + 2³ + ... + 2\<^sup>n⁾= 2\<^sup>n\<^sup>+\<^sup>1 - 1 -- ------------------------------------------------------------------ *) theory Suma_de_potencias_de_dos imports Main begin (* 1\<ordfeminine> demostración *) lemma "(\<Sum>k\<le>n. (2::nat)^k) = 2^(n+1) - 1" proof (induct n) show "(\<Sum>k\<le>0. (2::nat)^k) = 2^(0+1) - 1" by simp next fix n assume HI : "(\<Sum>k\<le>n. (2::nat)^k) = 2^(n+1) - 1" have "(\<Sum>k\<le>Suc n. (2::nat)^k) = (\<Sum>k\<le>n. (2::nat)^k) + 2^Suc n" by simp also have "\<dots> = (2^(n+1) - 1) + 2^Suc n" using HI by simp also have "\<dots> = 2^(Suc n + 1) - 1" by simp finally show "(\<Sum>k\<le>Suc n. (2::nat)^k) = 2^(Suc n + 1) - 1" . qed (* 2\<ordfeminine> demostración *) lemma "(\<Sum>k\<le>n. (2::nat)^k) = 2^(n+1) - 1" proof (induct n) show "(\<Sum>k\<le>0. (2::nat)^k) = 2^(0+1) - 1" by simp next fix n assume HI : "(\<Sum>k\<le>n. (2::nat)^k) = 2^(n+1) - 1" have "(\<Sum>k\<le>Suc n. (2::nat)^k) = (2^(n+1) - 1) + 2^Suc n" using HI by simp then show "(\<Sum>k\<le>Suc n. (2::nat)^k) = 2^(Suc n + 1) - 1" by simp qed (* 3\<ordfeminine> demostración *) lemma "(\<Sum>k\<le>n. (2::nat)^k) = 2^(n+1) - 1" proof (induct n) case 0 then show ?case by simp next case (Suc n) then show ?case by simp qed (* 4\<ordfeminine> demostración *) lemma "(\<Sum>k\<le>n. (2::nat)^k) = 2^(n+1) - 1" by (induct n) simp_all end