{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Nonexistence of a distance-regular graph with intersection array $\\{135, 128, 16; 1, 16, 120\\}$\n", "\n", "We will show that a distance-regular graph with intersection array $\\{135, 128, 16; 1, 16, 120\\}$ does not exist." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "import drg" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Such a graph would have $1360$ vertices." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "deletable": true, "editable": true, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "1360" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p = drg.DRGParameters([135, 128, 16], [1, 16, 120])\n", "p.order()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "We see that all intersection numbers are nonnegative integers." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEKCAYAAADEovgeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAEslJREFUeJzt3Xtc1YX9x/H34U544SKCpSloubSLilk6bVO76NJcNnXL\nsshHTTHcSqdzyklZLVOzqQydjUBzv01bm7NWrfTx60p5Ae2ipjmVWgaJgO7nhds5vz+YPCKVDnA+\nCt9ez8eDP+J8Oefb483xJYfjOS6v1+sVAACGAi70CQAAnI/YAADMERsAgDliAwAwR2wAAOaIDQDA\nHLEBAJgjNgAAc8QGAGCO2AAAzBEbAIA5YgMAMEdsAADmiA0AwByxAQCYIzYAAHPEBgBgjtgAAMwR\nGwCAOWIDADBHbAAA5ogNAMAcsQEAmCM2AABzxAYAYI7YAADMERsAgDliAwAwR2wAAOaIDQDAHLEB\nAJgjNgAAc8QGAGCO2AAAzBEbAIA5YgMAMEdsAADmiA0AwByxAQCYIzYAAHPEBgBgjtgAAMwRGwCA\nOWIDADBHbAAA5ogNAMAcsQEAmCM2AABzxAYAYI7YAADMERsAgDliAwAwR2wAAOaIDQDAHLEBAJgj\nNgAAc8QGAGCO2AAAzBEbAIA5YgMAMEdsAADmiA0AwByxAQCYIzYAAHPEBgBgjtgAAMwRGwCAOWID\nADBHbAAA5ogNAMAcsQEAmCM2AABzxAYAYI7YAADMERsAgDliAwAwR2wAAOaIDQDAHLEBAJgjNgAA\nc8QGAGCO2AAAzBEbAIA5YgMAMEdsAADmiA0AwByxAQCYIzYAAHPEBgBgjtgAAMwRGwCAOWIDADBH\nbAAA5ogNAMAcsQEAmCM2AABzxAYAYI7YAADMERsAgDliAwAwR2wAAOaIDQDAHLEBAJgjNgAAc8QG\nAGCO2AAAzBEbAIA5YgMAMEdsAADmiA0AwByxAQCYIzYAAHPEBgBgjtgAAMwFWV2xx+NRXl6etm3b\npry8PO3Yvl0lJSWqqKhQSEiIoqOj1at3byUlJalv375KSkpSQADta+7Y1bnY1pmay64ur9fr9ecV\nFhcXKzs7W8szM3Xg4EEFBQWqZ2IX9b6sq+JjohQaEqzyikoVHinV9k/+pZ37D6qqqlqJCQmaNHmy\nkpOT1a5dO3+eEvyAXZ2LbZ2pue3qt9icPHlSbrdby5Ytk9fj0bihN2jibcPUr0d3hYWGnPPrTpVX\naMuuPcra8IrWbnpTroAApaamKj09XeHh4f44NTQBuzoX2zpTc93VL7HJzc1V8r33qqCgQLMmjNPk\n0bcqNiqywddzuLRMmX99UfNXr1Pnzp2VnZOjAQMGNPX00Ejs6lxs60zNedcmPzC3cOFCDRw4UFGh\ngcpflSH3xPGN+p+TpNioSD0y8S7lr8pQZEigBg4cqEWLFjX1FNEI7OpcbOtMzX3XwLlz585t7Ben\npaUpLS1Nv5wwTmsemaH20VFNOpnTYiPb6t4f3KSKyko9sui38ng8Gjx4sF+uG9+MXZ2LbZ2pJeza\n6NgsXLhQaWlpmj9lotwTx/v92QsBAQG68dreCgsNkfvJJWrVqhU/np8H7OpcbOtMLWXXRv3OJjc3\nVwMHDtTMu8fqN5OTG3yjDTUr8xktWPOc3nnnHfXv39/89r6t2NW52NaZWtKuDY7NyZMn1euaaxQV\nGqi3VzypwMDABt1gY1RVVWvgpGkqq6jWjvff5xkvBtjVudjWmVrarg3+ecvtdqugoEDZs6edl/85\nSQoKClT2nIdVUFAgt9t9Xm7z24ZdnYttnaml7dqgn2yKi4vVsWNHzbp7rNwTxzf4RJtqXtYazX/2\nOX3++eeKiYk577fvVOzqXGzrTC1x1wb9ZJOdnS15vUq5Y0SjTrCpUkaPkNfjqTkP+A27OhfbOlNL\n3NXn2Hg8Hi3PzNTYIYPULrJto06wqWKjIjV26CAtz8yUx+O5IOfgNPXt+taOjzTqF4+o48jxChww\nXBveerfO5fOy1qjHj+9X6yE/VMzNP9LNU2dpy849dY5JuH2CAgcMr/0I+u4PtGDNc3WOYVcbp7f9\nXq8rNfGxxefcUZLcK1frkpF3KuL7o3Tz1Fna99mhOpd/8tnnun3mPLUfPk6RN47WDZOm6Y38D+oc\n81nRYY2YlqZWg0epw60/0YyMPyimbRu29bOm3Ge/6qfzlyhwwHAtXbf+rJdXVFaq94QUBQ4Yrg/2\n7a9zWWPusz7HJi8vTwcOHtTE24b5+iUmJo4cpv0HDigvL++CnodT1Lfr8ZOndM1lXZUxfYpcLtcZ\nl3e/tKMypk/Rh39cobdXLlbnDnG65ee/0pGjx2qPcblc+vUD96jwH3/SFy/+SYde+B+l/ui2M66L\nXf3v9LZDr+1d745PPLtOv/vLBq2YMVWbs5YoIjxMwx6arYrKytpjRkxzq7rao//93RPKy8nQ1d0S\nNWK6W1+WlEmq+QPw1ofTVFVdrXef/q1y0qZp1Uuvyf30arb1s6bcZ09b/0autu7aq0tiz/0Q2IyM\nLHWMbXfO62norj7HZtu2bQoKClS/Ht19/RIT/Xp0V2BgIN+4flLfrsP691X6AxP0w+8N0Nl+tffj\nm76vIX17qUuHeF3R5VItnvqAjh0/oQ/2HahzXKuLwhQbFan20TUf4WGhZ1wXu/rf6W1Tx4yqd8el\n69ZrTvKdGjnoel3ZtYtWuafr0OEjWv9Gzd+Kjxw9pn3/PqSZd49Vz8Qu6trxYs1PuU8nTpXro/0H\nJUn/3Jynjws+05q5M3VVtwTdcn1fpd8/QZnPv6g+3buxrR815T4rSZ9/WayfPbVcf0yfqaBzPLHg\n5Xe3auPWfC1Mvf+c19PQ+2yDfrLpmdil3hdyOx/Cw0LVM7Ez37h+4q9dK6uq9Pv1LymyVYSu6ZZY\n57Innl2n2GFjlXTPFC36419UXV19xtezq//5su2BQ4UqPFKqodf2qv1cm4gIXdezu979aLckKaZt\nG32ncyetfnmjTpw6paqqaq342z8UFx2ppO9cJkl676OPdVXXLnUe1rnl+iQd/b/j2n+okG39qCn3\nWa/Xq3vSF+kX48foii6XnvWYopJS/XT+Ej37yAyF13MbDb3P+vx+Nju2b1fvy7r6eripPpd30/b8\n/At9Go7Q1F3/8c5m/cQ9XydOlevidtF6denjim7buvbyqWN/qD7duym6TWvlfrhLszKfUeGRUi2a\nev8Z18Wu/uXLtoVHSuRyuRT3tZc3iYuOUlFJSe1/v7rkN7r9l/PUZuhoBfz3+JefekxtW0XUXs8Z\n1xEVVXsZ2/pPU+6z81evVUhwkB4cc+ZD2afd9+hiTR49Qr27d1PBF0X1Xl9DdvU5NiUlJYq/8jJf\nDzcVFx2pTTt2Kp9v3iYrKizUTU3YdUhSL+1YnanismN6esPLGjv7MW3OWlL7N9yf//j22mOv7NpF\nwUFBmrxgmR5PSVZwUN1vP3b1r6Zs6/V65frKAx9TFmUoLipKb//+SYWFhOgPG17RyOlubc1edkZk\nvq4mZmzrL43dNe/jT7Tsub8rf9XvznnM0nXr9Z8TJzTz7rGSJK/q/5cxcdGRenPXXp9u3+fYVFRU\nKDQk2NfDTYWGBKuwqFBJSUkX+lRavOCgwCbtGh4WqsRLOijxkg7q17O7uo+dqKwX/ln7zfp11/Xs\nrqrqah38okiXdbqkzmXs6l++bBsfEy2v16uiktI60fiytEy9Lu8mSdq0dbteyt2q0teeV0R4mCQp\nY/oUvbYlX6te2qgZd41RfEy0tu2u+4dOUWmppJqfktjWfxp7n337/Z06XHZUl466u/Zz1R6Ppi1d\nqSVr1+tfz+fo9bwP9N5HHyvshpF1vvba5Kkaf8tgPTNnWp3Ph4YEq7y8wqfb9zk2ISEhKq+o/OYD\nz4PyikrFx8Vr/YYNF/pUWrxRI0f6dVePx1Pv9W3f+y8FuFxqf5aXPmdX//Jl24SL4xUfE6VNW3fo\n6v/+ru3Y8ePavHOPUu6o+QPn5H//MPn6k5ICXK7ap732v/IKPb7qzyouO1r7U+2rm/PVtlWEeiRc\nqj+/9jrb+klj77MThg/VTf161/ncLT+brbuHD1XyiJslSUunTdajk+6pvfzQ4SMa9tAcrX30V2d9\nQkJ5RaVCffzdkc+xiY6OVuGRUl8PN1VUUqb2cXHq06fPhT6VFi8uPv6cux4/eUr7/n2o9tko+z8v\n1Puf7Fd0m9aKadtaj+X8WbcNul4dYqJVfPSoMp57QYeKSzRm6CBJ0nsf7dbmnXs0OOlqtb7oIuV+\nuEvTlqzUXcOG1j7W/1Xs6l+nt61vx05xsfrZuNv1WM6f1K3jxerSIU7up1erY/t2GnVDzQst9r/q\nCkW1aaV70xdpzn13Kjw0VCvXv6SDhUW6dUA/SdLN1/VRj4RLNWHeQs2fcp++KC6Re+VqTbljpIKD\ngtjWjxp7n+0UF6uoNq3rHB8cFKj4mKjaRxk6to+tc3lEWJi8Xq8SL4nXxWd5mnRRSZmioqJ9Om+f\nY9Ord29te+t1Xw83lb93n/p9b8iFPg1HqG/Xbbv3asiDM+VyueRyuTR92dOSpAnDb9TyGQ9qT8Fn\nGvPyRhWXHVNM2za69orL9dbvF9U+yyU0OFhrN76u9Kw1Kq+sVMLF8Xr4zjv00Fd+j/NV7Opfp7et\nb8dn5jysGXeN0YlTpzRpwVKV/ee4BvXqqZcWP6qQ4JqHamLattHLTz2qOStW6cbUWaqsqlLPhM76\n+4K5uqpbgqSal6F/YVG6UhYs03cfeFgRYWG659abNO/+mods2NZ/GnuffWbOw2ccX9+/xfHlmIbs\n6vNroy1fvlxTp6bq2Ma/XdCnP588Va42N45WRkaGJk2adMHOwynY1bnY1pla6q4+/zubvn37qqqq\nWlt27fnmgw1t2bVH1dXV/KLRT9jVudjWmVrqrj7HJikpSQlduihrwyuNPjl/yHrhFSUmJPCN6yfs\n6lxs60wtdVefYxMQEKDJKSlau+lNFZcdbfQJNsXh0jKt2/SWJqek+P2tT7+t2NW52NaZWuquDVo/\nOTlZroAAZT7/YqNOsKky//qiXAEBSk62f/vTbxN2dS62daaWuGuDYtOuXTulpqbq8dVrtfvgpw0+\nwabYffBTzV+9TqmpqbwJk5+xq3OxrTO1xF0b9E6d0oV93+ujlR5t37GD9zM3wK7OxbbO1NJ2bfCD\nqOHh4crOydGWnXuUtnJ1Q7+8UdJWrtK23XuVnZPDN60RdnUutnWmlrZr4Ny5c+c29AY7deqkiIgI\nPbLoKYWFhmjgNT0behU+e+LZdZqXtUYLFizQuHHjzG4H7OpkbOtMLWnXRsVGkgYMGCCPxyP3k0t0\nqqJCg/tc7ddnm1RVVWv2ihzNy1qjtLQ0zZ4922/XjXNjV+diW2dqKbs2OjaSNHjwYEVERGje4iX6\n55Y8fffqHor92ntiN8bug59q1Ix5em7Tm1q4cCHftOcZuzoX2zpTS9i1wU8QOJvc3Fwl33uvCgoK\n9MsJY5UyeoRiz/Kqvt/kcGmZMv/6ouavXqfOnTsrZ9Uq9e/fv6mnh0ZiV+diW2dqzrv6JTZSzTMj\n3G63li1bJq/Ho7FDB2niyGHq16P7Wd9zvvbrTpVry649ynrhFa3b9JZcAQFKTU1Veno6v1hsBtjV\nudjWmZrrrn6LzWlHjhxRdna2lmdmav+BAwoMDFTPxM7qc3k3xUVH1rzZTkWlikrKlL93n3buL1B1\ndbUSExI0OSVFycnJPCe/GWJX52JbZ2puu/o9Nqd5PB7l5eXVfmzPz1dpaYnKyysUGhqiqKho9e7T\nR0lJSbUfvJxF88euzsW2ztRcdjWLDQAAp/HXEgCAOWIDADBHbAAA5ogNAMAcsQEAmCM2AABzxAYA\nYI7YAADMERsAgDliAwAwR2wAAOaIDQDAHLEBAJgjNgAAc8QGAGCO2AAAzBEbAIA5YgMAMEdsAADm\niA0AwByxAQCYIzYAAHPEBgBgjtgAAMwRGwCAOWIDADBHbAAA5ogNAMAcsQEAmCM2AABzxAYAYI7Y\nAADMERsAgDliAwAwR2wAAOaIDQDAHLEBAJgjNgAAc8QGAGCO2AAAzBEbAIA5YgMAMEdsAADmiA0A\nwByxAQCYIzYAAHPEBgBgjtgAAMwRGwCAOWIDADBHbAAA5ogNAMAcsQEAmCM2AABzxAYAYI7YAADM\nERsAgDliAwAwR2wAAOaIDQDAHLEBAJgjNgAAc8QGAGCO2AAAzBEbAIA5YgMAMEdsAADmiA0AwByx\nAQCYIzYAAHPEBgBgjtgAAMwRGwCAOWIDADBHbAAA5ogNAMAcsQEAmCM2AABzxAYAYI7YAADMERsA\ngDliAwAwR2wAAOaIDQDAHLEBAJgjNgAAc8QGAGCO2AAAzBEbAIA5YgMAMEdsAADmiA0AwByxAQCY\nIzYAAHPEBgBgjtgAAMwRGwCAOWIDADBHbAAA5ogNAMAcsQEAmCM2AABzxAYAYI7YAADMERsAgDli\nAwAwR2wAAOaIDQDAHLEBAJgjNgAAc8QGAGCO2AAAzBEbAIC5/weejUQSlEqVEQAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "Graphics object consisting of 8 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAADFCAYAAACCa1/LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztnXtcU/f9/18hkIigBbzA9lO5qLVqq0KsG4yJF3RodXRu\n061eCmPfVbB812+NoLWJXLTlYm9fFZ2bBayP31b7nZ1WLbW1UiuxVQLaX5WvlyJ4aUG5tVWQkOTz\n+8NBRRJIDuckOSfv5+ORxx4jnnPemGfP08/hkMgYYwwEQRAEISAezh6AIAiCkD4UG4IgCEJwKDYE\nQRCE4FBsCIIgCMGh2BAEQRCCQ7EhCIIgBIdiQxAEQQgOxYYgCIIQHE+hdmw2m6HX61FeXg69Xo8z\nlZVoamqCwWCAQqFAQEAApoSHQ6VSYerUqVCpVPDwoPa5O+QNwQXyxvWR8f0OAg0NDSgsLMT2ggJc\nqamBp6ccE8NCED52NIKG+EOp8EK7oQN1jc2ovPQVzlXXwGg0ISw0FCuTk5GYmIihQ4fyORIhAsgb\nggvkjXjgLTZtbW3QarXYsmULmNmMJbOnI+mXcZg2YRwGKBVWt7vbbsCp8xew60AJ3j56HDIPD6Sm\npiIrKwve3t58jEa4MOQNwQXyRnzwEhudTofEhATU1tZi3YolSF70BIb5+9m9n1vNLSjYdxA5u/ci\nODgYhUVFiIqK6u94hItC3hBcIG/ESb8vWubn5yM6Ohr+SjkqirdCm7SU0wsPAMP8/bAhaRkqirfC\nTyFHdHQ0Nm/e3N8RCReEvCG4QN6IF3lGRkYG1401Gg00Gg3WrliCPRvSMDzAn5ehhvk9hIT5c2Do\n6MCGza/DbDZj5syZvOybcD7kDcEF8kbccI5Nfn4+NBoNclYlQZu0lPc7Ozw8PBD7eDgGKBXQvvIG\nfH19aYkrAcgbggvkjfjh9DMbnU6H6OhopC9fjJeSE4WYqxvrCt5E3p53UFZWhsjISMGPRwgDeUNw\ngbyRBnbHpq2tDVMmT4a/Uo4TO16BXC4XarYujEYToleuRovBhDNnz9JdIyKEvCG4QN5IB7vXolqt\nFrW1tShcv9ohLzwAeHrKUfji86itrYVWq3XIMQl+IW8ILpA30sGulU1DQwNGjBiBdcsXQ5u0VMi5\nLJK5aw9y3noHN27cwJAhQxx+fIIb5A3BBfJGWti1siksLAQYQ8qvFwg1T6+kLFoAZjbfm4MQDeQN\nwQXyRlrYvLIxm80YM3o0oh8ZjeINa4SeyyorMvOgu3AFly5fpvc2EgHkDcEF8kZ62Py3p9frcaWm\nBkm/jBNynj5JWhiH6itXoNfrnToHYRvWvPn0zJeIX7MBIxYuhTxqHg58erLrOaPRhPRtuzB52UoM\nmvUkRixcioSszfimobHbPi5du4FfpWdi+Lwl8ItdhOkrV+OTii8szkHeiIvezjeOdIe84Q+bY1Ne\nXg5PTzmmTRgn5Dx9Mm3COMjlcnrxRYI1b+603cXksaOxVb0KMpms23Ot7Xdx9tJX0CYtQ0XxNuzL\n0eLC1et4Mi2z259bsFoLk8mMY9tyoS/aikljwrBArcXNppYec5A34qK3840j3SFv+MPmjxjQ6/WY\nGBbS65vcOQLvAUpMDAumF18kWPMmLnIq4iKnAgAevJI72McHJa+/1O1rW1an4Kd/fA7Xb97CiOHD\n0Pjtd7h8/Wu8uf55TAwLAQDkpPwB2/cdxJfVNZgVMKXb9uSNuOjtfONId8gb/rB5ZXOmshLhY0cL\nOYvNRDw8BpUVFc4eg7ABvrxp+f42ZDLAz9cXADDkocF4JHgkdr//EVrv3oXRaMKOdw8hMMAPqkfG\nWtwHeSMe+Dzf9Ncd8oYfbF7ZNDU1IehRy/8RO5rAAD8cPXMOFSSAy1NfV4c5/fSm3WDAuu2FeGrO\nTPgO/OEX7I688RJ+tTYTg2cvgodMhsAAf7z/2iY85OtjcT/kjXjgwxuAH3cCA/xw/PzFfs/i7tgc\nG4PBAKXCS8hZbEap8EJdfR1UKpWzRyH6wMtT3i9vjEYTFq/fBJkM2Lbm2W7Prdq8FYH+/jjxl1cw\nQKHA3w6UYKFai9OFWxBo4U0ayRvx0F9vAP7cUSq80N5u6NcshB2xUSgUaDd0CDmLzbQbOhAUGIR/\nHTjg7FGIPohfuJCzN50ni2v1DTi6Nafbv0yPnq7EYd1pNH/4T/h4DwAAbFWvwoenKlB8+COkLftt\nj/2RN+KhP94A/LrTbuiA0sk/q5YCNscmICAAdY3NQs5iM/VNLRgeGIiIiAhnj0L0QWBQECdvOk8W\n1V9/g4+35sF/8KBuz7f9+1+aD9yMBA+ZDGaz2eI+yRvxwNUbgH936pta4O8fwGkW4gdsvkFgSng4\nKi99JeQsNlNx8TLC6YQhCqx5c6ftLs5eqsaZi/eeq75Rh7OXqnGt/hZMJhN+80I2Ki5exlsb0tBh\nMqK+qRn1Tc3oMBoBAJGPjYf/YF8kZG3GF5ercenaDazZ8lfU1NXjiahpFmchb8RDb+cbR7tD3vCD\nzSsblUqF4uIi3G03OPX257a77ThXXYvk5+m6uxiw5k151UXMejYdMpkMMpkM6i1/BQCsmBeLDUlL\n8d6JzyGTyRD+9CoA925xlclk+HhrLqaHP4YhDw3G+69txIs7ihGbug4dRiMmhgZjf14GHhsT2mMO\n8kZc9Ha+caQ75A1/2BybqVOnwmg04dT5C5ge/piQM/XKqfMXYDKZ6Ie8IsGaNzERk2DSvW91u96e\n6yRi3Fgcfm2jTXOQN+Kit/ONI90hb/jD5stoKpUKoSEh2HWgRMh5+mTXeyUICw2lF18kkDcEF8gb\n6WFzbDw8PJCckoK3jx5HQ8u3Qs5klVvNLdh79FMkp6TQm+KJBPKG4AJ5Iz3s+htMTEyEzMMDBf88\nKNQ8vVKw7yBkHh5ITBT+o2EJ/iBvCC6QN9LCrtgMHToUqampeHn326iquSrUTBapqrmKnN17kZqa\nSh9kJDLIG4IL5I20sOuTOgHnfib4tx1mVJ45Q58JLkLIG4IL5I10sPtCpLe3NwqLinDq3AVodu4W\nYqYeaHYWo7zqIgqLiuiFFynkDcEF8kY6yDMyMjLs3WjkyJHw8fHBhs2vYYBSgejJEwUY7R65b+1F\n5q49yMvLw5IlSwQ7DiE8I0eOhE6nQ/G+Aw7zJjc3l7wROSNHjsTNmzfx2t+KHOZNdnY2nnrqKcGO\n445wvsVCrVZDo9FgXcGbWFfwJkwmE59zwWg0de3b09MTjz/+OK/7JxxPdnY2jhw5gpiYGId4AwDf\nf/99j888IcRFWVkZdu/ejVGjRjnEG4VCgcOHD+P777/n9RjuDqeVTSczZ86Ej48PMl99Ax+c0uNn\nkyZgmN9D/R6qquYq4tMy8c7R49i0aRMAICcnB9HR0QgJCen3/gnHk52dDa1Wi6ysLBQWFgruTX5+\nPmJjY6HRaGA2mzFjxowen+pIuD5lZWWIi4uDSqWCTqeDn5+f4N5kZGTglVdewZEjR7B48WIolUoe\nvhPC7hsELKHT6ZCYkIDa2lqsXbEYKYsWYJi/n937udXcgoJ9B5Gzey+Cg4NRVFyMyMhItLa2Ij4+\nHjqdDocPH0ZMTEx/RyYcyP2h0Wg0XV8X2hsAyMvLQ3p6OjQaDTIzMyk4IuL+0Bw6dAg+Pvc+a8YR\n3nz++eeYO3cuHn30UZSUlGDQoEF97I3oE8YTra2tTK1WM6VSyRReXmxZ3Cx2bFseu3NsPzOfLLH6\nuHNsPzu2LY8ti5vFFF5eTKlUMrVazVpbW7vt/86dOyw2NpYNHDiQlZaW8jU2ITBZWVkMAMvKyrL4\nvNDeMMZYbm4uA8A0Gg0zm81Cf8sED5w4cYL5+vqymJgYdvv27R7PO8Kbzz77jA0ePJhFRUWx7777\nzhHftqThZWVzP42NjSgsLMT2ggJUX7kCuVyOiWHBiHh4DAID/O59EJGhA/VNLai4eBnnqmthMpkQ\nFhqK5JQUJCYmWr2vnVY44sLaisYSQnoD0ApHTFhb0VhCaG9ohcMfvMemE7PZDL1e3/WorKjAzfp6\n1NXXISgwCMMDAxEeEQGVStX1sOUtISg44sCe0NyPUN4AFBwxYE9o7kdIbyg4POHIZZRer2cAmF6v\n79d+6JKaa9PXpTN74csbxuiSmivT16Uze+HTG7qk1n9EGRvGKDiuCt+hYYxfbxij4LgifIeGMf69\noeD0D9HGhjEKjqshRGgY498bxig4roQQoWFMGG8oONwRdWwYo+C4CkKFhjFhvGGMguMKCBUaxoTz\nhoLDDdHHhjEKjrMRMjSMCecNYxQcZyJkaBgT1hsKjv1IIjaMUXCchdChYUxYbxij4DgDoUPDmPDe\nUHDsQzKxYYyC42gcERrGhPeGMQqOI3FEaBhzjDcUHNuRVGwYo+A4CkeFhjHHeMMYBccROCo0jDnO\nGwqObUguNoxRcITGkaFhzHHeMEbBERJHhoYxx3pDwekbScaGMQqOUDg6NIw51hvGKDhC4OjQMOZ4\nbyg4vSPZ2DBGweEbZ4SGMcd7wxgFh0+cERrGnOMNBcc6ko4NYxQcvnBWaBhzjjeMUXD4wFmhYcx5\n3lBwLCP52DBGwekvzgwNY87zhjEKTn9wZmgYc643FJyeuEVsGKPgcMXZoWHMud4wRsHhgrNDw5jz\nvaHgdMdtYsMYBcdeXCE0jDnfG8YoOPbgCqFhzDW8oeD8gFvFhjEKjq24SmgYcw1vGKPg2IKrhIYx\n1/GGgnMPt4sNYxScvnCl0DDmOt4wRsHpDVcKDWOu5Q0Fx01jwxgFxxquFhrGXMsbxig4lnC10DDm\net64e3DcNjaMUXAexBVDw5jrecMYBed+XDE0jLmmN+4cHLeODWMUnE5cNTSMuaY3jFFwGHPd0DDm\nut64a3DcPjaMUXBcOTSMua43jLl3cFw5NIy5tjfuGByKzb9x1+C4emgYc21vGHPP4Lh6aBhzfW/c\nLTgUm/twt+CIITSMub43jLlXcMQQGsbE4Y07BYdi8wDuEhyxhIYxcXjDmHsERyyhYUw83rhLcCg2\nFpB6cMQUGsbE4w1j0g6OmELDmLi8cYfgUGysINXgiC00jInLG8akGRyxhYYx8Xkj9eBQbHpBasER\nY2gYE583jEkrOGIMDWPi9EbKwaHY9IFUgiPW0DAmTm8Yk0ZwxBoaxsTrjVSDQ7GxAbEHR8yhYUy8\n3jAm7uCIOTSMidsbKQaHYmMjYg2O2EPDmLi9YUycwRF7aBgTvzdSCw7Fxg7EFhwphIYx8XvDmLiC\nI4XQMCYNb6QUHIqNnYglOFIJDWPS8IYxcQRHKqFhTDreSCU4FBsOuHpwpBQaxqTjDWOuHRwphYYx\naXkjheBQbDjiqsGRWmgYk5Y3jLlmcKQWGsak543Yg+MJghMDBw7E/v37ER8fj/nz5+Pw4cOIiYmx\naVuz2Qy9Xo/y8nLo9XqcqaxEU1MTDAYDFAoFAgICMCU8HCqVClOnToVKpYKHh0ef+83OzoZWq0VW\nVhY0Gk1/v0VCINLS0gAA6enpAIDMzEzIZLI+txPKm7KyMsTFxUGlUuHQoUPw8fHp3zdICMJPfvIT\nHDlyBHPnzkVcXBxKSkowaNCgPrcTyht7odj0A3uD09DQgMLCQmwvKMCVmhp4esoxMSwE4WNHI+jR\nsVAqvNBu6EBdYzPKPy1FcXERjEYTwkJDsTI5GYmJiRg6dKjFfVNoxIU9wRHSGwqNuLAnOEJ6wwlH\nLqOktqztpK9Laq2trUytVjOlUskUXl5sedxsVlqQz1pLDzDzyRKrj9bSA6y0IJ8tj5vNFF5eTKlU\nMrVazVpbW7vtX4qXzu5Hqt4w1vslNaG9keKls/uRsje9XVIT2huuyBhjjL909U5FRQVUKhX0ej0i\nIiIcdViH0Nraivj4eOh0um4rHJ1Oh8SEBNTW1mLdiiVIXvQEhvn72b3/W80tKNh3EDm79yI4OBiF\nRUWIiopyixWNlL0BgLy8PKSnp0Oj0XStcIT2xh1WNFL35vPPP8fcuXPx6KOPdq1whPamP9BlNJ6w\ndEnt1KlTSE9Px7SJ4/Bu8VaMDxnFef/D/P2wIWkZFs+ejsSNryI6Ohpz5szBkSNHJB0ad+DBS2q+\nvr5Yu3atYN4kJydj9+7dkg6NO/DgJbV58+ZBq9UK5k1eXh7UajXnfVJseOT+4MTGxsJoNGLtiiXI\n/tMKyOVyXo4xPmQUTux4BZqdxch9ay9iYmIoNBLgweAI6k1BAUaNGkWhkQCdwZk+fTp0Op2g3qxZ\nswbfffcdsrKyOO2L/1sO3JyBAwdixowZMBqNyFmVhJeSE3l74Tvx9JTj5ZQ/4OWUP+CTTz7B5s2b\ned0/4Rw6bxBwhDdXr17F9u3bed0/4RyOHz8Og8HgEG+ys7M5n29oZcMzOp0OGo0Ga1csQdqy3wp6\nrPTli9Hy/W2kpaXhZz/7GSIjIwU9HiEcOp0O6enp5A1hF2LyhlY2PNLW1obEhARMmzgO2X9a4ZBj\nZv/paTw+YRwSnn4abW1tDjkmwS/kDcEFsXlDseERrVaL2tpaFK5fzftS1hqennIUvvg8amtrodVq\nHXJMgl/IG4ILYvOGYsMTDQ0N2LJlC9atWIJHQkY69NjjQ0Zh7YrF2LJlCxobGx16bKJ/kDcEF8To\nDcWGJwoLCwHGkPLrBU45fsqiBWBm8705CNFA3hBcEKM3FBseMJvN2F5QgMWzfo6hfg85ZYZh/n5Y\nPPvn2F5QALPZ7JQZCPsgbwguiNUbig0P6PV6XKmpQdIv4+ze9utbjViRmYdhcYvhMyMeU5Yno+LC\nJU5zJC2MQ/WVK9Dr9Zy2JxyLNW/MZjM0fynG6F8nwGdGPMb+JhEbC/9v1/NGownp23Zh8rKVGDTr\nSYxYuBQJWZvxTYPlSxqGjg6Er0iBPGoevrhc3eN58kZc2HO++fTMl4hfswEjFi6FPGoeDnx6ssef\nqaq5iifTMuA/59cYNOtJ/DTpz7h+81af+7bXG4oND5SXl8PTU45pE8bZtV3L97cR/czzUHh5oeT1\nTTj/953YnPof8LfhnVwtMW3COMjlcjppiARr3uTs3oud+w9jm/pZVP3jr8h9Ngn5e/4HW985AABo\nbb+Ls5e+gjZpGSqKt2FfjhYXrl7Hk2mZFo+TtnUXRgwbavWNPskbcWHP+eZO211MHjsaW9WrLL7+\nX13/GtNXqjE+ZBQ+2Z6PL/bswIuJT2GAQtHnvu31hn7Phgf0ej0mhoVggLLvF+h+ct7ai1GBw/G3\nF/6r62vBPwrkPIf3ACUmhgXTSUMkWPPmsy+r8MufRyIucioAYFTQcPz9SClOn78AABjs44OS11/q\nts2W1Sn46R+fw/WbtzBi+LCur79/8jQ+Ol2B/3lJg8MnT1ucg7wRF/acb+Iip3Z5ZOltMDU7i/FE\n1DS8nPKHrq+F/jjIpjns9YZWNjxwprIS4WNH273dwROfQTV+LJas34Sg+b+D6ulV+NuB9/s1S8TD\nY1BZUdGvfRCOwZo3kY+Nx8flZ3Dp2g0AwNlL1Sj74hzmRT1udV8t39+GTAb4+fp2fa2+qRnP5LyB\ntzakwbuPExN5Ix64nm8ehDGGQ2WnMWbkjzHvufUImv87RP7xOew/3vNSmzXs8YZWNjzQ1NSEoEfH\n2r1d9Y067Nh3CM//fhFeSPg9Pj/3v/jzqzswQKHAsrjZnGYJDPDD0TPnUCGhE0dVVVW3/5UK9XV1\nmGPBm7UrluC7O60Y/7v/gNzDA2ZmxsZnEvC7OTMs7qfdYMC67YV4as5M+A707vr6Hza+iuRFCxA+\nbgxqv6nvdRbyRjxY88Zebja34HZbG/L2vIONzzyN3GeT8P7Jcvx6XTaObcvDz6c82uc+AgP8cPz8\nRZuOR7HhAYPBAKXCy+7tzIxh2vixyH7maQDA5LFhOHelFjv2HeIcG6XCC3X1dVCpVJy2d2WWLVvm\n7BF4xctTbtGbtz/6BH//sBR/z1qLCaGjcOZSNZ57bQd+PDQAy+fFdvuzRqMJi9dvgkwGbFvzbNfX\n/3vvv/B9ayvSly8GADD0/kki5I14sOaNvXTeRfbk9Ej85+InAQCTxoTh5P87j7+8e8im2CgVXmhv\nN9h0PIoNDygUCrQbOuze7kdD/PHIA28DPj54FN4tLeM8S7uhA0GBQfjXgQOc9+FqVFVVYdmyZdiz\nZw/Gjx/v7HF4I37hQovepG/bhXUrfoffzp4OAJgYFoKab+qRs3tvt9h0huZafQOObs3ptqop1X+B\nz778XwyYvrDbvh9P/E8s/cVMvPni6m5fJ2/EgzVv7GWo30PwlMvxSHD3c9AjIaOg++KcTftoN3RA\naePPqik2PBAQEIC6xma7t/vZpIm4WHu929cuXL2O4KDhnGepb2rB8MBASX5Y1Pjx4yX1fQUGBVn0\npvVuOx68cchDJuv2+wydoan++ht8vDUP/oO738H436uTsXHl013//+tbjYj7rxfx9sYXLN7FRN6I\nB2ve2IuXpyceH/8wLl7tfg66ZMc5qL6pBf7+ATb9WYoND0wJD0f5p6V2b/fc736F6GdW4+Xif2Dx\n7On4/NwF7HqvBDvX/pnzLBUXL2NazCzO2xOOw5o3C6N/gpeK/4GRgcMwMTQYFRcu4/W330XSwnu/\nV2EymfCbF7Jx5lI13svPRIfJiPqmeyefgMGD4OXp2e2ONADwGTAAjDGE/Z8g/HjYkB7HJG/Egz3n\nmzttd3H5+tddd6JV36jD2UvVCBg8CCMDh0G99Df4vfZlRE+ZiJkRk/H+yXIcLDuF0oI8m/ZvjzcU\nGx5QqVQoLi7C3XaDXbc/Tx3/MPblaLCu4E1sLPw7Qn8ciNefW2n1B8F90Xa3Heeqa5H8vPSuu0sR\na95sWb0Kmp3FeHbzNtxsbsGPhw7Byl8tgCbxKQDA9ZsNOFh2CgAQ/vQqAPfuLJLJZPh4ay6mhz9m\n8XjWfs+GvBEX9pxvyqsuYtaz6ZDJZJDJZFBv+SsAYMW8WLz54vN4MiYK29NS8XLx23jutR0YN2oE\n/vmyBpGPTehzDnu9odjwwNSpU2E0mnDq/AWr/6FbY37UNMyPmsbLHKfOX4DJZJLkD3mliDVvfLwH\n4NU/P4NX//yMxe2CfxQIY9lhu47V2zbkjbiw53wTEzEJJl3vv06R8MRcJDwx1+457PWGfs+GB1Qq\nFUJDQrDrQIlT59j1XgnCQkPppCESyBuCC2L1hmLDAx4eHkhOScHbR4+joeVbp8xwq7kFe49+iuSU\nFHh40MsqBsgbggti9Ybs4onExETIPDxQ8M+DTjl+wb6DkHl4IDEx0SnHJ7hB3hBcEKM3FBueGDp0\nKFJTU/Hy7rdRVXPVoceuqrmKnN17kZqaiiFDet5pRLgu5A3BBTF6I2OW3p1NICoqKqBSqaDX6yV1\n33snbW1tmDJ5MvyVcpzY8YpDPqrVaDQheuVqfNthRuWZM/D29u57I5FB3vAPeSN+xOYNrWx4xNvb\nG4VFRTh17gI0O3c75JiancUor7qIwqIiSZ4w3AHyhuCC2Lyh2PBMVFQU5s6di5zdbyP3rb2CHiv3\nrb33Hrm5iIyMFPRYhLBERUUhJSXFod7k5OSQNyInKioKGRkZojjfUGx4ZuPGjfjggw8wY8YMrCt4\nE+sK3oTJZOL1GEajqWvfnp6eePxx6289T4gDnU6H4uJijBo1yiHeAMDt27ctfsYJIR6ampqwf/9+\neHt7O8QbjUYDtVrNaT8UGx7ZuHEjNBoNsrOzcezYMeTl5SFvzzuIXrmatx/iVdVcRfTK1cjb8w42\nbdqEGTNmYP78+fjkk0942T/heHQ6HX7xi19ApVLh/PnzgnuTn5+P3NxcZGVlISMjg4IjUpqamjBn\nzhzU1tbis88+c4g3WVlZnPdFseGJ+0Pz4osvAgDWrFmDEydOoLndhIinn0Xmrj241dzCaf+3mluQ\nuWsPIp5+Fi0GE8rKyvDCCy9g//79iIqKouCIlPtDc+jQIfj4+AjujVqtRlpaGgVHxNwfmo8//hiT\nJk1yiDf9gjkQvV7PADC9Xu/IwwpOdnY2A8Cys7MtPt/a2srUajVTKpVM4eXFlsXNYse25bE7x/Yz\n88kSq487x/azY9vy2LK4WUzh5cWUSiVTq9WstbW12/7v3LnDYmNj2cCBA1lpaakjvmWHIlVvysrK\nmK+vL4uJiWG3b9/u8bzQ3jDGWG5uLgPAtFotM5vNjvi2HYZUvWlsbGQRERFsyJAh7OzZsz2ed4Q3\nXKDY9JO+QnM/DQ0NLD8/n4WFhjIATC6Xs0ljw1jCE3NZ+vLFTJu0lKUvX8wSnpjLJo0NY3K5nAFg\nYaGhLD8/nzU0NFjdt5SDI0Vv+grN/QjpDWPSDY4UvekrNPcjtDf2Qr9n0w8sXTqzBbPZDL1e3/Wo\nrKhAc3MT2tsNUCoV8PcPQHhEBFQqVdfDlreEaG1tRXx8PHQ6HQ4fPoyYmJj+fHsug9S8sXTpzBaE\n8gYA8vLykJ6eDq1Wi4yMDKvvEC0mpOaNpUtntiCkN3bBa7r6QEr/0rBnReNIpLjCkZI39qxoHI3U\nVjhS8saeFY2rQh8xwAGuKxpHMHDgQOzfvx/x8fGYP3++pFY4YofrisZRpKWlAQDS09MBQDIrHLHD\ndUXjalBs7MSVQ9MJBcf1cPXQdELBcS2kEhqAYmMXYghNJxQc10EsoemEguMaSCk0AMXGZsQUmk4o\nOM5HbKHphILjXKQWGoBiYxNiDE0nFBznIdbQdELBcQ5SDA1AsekTMYemEwqO4xF7aDqh4DgWqYYG\noNj0ihRC0wkFx3FIJTSdUHAcg5RDA1BsrCKl0HRCwREeqYWmEwqOsEg9NADFxiJSDE0nFBzhkGpo\nOqHgCIM7hAag2PRAyqHphILDP1IPTScUHH5xl9AAFJtuuENoOqHg8Ie7hKYTCg4/uFNoAIpNF+4U\nmk4oOP3H3ULTCQWnf7hbaACKDQD3DE0nFBzuuGtoOqHgcMMdQwNQbNw6NJ1QcOzH3UPTCQXHPtw1\nNICbx4ZC8wMUHNuh0HSHgmMb7hwawI1jQ6HpCQWnbyg0lqHg9I67hwZw09hQaKxDwbEOhaZ3KDiW\nodDcw+3fFVc8AAAL50lEQVRiQ6HpGwpOTyg0tkHB6Q6F5gfcKjYUGtuh4PwAhcY+KDj3oNB0x21i\nQ6GxHwoOhYYr7h4cCk1P3CI2FBruuHNwKDT9w12DQ6GxjORjQ6HpP+4YHAoNP7hbcCg01pF0bCg0\n/OFOwaHQ8Iu7BIdC0zuSjQ2Fhn/cITgUGmGQenAoNH0jydhQaIRDysGh0AiLVINDobENycWGQiM8\nUgwOhcYxSC04FBrbkVRsKDSOQ0rBodA4FqkEh0JjH5KJDYXG8UghOBQa5yD24FBo7EcSsaHQOA8x\nB4dC41zEGhwKDTdEHxsKjfMRY3AoNK6B2IJDoeGOqGNDoXEdxBQcCo1rIZbgUGj6h2hjQ6FxPcQQ\nHAqNa+LqwaHQ9B9RxoZC47q4cnAoNK6NqwaHQsMPMsYYE2LHZrMZer0e5eXl0Ov1OFNZifq6OtTf\nrEfg8EAEBgVhSng4VCoVpk6dCpVKBQ8Pjz73S6ERB62trYiPj4dOp7MrOEJ5Q6ERD3l5eUhPT4dW\nq7U5OEJ5Q6HhD95j09DQgMLCQmwvKMCVmhp4esoxMSwE4WNHI2iIP5QKL7QbOlDX2IzKS1/hXHUN\njEYTwkJDsTI5GYmJiRg6dKjFfVNoxIU9wRHSGwqN+LA1OEJ6Q6HhGcYTra2tTK1WM6VSyRReXmx5\n3GxWWpDPWksPMPPJEquP1tIDrLQgny2Pm80UXl5MqVQytVrNWltbu+0/OzubAWDZ2dl8jUw4gDt3\n7rDY2Fg2cOBAVlpa2uN5ob0pKytjvr6+LCYmht2+fdtR3zbBA7m5uQwA02q1zGw2d3tOaG8aGxtZ\nREQEGzJkCDt79qwjv23JwsvKRqfTITEhAbW1tVi3YgmSFz2BYf5+du/nVnMLCvYdRM7uvQgODkZh\nURGioqJoRSNyrK1whPaGVjTix9IKR2hvaEUjDP2OTX5+PtLT0zFt4ji8uf55jA8Z1e+hqmquInHj\nqzh9/gLmzp2LDz74gEIjch4MzqlTpwT1JiUlBcXFxRQaCXB/cHx8fLB27VrBvMnIyMD+/fspNALQ\nr9hoNBps3LgRa1csQfafVkAul/M2mNFogmZnMXLf2osZM2bg2LFjvO2bcA6dwSktLYXRaBTcm1Gj\nRuH8+fMUGgnQGRwAgnvj7e2Nzz77jELDM/KMjIwMLhvm5+dDo9EgZ1UStElLbbqzwx48PDwQ+3g4\nBigV2PXOu/D19UVUVBSvxyAci5eXF65du4aPPvrIId7s+6gU/v7+5I0E0Ol0+PDDDx3iTcnJ0xg9\nejR5wzOcVjY6nQ7R0dFIX74YLyUnCjFXN9YVvIm8Pe+grKwMkZGRgh+PEAbyhuACeSMN7I5NW1sb\npkyeDH+lHCd2vMLrUtYaRqMJ0StXo8VgwpmzZ+Ht7S34MQl+IW8ILpA30sHutahWq0VtbS0K1692\nyAsPAJ6echS++Dxqa2uh1WodckyCX8gbggvkjXSwa2XT0NCAESNGYN3yxdAmLRVyLotk7tqDnLfe\nwY0bNzBkyBCHH5/gBnlDcIG8kRZ2rWwKCwsBxpDy6wVCzdMrKYsWgJnN9+YgRAN5Q3CBvJEWNq9s\nzGYzxowejehHRqN4wxqh57LKisw86C5cwaXLl3m/I4XgH/KG4AJ5Iz1s/tvT6/W4UlODpF/GCTlP\nnyQtjEP1lSvQ6/VOnYOwDWvefHrmS8Sv2YARC5dCHjUPBz492fWc0WhC+rZdmLxsJQbNehIjFi5F\nQtZmfNPQ2G0fl67dwK/SMzF83hL4xS7C9JWr8UnFFxbnIG/ERW/nG0e6Q97wh82xKS8vh6enHNMm\njBNynj6ZNmEc5HI5vfgiwZo3d9ruYvLY0diqXtXjTRZb2+/i7KWvoE1ahoribdiXo8WFq9fxZFpm\ntz+3YLUWJpMZx7blQl+0FZPGhGGBWoubTS095iBvxEVv5xtHukPe8IfNn2ej1+sxMSwEA5QKIefp\nE+8BSkwMC6YXXyRY8yYuciriIqcCAB68kjvYxwclr7/U7WtbVqfgp398Dtdv3sKI4cPQ+O13uHz9\na7y5/nlMDAsBAOSk/AHb9x3El9U1mBUwpdv25I246O1840h3yBv+sHllc6ayEuFjRws5i81EPDwG\nlRUVzh6DsAG+vGn5/jZkMsDP1xcAMOShwXgkeCR2v/8RWu/ehdFowo53DyEwwA+qR8Za3Ad5Ix74\nPN/01x3yhh9sXtk0NTUh6FHL/xE7msAAPxw9cw4VJIDLU19Xhzn99KbdYMC67YV4as5M+A784Rfs\njrzxEn61NhODZy+Ch0yGwAB/vP/aJjzka/m90Mgb8cCHNwA/7gQG+OH4+Yv9nsXdsTk2BoMBSoWX\nkLPYjFLhhbr6OqhUKmePQvSBl6e8X94YjSYsXr8JMhmwbc2z3Z5btXkrAv39ceIvr2CAQoG/HSjB\nQrUWpwu3IDDAv8e+yBvx0F9vAP7cUSq80N5u6NcshB2xUSgUaDd0CDmLzbQbOhAUGIR/HTjg7FGI\nPohfuJCzN50ni2v1DTi6Nafbv0yPnq7EYd1pNH/4T/h4DwAAbFWvwoenKlB8+COkLfttj/2RN+Kh\nP94A/LrTbuiA0sk/q5YCNscmICAAdY3NQs5iM/VNLRgeGIiIiAhnj0L0QWBQECdvOk8W1V9/g4+3\n5sF/8KBuz7f9+1+aD35asIdMBrPZbHGf5I144OoNwL879U0t8PcP4DQL8QM23yAwJTwclZe+EnIW\nm6m4eBnhdMIQBda8udN2F2cvVePMxXvPVd+ow9lL1bhWfwsmkwm/eSEbFRcv460NaegwGVHf1Iz6\npmZ0GI0AgMjHxsN/sC8Ssjbji8vVuHTtBtZs+Stq6urxRNQ0i7OQN+Kht/ONo90hb/jB5pWNSqVC\ncXER7rYbnHr7c9vddpyrrkXy83TdXQxY86a86iJmPZsOmUwGmUwG9Za/AgBWzIvFhqSleO/E55DJ\nZAh/ehWAe7e4ymQyfLw1F9PDH8OQhwbj/dc24sUdxYhNXYcOoxETQ4OxPy8Dj40J7TEHeSMuejvf\nONId8oY/bI7N1KlTYTSacOr8BUwPf0zImXrl1PkLMJlM9ENekWDNm5iISTDp3re6XW/PdRIxbiwO\nv7bRpjnIG3HR2/nGke6QN/xh82U0lUqF0JAQ7DpQIuQ8fbLrvRKEhYbSiy8SyBuCC+SN9LA5Nh4e\nHkhOScHbR4+joeVbIWeyyq3mFuw9+imSU1LoTfFEAnlDcIG8kR52/Q0mJiZC5uGBgn8eFGqeXinY\ndxAyDw8kJgr/0bAEf5A3BBfIG2lhV2yGDh2K1NRUvLz7bVTVXBVqJotU1VxFzu69SE1NpQ8yEhnk\nDcEF8kZa2PVJnYBzPxP82w4zKs+coc8EFyHkDcEF8kY62H0h0tvbG4VFRTh17gI0O3cLMVMPNDuL\nUV51EYVFRfTCixTyhuACeSMd5BkZGRn2bjRy5Ej4+Phgw+bXMECpQPTkiQKMdo/ct/Yic9ce5OXl\nYcmSJYIdhxAe8obgAnkjDTjFBgCioqJgNpuhfeUN3DUYMDNiEq93bBiNJqzfUYTMXXug0Wiwfv16\n3vZNOA/yhuACeSN+OMcGAGbOnAkfHx9kvvoGPjilx88mTcAwv4f6PVRVzVXEp2XinaPHkZ+fTy+8\nxCBvCC6QN+LG7hsELKHT6ZCYkIDa2lqsXbEYKYsWYJi/n937udXcgoJ9B5Gzey+Cg4NRVFyMyMjI\n/o5HuCjkDcEF8kac8BIb4N5dI1qtFlu2bAEzm7F49s+RtDAO0yaMg/cApfXt7rbj1PkL2PVeCfYe\n/RQyDw+kpqYiKyuLfjjnBpA3BBfIG/HBW2w6aWxsRGFhIbYXFKD6yhXI5XJMDAtGxMNjEBjgd++D\niAwdqG9qQcXFyzhXXQuTyYSw0FAkp6QgMTGR7mt3Q8gbggvkjXjgPTadmM1m6PX6rkdlRQWam5vQ\n3m6AUqmAv38AwiMioFKpuh70lhAEeUNwgbxxfQSLDUEQBEF0QmknCIIgBIdiQxAEQQgOxYYgCIIQ\nHIoNQRAEITgUG4IgCEJwKDYEQRCE4FBsCIIgCMGh2BAEQRCC8/8BGK8XpD6YixEAAAAASUVORK5C\nYII=\n", "text/plain": [ "Graphics object consisting of 29 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGbCAYAAAASmD34AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9YVHXe//HXMMBIbgWIwbapQJoplcqQBmGZZYtrrG7e\nwZaKEt2pJJt3ouZXIQU3Faq9d1Fs7VKQ2HtvSWvDdmv7rl9dTSxj0LoXSWsVvK2FFYF+APJj5nz/\ncIdEZuDMcM7M+fF6XBfXXjfMnPOh+33O0zMzzBgEQRBAREQkIx9vL4CIiLSPsSEiItkxNkREJDvG\nhoiIZMfYEBGR7BgbIiKSHWNDRESyY2yIiEh2jA0REcnOV64N22w2WCwWVFZWwmKx4OSJE2hqakJn\nZyf8/f0RHByMiZMmwWw2IyYmBmazGT4+bB8pC+eYSBoGqd+uprGxEUVFRdheWIhztbXw9TUiKjIc\nk8bcirBhQTD5+6Gjswv1l5px4vO/o/psLbq7rYiMiMCSpUuRmpqKkJAQKZdE5DLOMZG0JItNe3s7\nsrOzUVBQAMFmQ/KD9yHtpwmYPH4shpj8nd7vckcnjp86jZ3l72HPgcMw+PggIyMDOTk5CAgIkGJp\nRKJxjonkIUlsKioqkLpoEerq6rAmJRlLH52F4UGBLm/nYnMLCt98B5tLyjBq1CgUFRcjLi5usMsj\nEoVzTCSfQT+4nJ+fj/j4eASZjKjavRXZafPcOkABYHhQIF5Im4+q3VsR6G9EfHw8XnrppcEukWhA\nnGMieRnXr1+/3t07Z2VlISsrC8+nJKP0hVW4KThIkkUND7wRi34yA51dXXjhpf+EzWbDAw88IMm2\nia7FOSaSn9uxyc/PR1ZWFjY/k4bstHmSvwLHx8cHD909CUNM/sh++df4wQ9+wIciSHKcYyLPcOs5\nm4qKCsTHx2P1giS8uDRVjnX1sqZwF/JK38DRo0cRGxsr+/5IHzjHRJ7jcmza29sxccIEBJmM+ODV\nl2E0GuVaW4/ubivil6xAS6cVJz/5hK/uoUHjHBN5lsuPGWRnZ6Ourg5Fa1d45AAFAF9fI4rWPYe6\nujpkZ2d7ZJ+kbZxjIs9y6cqmsbERt9xyC9YsSEJ22jw51+XQhp2l2Pz6G/jyyy8xbNgwj++ftIFz\nTOR5Ll3ZFBUVAYKA9LmPyLWefqU/+ggEm+3KOojcxDkm8jzRsbHZbNheWIik6VMREnijnGtyanhQ\nIJIenIrthYWw2WxeWQOpm9g5PnLyb5i98gXckjgPxriZKD9yrM9tamrPY86q9QiaMRfXT5+De9Ke\nxYV/XhxwDZxj0iPRsbFYLDhXW4u0nybIuZ4BpSUm4Oy5c7BYLF5dB6mT2Dlubb+MCWNuxdbMZ2Aw\nGPr8/O8XvsJ9SzIxLnwk/ro9H5+Wvop1qU9giL/zt7S5GueY9Eb0uz5XVlbC19eIyePHyrmeAU0e\nPxZGoxEWiwV33323V9dC6iN2jhNiY5AQGwMAcPS0ZtaO3ZgVNxmb0p/s+V7EzWGi18E5Jr1x6com\nKjK83zcj9ISAISZERY7ivwjJLVLMsSAI+OPRjzF6xM2YuXwtwn7yc8Q+tRxvH+77UJsznGPSG9Gx\nOXniBCaNuVXOtYgWfdtonKiq8vYySIWkmON/Nrfgu/Z25JW+gZlxd+P937yIOffHYe6aXBw5+TfR\n2+Eck56IfhitqakJYXeMkXMtooUGB+LAyWpU8UAlFzXU12PGIOfY/qT+nPti8YukOQCAu0ZH4tj/\nnMJv3/ojpk68Q9R2QoMDcfjUmUGthUgtRMems7MTJn8/OdcimsnfD/UN9TCbzd5eCqmMn69x0HMc\nEngjfI1G3D5qZK/v3x4+EhWfVovejsnfDx0dnYNaC5FaiI6Nv78/Ojq75FyLaB2dXQgLDcMfysu9\nvRRSmdmJiYOeYz9fX9w97jacOX+h1/c/P38Bo8JuEr2djs4umLz8HCiRp4iOTXBwMOovNcu5FtEa\nmlpwU2gooqOjvb0UUpnQsDBRc9zafhlfXPiq55VoZ7+sxyefn0XwDddjROhwZM77NzyevQnxE6Pw\nQPQEvHusEu8cPY5DhXmi19LQ1IKgoGC3fxciNREdm4mTJqHyyCEZlyJe1ZkvMPn+6d5eBqmQ2Dmu\nrDmD6ctWw2AwwGAwILPgNQBAysyHsGvdc5hzfxy2r8rApt17sPxXr2LsyFuwb1MWYu8cL3otnGPS\nE9GxMZvN2L27GJc7Or368uf2yx2oPluHpc/x+Rpyndg5vj/6Llgr3u13W4tmPYxFsx52ax2cY9Ib\n0S99jomJQXe3FcdPnZZzPQM6fuo0rFYrXxxAbuEcE3mH6NiYzWZEhIdjZ/l7cq5nQDv3v4fIiAge\npOQWzjGRd4iOjY+PD5amp2PPgcNobPlazjU5dbG5BWUHjmBperrkH99L+sA5JvIOlyY9NTUVBh8f\nFO57R6719KvwzXdg8PFBaqr8H+FL2sU5JvI8l2ITEhKCjIwMbCrZg5ra83KtyaGa2vPYXFKGjIwM\nfuAUDQrnmMjzXPqkTsC7n93+dZcNJ06e5Ge306Bxjok8y+UHjAMCAlBUXIzj1aeRtaNEjjX1kbVj\nNyprzqCouJgHKEmCc0zkWW49OxkXF4e8vDxsLtmDLa+XSb2mXra8XoYtr5dh06ZNiI2NlXVfpC+n\nT5+GIAgenePNmzdzjkmXRP9R57UyMzPxzTffYE1uLlq+/Q4bFy+U9KGI7m4rsnbsxpbXy2AwGHDy\n5El0d3fD19ftJRP1KCoqQlpaGhYvXozhw4djzcaNss8xADQ0NEAQBIef/kmkZYM6c+fk5OD666/H\n6tWrcejEp9i19jmMCx858B0HUFN7HqkbX8HHp04jPz8fERERSE5OBgCUlJQwODQo9tA8/fTTKCws\nhI+PD2644QbZ53jIkCHIyMgAAOTn5zM4pCvG9evXrx/MBu69917MmDED/73vLeQV/x5WmxVRESMx\nNGCIy9u62NyCl/5rLxZsyMeQ62/A/v37kZycjPHjxyMqKgobNmzAmTNnMHv2bP59ArnFUWgAz8zx\n5MmTERISgqysLHz33XeYMWMGg0O64fKr0Zxpb29HdnY2CgoKINhsSHpwKtISEzB5/FgEDDE5v9/l\nDhw/dRo797+HsgNHYPDxQUZGBnJycvo8ibpv3z4kJycjKSmJVzjkMmehuZon5njr1q3IyMjAihUr\neIVDuiFZbOwuXbqEoqIibC8sxNlz52A0GhEVOQrRt41GaHDglQ+M6uxCQ1MLqs58geqzdbBarYiM\niMDS9HSkpqb2+/cHDA65Q0xorib3HDM4pDeSx8bOZrPBYrH0fJ2oqsI/GxpQ31CPsNAw3BQaiknR\n0TCbzT1fYh8aY3DIFa6G5mpyzjGDQ7oieJDFYhEACBaLZdDb2rt3r2A0GoXHH39c6OrqkmB1pEW7\ndu0SDAaDsHjxYsFqtUqyTSnnuKCgQAAgrFixQrDZbBKsjkiZVHtJMHfuXOzZs4evUiOnBnNF4ynL\nli0DAL5KjTRP1WdnBoecUUNo7Bgc0gPVn5kZHLqWmkJjx+CQ1mnirMzgkJ0aQ2PH4JCWaeaMzOCQ\nmkNjx+CQVmnqbMzg6JcWQmPH4JAWae5MzODoj5ZCY8fgkNZo8izM4OiHFkNjx+CQlmj2DMzgaJ+W\nQ2PH4JBWaPrsy+Bolx5CY8fgkBZo/szL4GiPnkJjx+CQ2unirMvgaIceQ2PH4JCa6eaMy+Con55D\nY8fgkFrp6mzL4KgXQ/M9BofUSHdnWgZHfRiavhgcUhtdnmUZHPVgaJxjcEhNdHuGZXCUj6EZGIND\naqHrsyuDo1wMjXgMDqmB7s+sDI7yMDSuY3BI6XhWBYOjJAyN+xgcUjKeUf+FwfE+hmbwGBxSKp5N\nr8LgeA9DIx0Gh5SIZ9JrMDiex9BIj8EhpeFZ1AEGx3MYGvkwOKQkPIM6weDIj6GRH4NDSsGzZz8Y\nHPkwNJ7D4JAS8Mw5AAZHegyN5zE45G08a4rA4EiHofEeBoe8iWdMkRicwWNovI/BIW/h2dIFDI77\nGBrlYHDIG3imdBGD4zqGRnkYHPI0niXdwOCIx9AoF4NDnsQzpJsYnIExNMrH4JCn8Ow4CAyOcwyN\nejA45Ak8Mw4Sg9MXQ6M+DA7JTd9nRYkwON9jaNSLwSE56fOMKAMGh6HRAgaH5KKvs6HM9BwchkY7\nGBySgz7OhB6kx+AwNNrD4JDUtH0W9BI9BYeh0S4Gh6SkzTOgAughOAyN9jE4JBVtnf0URsvBYWj0\ng8EhKWjjzKdgWgwOQ6M/DA4NlrrPeiqhpeAwNPrF4NBgqPOMp0JaCA5DQwwOuUtdZzuVU3NwGBqy\nY3DIHeo402mIGoPD0NC1GBxylbLPchqlpuAwNOQMg0OuUOYZTgfUEByGhgbC4JBYyjq76YySg8PQ\nkFgMDomhjDObjg0mODabDRaLBZWVlbBYLDh54gSamprQ2dkJf39/BAcHY+KkSTCbzYiJiYHZbBYV\nDYaGXDWY4Mg1x6QsjI0CuBqcxsZGFBUVYXthIc7V1sLX14ioyHBMGnMrwu4YA5O/Hzo6u1B/qRmV\nRw5h9+5idHdbERkRgSVLlyI1NRUhISEOt83QkLtcDY6cc0zKw9gohJjgtLe3Izs7GwUFBRBsNiQ/\neB+KVj2DyePHYojJ3+m2L3d04vip09hZ/h7WrV2LrKwsZGRkICcnBwEBAT23Y2hosMQER+45JmUy\nCIIgeGpnVVVVMJvNsFgsiI6O9tRuVWXfvn1ITk5GUlJSr+BUVFQgddEi1NXVYU1KMpY+OgvDgwJd\n3v7F5hYUvvkONpeUYdSoUSgqLkZcXBxD4wLO8cC2bt2KjIwMrFixoldw5J5jUi6eURTGfoVTVlaG\nlJQUdHd3Iz8/H/Hx8QgyGVG1eyuy0+a5dYACwPCgQLyQNh9Vu7ci0N+I+Ph4JCcnMzQkqWXLlqGg\noAAvv/wyVq5cCUEQZJ/jl156SeLfgqTEh9EU6OqH1D799FNUV1fj+ZRk5D6dAqPRKMk+xoWPxAev\nvoysHbux5fUyREdHMzQkqasfUjt69Cg+/PBDWed45cqV+Oabb5CTkyPJtklaPLMo1Ny5c/HEE0+g\nuroam59Jw4tLUyU7QO18fY3YlP4kNqU/iaqqKrzyyiuSbp9o2bJlmD17Nj788EOPzHFubi6vcBSK\nVzYKVVFRgdLSUjyfkoxV8x+TdV+rFySh5dvvsGrVKtx7772IjY2VdX+kHxUVFSgvL+ccE69slKi9\nvR2pixZhctRY5D6d4pF95j69EHePH4tFCxeivb3dI/skbeMc09UYGwXKzs5GXV0ditaukPwhB2d8\nfY0oWvcc6urqkJ2d7ZF9krZxjulqjI3CNDY2oqCgAGtSknF7+AiP7ntc+Eg8n5KEgoICXLp0yaP7\nJm3hHNO1GBuFKSoqAgQB6XMf8cr+0x99BILNdmUdRG7iHNO1GBsFsdls2F5YiKTpUxESeKNX1jA8\nKBBJD07F9sJC2Gw2r6yB1I1zTI4wNgpisVhwrrYWaT9N6PX9Iyf/htkrX8AtifNgjJuJ8iPH+tw3\ne0cJfpT4BIZOm42Hf7EGX/zvV71+PmfVeoT/LAXX3f9T/CjxCSzckI9/NDp+iCEtMQFnz52DxWKR\n7pcj3XB3jt86dBQzl6/FTTOTYYybiU+/ONvr583ffItfvFKIcclP4QcPzEb4z1Lw7K+245vWVofr\n4BwrC2OjIJWVlfD1NWLy+LG9vt/afhkTxtyKrZnPOHxjwy2vl2Hb3nK8uuoX+GjnrzE0YAgS/mMt\nOru6em7zgHkiyjauxemyndi3KQt///IfSFr7S4frmDx+LIxGIw9Scou7c9x6+TLunRCFzelPOvz5\nV42XUN/YhJeffRr/87vfojhrBf78YSX+/cX/dLgOzrGy8O9sFMRisSAqMrzPmxEmxMYgITYGAODo\nrex+U/YHrEt9AolT7wEA7M7ORNhPHscf/noMSQ/dBwB4NnlOz+1HhA7H6gVJeHRNDqxWa59XCgUM\nMSEqchQPUnKLu3M8P+FBAEDdPxoc/jwqMhxlL67r+b8jbg7DxsWLkLIhHzabrc+7X3COlYVXNgpy\n8sQJTBpzq0v3OfdVPeovNePBuyf2fO+GoUMxJWosjv2txuF9mr7+Fv/1/kHce2eU05ekRt82Gieq\nqlxaCxHg3hy7q+W773DD0Oucvs0S51g5eGWjIE1NTQi7Y4xL96m/1ASDwYDQ4KBe3w8NDkJDU1Ov\n7z1fuAvb9paj7XIHYu8Yh/0vbXC63dDgQBw4WY0qHqh91NTU9Ppf6q2hvh4zXJxjdzS2fI1fFv0e\nT8/5idPbhAYH4vCpM7KvhQbG2ChIZ2cnTP5+kmxLEAQYrrlwXTXvMTyVmIC6+gbk7PodUjbkY//L\njt+00OTvh/qGepjNZknWo0Xz58/39hIUyc/XKNkcO/NtaxseWZGNOyLD8ULaPKe3M/n7oaOjU9a1\nkDiMjYL4+/ujo7Nr4BteJWxYMARBQENTc6+rm382t2DibaN73Tb4xusRfOP1GD3iZtw+agRGzlmA\nj6o/w5So2/tst6OzC2GhYfhDebl7v4yG1dTUYP78+SgtLcW4ceO8vRzFmZ2Y6PIcu+K7tnYkLF+L\nwOuHYt/mrH7fnaCjswumfj6QjTyHsVGQ4OBg1F9qduk+ETeHIWxYEA58fBJ3jY4EAHzT2oqPqk8j\nfW6i0/tZ//W3B85OCg1NLbgpNJQfDtaPcePG8b+PA6FhYS7P8bWcfZz0t61tSFi+FgEmE97OWw9/\nv/6voBqaWhAUFDyotZA0GBsFmThpEiqPHOrz/db2y/jiwlc9r9A5+2U9Pvn8LIJvuB4jQofj2eSf\n4ZfFv8foW25G+A9Dkf1aCW65KQSz77vyrrcfnzqN46dOI37CHQi6/gf44sJXeOG1EowZcTNi73T8\nL/OqM19g8v3TZftdSbvcnePmb77F+YaL+PJiIwRBwGe1FyAIQNiwIIQGB+G7tnY8/Oz/weXOTpRu\nWI2W71oBXPkbm+GBNzp8kQDnWDkYGwUxm83YvbsYlzs6e71stLLmDKYvWw2DwQCDwYDMgtcAACkz\nH8Kudc9h1fzH0Hb5Mpbk/QYt37Zi6sQo/OmVjT3/6gswmfDWoQps2Pk7tLZfxg9DgpFwTwzWLvo5\n/Hz7jkD75Q5Un63D0uf4fA25zt05Lj/yIZ785Ss9P3/ihc0AgOwn5yE7bR4sn32Oj2uuPNk/5rEn\nAfzruUmDAWf3FWNk2E291sE5VhbGRkFiYmLQ3W3F8VOncd+kO3u+f3/0XbBWvNvvfdc/tQDrn1rg\n8Gd33BqOv2zdLHodx0+dhtVq5YsDyC3uzvHCWTOwcNYMpz+/P/oudB/9k+h1cI6VhX9noyBmsxkR\n4eHYWf6eV9exc/97iIyI4EFKbuEckyOMjYL4+PhgaXo69hw4jMaWr72yhovNLSg7cARL09Od/qEc\nUX84x+QI/7+gMKmpqTD4+KBw3zte2X/hm+/A4OOD1NRUr+yftIFzTNdibBQmJCQEGRkZ2FSyBzW1\n5z2675ra89hcUoaMjAwMGzbMo/smbeEc07UMgqN3vJNJVVUVzGYzLBYL/z6hH+3t7Zg4YQKCTEZ8\n8OrLHvlI3e5uK+KXrMDXXTacOHkSAQEBsu9TrTjH4nCO6Wq8slGggIAAFBUX43j1aWTtKPHIPrN2\n7EZlzRkUFRfzACVJcI7paoyNQsXFxeGxxx7D5pI92PJ6maz72vJ62ZWvLVsQGxsr675IX+Li4jBj\nxgzOMTE2SlVUVIQ33ngDZrMZawp3YU3hLlitVkn30d1t7dl2VFQUli9fLun2iXJzc/H+++9j2rRp\nHpnje+65BytWrJB0+yQNxkaBioqKkJaWhsWLF+P48ePIy8tDXukbiF+yQrInW2tqzyN+yQrklb6B\nBQsW4LPPPkNKSgq6u7sl2T5Rbm4usrOzkZubi4MHD8o+x3PmzMGHH36IlStXOvzwNfIuxkZhrg7N\ntm3b4OPjg5UrV+KDDz5Ac4cV0QuXYcPOUlxsbnFr+xebW7BhZymiFy5DS6cVR48eRUlJCfbs2YOy\nsjIGhyRxdWjWrbvy6Zpyz/Fbb72FgoICvPzyywyOEgkeZLFYBACCxWLx5G5VY9euXYLBYBCWLFki\nWK3WPj9va2sTMjMzBZPJJPj7+QnzE6YLB7flCa0H3xZsx95z+tV68G3h4LY8YX7CdMHfz08wmUxC\nZmam0NbW1mv7e/fuFYxGo/D4448LXV1dnvq1VYdz3L+cnBwBgJCbm+vw53LPcUFBgQBAWLFihWCz\n2TzxK5MIjI1CDBSaqzU2Ngr5+flCZESEAEAwGo3CXWMihUWzHhZWL0gSstPmCasXJAmLZj0s3DUm\nUjAajQIAITIiQsjPzxcaGxudbpvBGRjn2LmBQnM1OeeYwVEexkYBXAnN1axWq3D8+HFh+/btwlNP\nPSWYo6OFET/6keDnaxRG/OhHgjk6WnjqqaeE7du3C8ePHxe9bQanf5xjx1wJzdXkmmMGR1kYGy9z\nNzTOSPXfmMFxjnPcl7uhcUaq/8YMjnLwIwa8yNGLAZRi7ty52LNnD5KTkwEAJSUl8HXw2TdEjl4M\noBTLli0DAGRkZAAA8vPznX4KKMmLZw8vUXJo7BgcGoiSQ2PH4CgDzxxeoIbQ2DE45IwaQmPH4Hgf\nzxoepqbQ2DE4dC01hcaOwfEunjE8SI2hsWNwyE6NobFjcLyHZwsPUXNo7BgcUnNo7Bgc7+CZwgO0\nEBo7Bke/tBAaOwbH83iWkJmWQmPH4OiPlkJjx+B4Fs8QMtJiaOwYHP3QYmjsGBzP4dlBJloOjR2D\no31aDo0dg+MZPDPIQA+hsWNwtEsPobFjcOTHs4LE9BQaOwZHe/QUGjsGR148I0hIj6GxY3C0Q4+h\nsWNw5MOzgUT0HBo7Bkf99BwaOwZHHjwTSICh+R6Do14MzfcYHOnxLDBIDE1fDI76MDR9MTjS4hlg\nEBga5xgc9WBonGNwpMOj300MzcAYHOVjaAbG4EiDR74bGBrxGBzlYmjEY3AGj0e9ixga1zE4ysPQ\nuI7BGRwe8S5gaNzH4CgHQ+M+Bsd9PNpFYmgGj8HxPoZm8Bgc9/BIF4GhkQ6D4z0MjXQYHNfxKB8A\nQyM9BsfzGBrpMTiu4RHeD4ZGPgyO5zA08mFwxOPR7QRDIz8GR34MjfwYHHF4ZDvA0HgOgyMfhsZz\nGJyB8ai+BkPjeQyO9Bgaz2Nw+scj+ioMjfcwONJhaLyHwXGOR/O/MDTex+AMHkPjfQyOYzySwdAo\nCYPjPoZGORicvnR/FDM0ysPguI6hUR4GpzddH8EMjXIxOOIxNMrF4HxPt0cvQ6N8DM7AGBrlY3Cu\n0OWRy9CoB4PjHEOjHgyODmPD0KgPg9MXQ6M+eg+Oro5Yhka9GJzvMTTqpefg6OZoZWjUj8FhaLRA\nr8HRxZHK0GiHnoPD0GiHHoOj+aOUodEePQaHodEevQVH00coQ6NdegoOQ6NdegqONo9OMDR6oIfg\nMDTap5fgaOvI/BeGRj+0HByGRj/0EBxtHJVXYWj0R4vBYWj0R+vBUfcReQ2GRr+0FByGRr+0HBx1\nHo0OMDSkheAwNKTV4KjrSHSCoSE7NQeHoSE7LQZHHUdhPxgaupYag8PQ0LW0FhxlH4EDYGjIGTUF\nh6EhZ7QUHGUefSIwNDQQNQSHoaGBaCU4yjryRGJoSCwlB4ehIbG0EBzZjjqbzQaLxYLKykpYLBac\nPHECDfX18PM1YnZiIkLDwjBx0iSYzWbExMTAbDaLigZDQ64aTHDkmmOGhlzlbnAczXBTUxM6Ozvh\n7++P4OBgt2bYVZLHprGxEUVFRdheWIhztbXw9TUiKjIck8bcihl3jIHJ3w8dnV2ov9SMyiOHsHt3\nMbq7rYiMiMCSpUuRmpqKkJAQh9tmaMhdrgZHzjlmaMhdrgSnvxkOG+QMu0WQSFtbm5CZmSmYTCbB\n389PWJDwoHCoMF9oO1Qu2I695/Sr7VC5cKgwX1iQ8KDg7+cnmEwmITMzU2hra+u1/V27dgkGg0FY\nsmSJYLVapVq25lgsFgGAYLFYvL0URdq7d69gNBqFxx9/XOjq6urzc7nnOCcnRwAg5ObmeupXViXO\ncf8KCgoEAMKKFSsEm83W62dyz7C7DIIgCIMNVkVFBVIXLUJdXR3WpCRj6aOzMDwo0OXtXGxuQeGb\n72BzSRlGjRqFouJixMXF8YrGBVVVVTCbzbBYLIiOjvb2chRp3759SE5ORlJSUq8rHLnnmFc04nGO\nB7Z161ZkZGRgxYoVPVc4cs/wYAz6rJ2fn4/4+HgEmYyo2r0V2Wnz3PrlAGB4UCBeSJuPqt1bEehv\nRHx8PJKTkxkakpT9IbWysjKkpKSgu7tb9jn+8Y9/zNCQpJYtW4aCggK8/PLLWLlyJfLy8mSd4Zde\nemlQ6x3UlU1WVhY2btyI51OSkft0CoxG46AWc7XubiuyduzGltfLYDabcfz4cYZGBP6LUDz7Fc7t\nt9+O6upq2ed42rRpOHjwoGTb1jLOsXj2KxwAss9wVlYWcnJy3NqO22fv/Px8bNy4EZufScOLS1Ml\n/eUAwNfXiE3pT2JT+pOwWCx45ZVXJN0+0dy5c/HEE0+gurraI3N86NChQf/rkOha7e3tAOCRGc7N\nzXV7ht16NVpFRQVWr16N51OSsWr+Y27tWKzVC5LQ8u13WLVqFe69917ExsbKuj/Sj4qKCpSWlnKO\nSbXUdC52+WG09vZ2TJwwAUEmIz549WXJK+pId7cV8UtWoKXTipOffIKAgADZ96lWfPhBHM6xsnGO\nB6a2GXb5YbTs7GzU1dWhaO0Kj/xywJXLuKJ1z6Gurg7Z2dke2SdpG+eY1E5tM+xSbBobG1FQUIA1\nKcm4PXyESzsarHHhI/F8ShIKCgpw6dIlj+6btIVzTGqnxhl2KTZFRUWAICB97iMuL1AK6Y8+AsFm\nu7IOIjdxjknt1DjDomNjs9mwvbAQSdOnIiTwRrcWOFjDgwKR9OBUbC8shM1m88oaSN04x6R2ap1h\n0bGxWCxpzMUpAAAgAElEQVQ4V1uLtJ8m9Hu7Iyf/htkrX8AtifNgjJuJ8iPH+tympvY85qxaj6AZ\nc3H99Dm4J+1ZXPjnRVHrSEtMwNlz52CxWMQunaiHozm22WzI+u1u3Dp3EYZOm40x/5aKjUX/1ee+\nrsztT/5jndP5BzjH5D6x52JA3vOxqzMsOjaVlZXw9TVi8vix/d6utf0yJoy5FVszn3H4BnF/v/AV\n7luSiXHhI/HX7fn4tPRVrEt9AkP8/UWtY/L4sTAajTxIyS2O5nhzSRl2vP0nbMtchpr/fg1blqUh\nv3Qvtr5R3nMbV+b2V79/E0Yfn37fkZdzTO4Sey4G5D0fuzrDov/OxmKxICoyHENM/S8iITYGCbEx\nAABHr6rO2rEbs+ImY1P6kz3fi7g5TOwyEDDEhKjIUTxIyS2O5vjDv9Xgp1Nje+Z2ZNhN+P37h/Dx\nqdM9txE7t598fha/LvsDju/8DX74yONO18E5JneJPRcD8p6PXZ1h0Vc2J0+cwKQxt4q9uUOCIOCP\nRz/G6BE3Y+bytQj7yc8R+9RyvH3Y8UMNzkTfNhonqqoGtRbSJ0dzHHvnOPy/ypP4/H+/BHAlGEc/\nrcbMuLsBiJ/b9ssdmPfCZmxd8QxuCh74Pak4x+QOKc7FgDTnY1dmWPSVTVNTE8LuGCN6EY78s7kF\n37W3I6/0DWxcvBBblqXh3WOVmLsmFwe35WHqxDtEbSc0OBAHTlajigdqHzU1Nb3+l3prqK/HjGvm\n+PmUZHzT2oZxP/93GH18YBNs2Lh4EX4+YxoA8XP7H7/+Le69KwqPxE8RtRbOsXOcY+cczbA7pDgf\nhwYH4vCpM6L2Jzo2nZ2dMPn7ib25Q/ZXLcy5Lxa/SJoDALhrdCSO/c8p/PatP4qOjcnfD/UN9TCb\nzYNaj5bNnz/f20tQJD9fY5853vOXv+L3//cQfp/zPMZHjMTJz89i+a9exc0hwVgw8yFRc1t+5BgO\nWj7BiZJtotfCOR4Y57gvRzPsDinOxyZ/P3R0dIran+jY+Pv7o6OzS+zNHQoJvBG+RiNuHzWy1/dv\nDx+Jik+rRW+no7MLYaFh+EN5+cA31pmamhrMnz8fpaWlGDdunLeXozizExP7zPHqbTuxJuXneOzB\n+wAAUZHhqP1HAzaXlGHBzIdEze1By6c4+9U/EPjQ3F63mbsmF/dNvBMHtm7psxbOsXOcY+cczbA7\npDgfd3R2wSTiuSPAhdgEBwej/lKz2Js75Ofri7vH3YYz5y/0+v7n5y9gVNhNorfT0NSCm0JD+Z5J\n/Rg3bhz/+zgQGhbWZ47bLnfg2hfq+BgMPf/yEzO3a1KS8e+ze78U9c55S/Cfy5fgkXsdP6zGOR4Y\n57gvRzPsDinOxw1NLQgKChZ1W9GxmThpEiqPHBrwdq3tl/HFha96Xvlw9st6fPL5WQTfcD1GhA5H\n5rx/w+PZmxA/MQoPRE/Au8cq8c7R4zhUmCd2Kag68wUm3z9d9O2J7BzNcWL8FLy4+78xInQ4oiJG\noer0F/jPPW8hLfH7eAw0tzcFBzp8UcCI0OEY9cNQh2vhHJM7xJ6LAfnPx67MsOhXo5nNZlSfrcXl\nAR6fq6w5g+iFzyAmNQMGgwGZBa/BvGgZXnjtdQDAnPvjsH1VBvJL92LCgqUoeufP2LcpC7F3jhe1\njvbLHag+W8fHucktjua4YMUzmPtAPJa9tA1RTzyN1dt2YsnPHkHOv6f03Madue3v72w4x+Qusedi\nQN7zsaszLPrKJiYmBt3dVhw/dRr3TbrT6e3uj74L1op3+93WolkPY9Gsh8Xuupfjp07DarXyICW3\nOJrjoQFD8Mqzi/HKs4v7va+rc9t99E9Of8Y5JneJPRcD8p6PXZ1hl65sIsLDsbP8PZcXJaWd+99D\nZEQED1JyC+eY1E6tMyw6Nj4+Pliano49Bw6jseVrtxc4GBebW1B24AiWpqfDx8ftT7QmHeMck9qp\ndYZdmvTU1FQYfHxQuO8dtxY4WIVvvgODjw9SU1O9sn/SBs4xqZ0aZ9il2ISEhCAjIwObSvagpva8\nywscjJra89hcUoaMjAwMGzbMo/smbeEck9qpcYYNgqN3Z+uHNz/3+usuG06cPMnPbu8HP7tdHM6x\nsnGOB6a2GXb5AeOAgAAUFRfjePVpZO0ocfXubsnasRuVNWdQVFzMA5QkwTkmtVPbDLv17GRcXBzy\n8vKwuWQPtrxe5s4mRNvyetmVry1bEBsbK+u+SF/i4uIwY8YMzjGpVlxcHLZs2aKKGRb9dzbXyszM\nxDfffIM1ublo+fY7bFy8UNLLuO5uK7J27MaW18sQHh6O9PR0ybZNBAC5ubl4//33MW3aNKwp3CX7\nHEdFRWH58uWSbZvIZrPh73//OwB4ZIazsrKQmZnp1nYG9brLnJwc5OXlIa/0DcQvWSHZE1U1tecR\nv2QF8krfwNKlS3Hx4kUkJiaira1Nku0T5ebmIjs7G7m5uTh48KDsc7xgwQJ89tlnSElJQXd3tyTb\nJ32z2WxIT0/Hjh07sGvXLtlnOD8/Hzk5OW5va9Av8l+5ciU++OADNHdYEb1wGTbsLMXF5ha3tnWx\nuQUbdpYieuEytHRacfToURQWFuLdd9/FRx99xOCQJK4Ozbp16wDIP8clJSXYs2cPysrKGBwatKtD\ns3PnTqSmpso+w+5e0fQQJNLW1iZkZmYKJpNJ8PfzE+YnTBcObssTWg++LdiOvef0q/Xg28LBbXnC\n/ITpgr+fn2AymYTMzEyhra2t1/YPHz4sDB06VJg+fbrQ2toq1bI1x2KxCAAEi8Xi7aUoUk5OjgBA\nyM3Ndfhzued47969gtFoFB5//HGhq6vLE7+yKnGOnbNarcLixYsFg8Eg7Nq1q8/P5Z5hd7n80ueB\nXLp0CUVFRdheWIiz587BaDQiKnIUom8bjdDgwCsfttPZhYamFlSd+QLVZ+tgtVoRGRGBpenpSE1N\ndfra7SNHjmDmzJmYMmUK9u/fj+uuu07KpWsCXzLqnKMrGmfknON9+/YhOTkZSUlJKCkpga+v20+d\nahbn2DFHVzTOyDnD7pA8NnY2mw0Wi6Xn60RVFf7Z0ID6hnqEhYbhptBQTIqOhtls7vkS87YHDE7/\neJA65kporibXHDM4/eMc9+VKaK6937Uz3NzchI6OTphM/ggKCnZrhl0myfWRSFJdGvMhNef48ENf\nAz105iqp/hvzITXnOMe9DfTQmRqo8l0Ap06dyhcNkCjuXtF4wty5c/miARqQu1c0SqPK2AAMDg1M\nyaGxY3CoP1oJDaDi2AAMDjmnhtDYMTjkiJZCA6g8NgCDQ32pKTR2DA5dTWuhATQQG4DBoe+pMTR2\nDA4B2gwNoJHYAAwOqTs0dgyOvmk1NICGYgMwOHqmhdDYMTj6pOXQABqLDcDg6JGWQmPH4OiL1kMD\naDA2AIOjJ1oMjR2Dow96CA2g0dgADI4eaDk0dgyOtuklNICGYwMwOFqmh9DYMTjapKfQABqPDcDg\naJGeQmPH4GiL3kID6CA2AIOjJXoMjR2Dow16DA2gk9gADI4W6Dk0dgyOuuk1NICOYgMwOGrG0HyP\nwVEnPYcG0FlsAAZHjRiavhgcddF7aAAdxgZgcNSEoXGOwVEHhuYKXcYGYHDUgKEZGIOjbAzN93Qb\nG4DBUTKGRjwGR5kYmt50HRuAwVEihsZ1DI6yMDR96T42AIOjJAyN+xgcZWBoHGNs/oXB8T6GZvAY\nHO9iaJxjbK7C4HgPQyMdBsc7GJr+MTbXYHA8j6GRHoPjWQzNwBgbBxgcz2Fo5MPgeAZDIw5j4wSD\nIz+GRn4MjrwYGvEYm34wOPJhaDyHwZEHQ+MaxmYADI70GBrPY3CkxdC4jrERgcGRDkPjPQyONBga\n9zA2IjE4g8fQeB+DMzgMjfsYGxcwOO5jaJSDwXEPQzM4jI2LGBzXMTTKw+C4hqEZPMbGDQyOeAyN\ncjE44jA00mBs3MTgDIyhUT4Gp38MjXQYm0FgcJxjaNSDwXGMoZEWYzNIDE5fDI36MDi9MTTSY2wk\nwOB8j6FRLwbnCoZGHoyNRBgchkYL9B4chkY+jI2E9BwchkY79BochkZejI3E9BgchkZ79BYchkZ+\njI0M9BQchka79BIchsYzGBuZ6CE4DI32aT04DI3nMDYy0nJwGBr90GpwGBrPYmxkpsXgMDT6o7Xg\nMDSex9h4gJaCw9Dol1aCw9B4B2PjIVoIDkNDag8OQ+M9jI0HqTk4DA3ZqTU4DI13MTYepsbgMDR0\nLbUFh6HxPsbGC9QUHIaGnFFLcBgaZWBsvEQNwWFoaCBKDw5DoxyMjRcpOTgMDYml1OAwNMri6+0F\n6J09ODNnzkRiYiL279+P6667TtR9bTYbLBYLKisrYbFYcPLECTTU18PP14jZiYkIDQvDxEmTYDab\nERMTA7PZDB+fgf99wdCQq+zBSU5OBgCUlJTA11fc6UWOOWZoFEjwIIvFIgAQLBaLJ3erCocPHxaG\nDh0qTJ8+XWhtbe33thcvXhTy8vKEiPBwAYDg62sUJtx2q7Bo1sPC8ynJwgtPzReeT0kWFs16WJhw\n262Cr69RACBERkQIeXl5wsWLF51uOycnRwAg5ObmSv0ragbn2Lm9e/cKRqNRePzxx4Wurq5+byvX\nHFutVmHx4sWCwWAQdu3aJcevSW5gbBRkoOC0tbUJmZmZgslkEvz9/IQFCQ8KhwrzhbZD5YLt2HtO\nv9oOlQuHCvOFBQkPCv5+foLJZBIyMzOFtra2XttnaMThHPdvoODIOccMjXIZBEEQPHUVVVVVBbPZ\nDIvFgujoaE/tVlWOHDmCmTNnYsqUKb0eUquoqEDqokWoq6vDmpRkLH10FoYHBbq8/YvNLSh88x1s\nLinDqFGjUFRcjLi4OD505gLO8cD27duH5ORkJCUl9XpITc45vueee/jQmYLxBQIK4+hFA/n5+YiP\nj0eQyYiq3VuRnTbPrQMUAIYHBeKFtPmo2r0Vgf5GxMfH48c//jFDQ5Jy9KIBuef43nvvZWgUjFc2\nCmW/whk+fDhqa2vxfEoycp9OgdFolGwf3d1WZO3YjS2vl2HatGk4ePCgZNvWMs6xePYrnNtvvx3V\n1dWyz3FiYiLKy8sl2zZJh1c2CjV16lSkpKSgtrYWm59Jw4tLUyU9QAHA19eITelPYlP6kzh06BBe\neuklSbdPNHfuXDzxxBOorq72yBzv37+fc6xQfOmzQlVUVODVV1/F8ynJWDX/MVn3tXpBElq+/Q6r\nVq3Cvffei9jYWFn3R/pRUVGB0tJSzjHxykaJ2tvbkbpoESZHjUXu0yke2Wfu0wtx9/ixWLRwIdrb\n2z2yT9I2zjFdjbFRoOzsbNTV1aFo7QrJH3JwxtfXiKJ1z6Gurg7Z2dke2SdpG+eYrsbYKExjYyMK\nCgqwJiUZt4eP8Oi+x4WPxPMpSSgoKMClS5c8um/SFs4xXYuxUZiioiJAEJA+9xGv7D/90Ucg2GxX\n1kHkJs4xXYuxURCbzYbthYVImj4VIYE3emUNw4MCkfTgVGwvLITNZvPKGkjdOMfkCGOjIBaLBedq\na5H204Re3z9y8m+YvfIF3JI4D8a4mSg/cqzPfbN3lOBHiU9g6LTZePgXa/DF/37V6+dzVq1H+M9S\ncN39P8WPEp/Awg35+Eej44cY0hITcPbcOVgsFul+OdINd+f4rUNHMXP5Wtw0MxnGuJn49IuzvX7e\n/M23+MUrhRiX/BR+8MBshP8sBc/+aju+aW11uA7OsbIwNgpSWVkJX18jJo8f2+v7re2XMWHMrdia\n+QwMBkOf+215vQzb9pbj1VW/wEc7f42hAUOQ8B9r0dnV1XObB8wTUbZxLU6X7cS+TVn4+5f/QNLa\nXzpcx+TxY2E0GnmQklvcnePWy5dx74QobE5/0uHPv2q8hPrGJrz87NP4n9/9FsVZK/DnDyvx7y/+\np8N1cI6VhX9noyAWiwVRkeEYYvLv9f2E2BgkxMYAABy94cNvyv6AdalPIHHqPQCA3dmZCPvJ4/jD\nX48h6aH7AADPJs/puf2I0OFYvSAJj67JgdVq7fNKoYAhJkRFjuJBSm5xd47nJzwIAKj7R4PDn0dF\nhqPsxe/fTini5jBsXLwIKRvyYbPZ+nzsAOdYWXhloyAnT5zApDG3unSfc1/Vo/5SMx68e2LP924Y\nOhRTosbi2N9qHN6n6etv8V/vH8S9d0Y5fUlq9G2jcaKqyqW1EAHuzbG7Wr77DjcMvc7p59twjpWD\nVzYK0tTUhLA7xrh0n/pLTTAYDAgNDur1/dDgIDQ0NfX63vOFu7BtbznaLncg9o5x2P/SBqfbDQ0O\nxIGT1ajigdpHTU1Nr/+l3hrq6zHDxTl2R2PL1/hl0e/x9JyfOL1NaHAgDp86I/taaGCMjYJ0dnbC\n5O8nybYEQYDhmgvXVfMew1OJCairb0DOrt8hZUM+9r+c4/D+Jn8/1DfUw2w2S7IeLZo/f763l6BI\nfr5GyebYmW9b2/DIimzcERmOF9LmOb2dyd8PHR2dsq6FxGFsFMTf3x8dnV0D3/AqYcOCIQgCGpqa\ne13d/LO5BRNvG93rtsE3Xo/gG6/H6BE34/ZRIzByzgJ8VP0ZpkTd3me7HZ1dCAsNwx/4Drp91NTU\nYP78+SgtLcW4ceO8vRzFmZ2Y6PIcu+K7tnYkLF+LwOuHYt/mrH7fnaCjswuma547Iu9gbBQkODgY\n9ZeaXbpPxM1hCBsWhAMfn8RdoyMBAN+0tuKj6tNIn5vo9H7Wf/3tgbOTQkNTC24KDeVb6Pdj3Lhx\n/O/jQGhYmMtzfC1Hr0YDrlzRJCxfiwCTCW/nrYe/X/9XUA1NLQgKCh7UWkgajI2CTJw0CZVHDvX5\nfmv7ZXxx4aueV+ic/bIen3x+FsE3XI8RocPxbPLP8Mvi32P0LTcj/IehyH6tBLfcFILZ911519uP\nT53G8VOnET/hDgRd/wN8ceErvPBaCcaMuBmxdzr+l3nVmS8w+f7psv2upF3uznHzN9/ifMNFfHmx\nEYIg4LPaCxAEIGxYEEKDg/BdWzsefvb/4HJnJ0o3rEbLd60ArvyNzfDAGx2+SIBzrByMjYKYzWbs\n3l2Myx2dvV42WllzBtOXrYbBYIDBYEBmwWsAgJSZD2HXuuewav5jaLt8GUvyfoOWb1sxdWIU/vTK\nxp5/9QWYTHjrUAU27PwdWtsv44chwUi4JwZrF/0cfr59R6D9cgeqz9Zh6XN8voZc5+4clx/5EE/+\n8pWenz/xwmYAQPaT85CdNg+Wzz7HxzVXnuwf89iTAP713KTBgLP7ijEy7KZe6+AcKwtjoyAxMTHo\n7rbi+KnTuG/SnT3fvz/6Llgr3u33vuufWoD1Ty1w+LM7bg3HX7ZuFr2O46dOw2q18sUB5BZ353jh\nrBlYOGuG05/fH30Xuo/+SfQ6OMfKwr+zURCz2YyI8HDsLH/Pq+vYuf89REZE8CAlt3COyRHGRkF8\nfHywND0dew4cRmPL115Zw8XmFpQdOIKl6elO/1COqD+cY3KE/19QmNTUVBh8fFC47x2v7L/wzXdg\n8PFBamqqV/ZP2sA5pmsxNgoTEhKCjIwMbCrZg5ra8x7dd03teWwuKUNGRgaGDRvm0X2TtnCO6VoG\nwdE73smkqqoKZrMZFouFf5/Qj/b2dkycMAFBJiM+ePVlj3ykbne3FfFLVuDrLhtOnDyJgIAA2fep\nVpxjcTjHdDVe2ShQQEAAioqLcbz6NLJ2lHhkn1k7dqOy5gyKiot5gJIkOMd0NcZGoeLi4vDwww9j\nc8kebHm9TNZ9bXm97MrXli2IjY2VdV+kL/fccw+mTJnCOSbGRqk2btyIP//5z5g2bRrWFO7CmsJd\nsFqtku6ju9vas+3w8HCkp6dLun3SN5vNhvT0dHz00UdITEz0yBxnZWUhMzNT0u2TNBgbBdq4cSOy\nsrKQm5uLgwcPIi8vD3mlbyB+yQrJnmytqT2P+CUrkFf6BpYuXYqLFy8iMTERbW1tkmyf9M0emh07\ndmDnzp0oLy+XfY7z8/ORk+P4XczJ+xgbhbk6NOvWXflUwpUrV+KDDz5Ac4cV0QuXYcPOUlxsbnFr\n+xebW7BhZymiFy5DS6cVR48eRWFhId59992ef4EyODQY14bG/vJjueeYVzQKJ3iQxWIRAAgWi8WT\nu1WN3NxcAYCQm5vr8OdtbW1CZmamYDKZBH8/P2F+wnTh4LY8ofXg24Lt2HtOv1oPvi0c3JYnzE+Y\nLvj7+Qkmk0nIzMwU2traem3/8OHDwtChQ4Xp06cLra2tnviVVYlz7JzVahUWL14sGAwGYdeuXQ5v\nI/cckzLxpc8K4eiKxplLly6hqKgI2wsLcfbcORiNRkRFjkL0baMRGhx45QOjOrvQ0NSCqjNfoPps\nHaxWKyIjIrA0PR2pqalO//7gyJEjmDlzJqZMmYL9+/fjuuuuk+PXVTXOsWPOrmickXOOSXkYGwVw\nJTRXs9lssFgsPV8nqqrQ3NyEjo5OmEz+CAoKxqToaJjN5p4vMW/dweD0j3Pcl6uhufa+cswxKYwn\nL6P48ENfAz105i18SM05znFvYh46I+I/D7zI3SsaT5g6dSpfNEADGswVDekLY+MlSg6NHYND/WFo\nyBWMjReoITR2DA45wtCQqxgbD1NTaOwYHLoaQ0PuYGw8SI2hsWNwCGBoyH2MjYeoOTR2DI6+MTQ0\nGIyNB2ghNHYMjj4xNDRYjI3MtBQaOwZHXxgakgJjIyMthsaOwdEHhoakwtjIRMuhsWNwtI2hISkx\nNjLQQ2jsGBxtYmhIaoyNxPQUGjsGR1sYGpIDYyMhPYbGjsHRBoaG5MLYSETPobFjcNSNoSE5MTYS\nYGi+x+CoE0NDcmNsBomh6YvBUReGhjyBsRkEhsY5BkcdGBryFMbGTQzNwBgcZWNoyJMYGzcwNOIx\nOMrE0JCnMTYuYmhcx+AoC0ND3sDYuIChcR+DowwMDXkLYyMSQzN4DI53MTTkTYyNCAyNdBgc72Bo\nyNsYmwEwNNJjcDyLoSElYGz6wdDIh8HxDIaGlIKxcYKhkR+DIy+GhpSEsXGAofEcBkceDA0pDWNz\nDYbG8xgcaTE0pESMzVUYGu9hcKTB0JBSMTb/wtB4H4MzOAwNKRljA4ZGSRgc9zA0pHS6jw1DozwM\njmsYGlIDXceGoVEuBkcchobUQrexYWiUj8HpH0NDaqLL2DA06sHgOMbQkNroLjYMjfowOL0xNKRG\nuooNQ6NeDM4VDA2plW5iw9Con96Dw9CQmukiNgyNdug1OAwNqZ3mY8PQaI/egsPQkBZoOjYMjXbp\nJTgMDWmFZmPD0Gif1oPD0JCWaDI2DI1+aDU4DA1pjeZiw9Doj9aCw9CQFmkqNgyNfmklOAwNaZVm\nYsPQkNqDw9CQlmkiNgwN2ak1OAwNaZ3qY8PQ0LXUFhyGhvRA1bFhaMgZtQSHoSG9UG1sGBoaiNKD\nw9CQnqgyNgwNiaXU4DA0pDcGQRAEOTZss9lgsVhQWVkJi8WCkydOoKG+Hg3/bEDoTaEIDQvDxEmT\nYDabERMTA7PZDB+fgdvH0JA7jhw5gpkzZ2LKlCnYv38/rrvuOlH3k2OOGRrSI8lj09jYiKKiImwv\nLMS52lr4+hoRFRmOSWNuRdiwIJj8/dDR2YX6S8048fnfUX22Ft3dVkRGRGDJ0qVITU1FSEiIw20z\nNDQYrgRHrjlmaEivJItNe3s7srOzUVBQAMFmQ/KD9yHtpwmYPH4shpj8nd7vckcnjp86jZ3l72HP\ngcMw+PggIyMDOTk5CAgI6LkdQ0NSGCg4cs4xQ0N6JklsKioqkLpoEerq6rAmJRlLH52F4UGBLm/n\nYnMLCt98B5tLyjBq1CgUFRcjLi6OoSFJOQuOnHN8zz33MDSka4OOTX5+PlavXo3JUWOxa+1zGBc+\nctCLqqk9j9SNr+DjU6fx8MMP489//jNDQ5K6Njjbtm2TdY6nTJmCjz76iKEh3RpUbLKysrBx40Y8\nn5KM3KdTYDQaJVtYd7cVWTt2Y8vrZZg2bRoOHjwo2baJgO+DM3z4cNTW1so+x4mJiSgvL5ds20Rq\nYly/fv16d+6Yn5+PrKwsbH4mDdlp80S9kswVPj4+eOjuSRhi8sfON97CD37wA8TFxUm6D9K3UaNG\n4cKFC/jLX/7ikTku/N0ezjHplltXNhUVFYiPj8fqBUl4can8DwmsKdyFvNI3cPToUcTGxsq+P9IH\nzjGR57gcm/b2dkycMAFBJiM+ePVlSR9ycKa724r4JSvQ0mnFyU8+6fUqNSJ3cI6JPMvlxwyys7NR\nV1eHorUrPHKAAoCvrxFF655DXV0dsrOzPbJP0jbOMZFnuXRl09jYiFtuuQVrFiQhO22enOtyaMPO\nUmx+/Q18+eWXGDZsmMf3T9rAOSbyPJeubIqKigBBQPrcR+RaT7/SH30Egs12ZR1EbuIcE3me6NjY\nbDZsLyxE0vSpCAm8Uc41OTU8KBBJD07F9sJC2Gw2r6yB1E3sHB85+TfMXvkCbkmcB2PcTJQfOdbn\nNjW15zFn1XoEzZiL66fPwT1pz+LCPy8OuAbOMemR6NhYLBacq61F2k8T5FzPgNISE3D23DlYLBav\nroPUSewct7ZfxoQxt2Jr5jMwGAx9fv73C1/hviWZGBc+En/dno9PS1/FutQnMMTf+VvaXI1zTHrj\nK/aGlZWV8PU1YvL4sXKuZ0CTx4+F0WiExWLB3Xff7dW1kPqIneOE2BgkxMYAABw9rZm1YzdmxU3G\npvQne74XcXOY6HVwjklvXLqyiYoM7/fNCD0hYIgJUZGj+C9CcosUcywIAv549GOMHnEzZi5fi7Cf\n/ByxTy3H24f7PtTmDOeY9EZ0bE6eOIFJY26Vcy2iRd82Gieqqry9DFIhKeb4n80t+K69HXmlb2Bm\n3N14/zcvYs79cZi7JhdHTv5N9HY4x6Qnoh9Ga2pqQtgdY+Rci2ihwYE4cLIaVTxQyUUN9fWYMcg5\ntty6scoAAARaSURBVD+pP+e+WPwiaQ4A4K7RkTj2P6fw27f+iKkT7xC1ndDgQBw+dWZQayFSC9Gx\n6ezshMnfT861iGby90N9Qz3MZrO3l0Iq4+drHPQchwTeCF+jEbeP6v3O0LeHj0TFp9Wit2Py90NH\nR+eg1kKkFqJj4+/vj47OLjnXIlpHZxfCQsPwB76DLrlodmLioOfYz9cXd4+7DWfOX+j1/c/PX8Co\nsJtEb6ejswsmLz8HSuQpomMTHByM+kvNcq5FtIamFtwUGoro6GhvL4VUJjQsTNQct7ZfxhcXvup5\nJdrZL+vxyednEXzD9RgROhyZ8/4Nj2dvQvzEKDwQPQHvHqvEO0eP41Bhnui1NDS1ICgo2O3fhUhN\nRMdm4qRJqDxySMaliFd15gtMvn+6t5dBKiR2jitrzmD6stUwGAwwGAzILHgNAJAy8yHsWvcc5twf\nh+2rMrBp9x4s/9WrGDvyFuzblIXYO8eLXgvnmPREdGzMZjN27y7G5Y5Or778uf1yB6rP1mHpc3y+\nhlwndo7vj74L1op3+93WolkPY9Gsh91aB+eY9Eb0S59jYmLQ3W3F8VOn5VzPgI6fOg2r1coXB5Bb\nOMdE3iE6NmazGRHh4dhZ/p6c6xnQzv3vITIiggcpuYVzTOQdomPj4+ODpenp2HPgMBpbvpZzTU5d\nbG5B2YEjWJqeLvnH95I+cI6JvMOlSU9NTYXBxweF+96Raz39KnzzHRh8fJCaKv9H+JJ2cY6JPM+l\n2ISEhCAjIwObSvagpva8XGtyqKb2PDaXlCEjI4MfOEWDwjkm8jyXPqkT8O5nt3/dZcOJkyf52e00\naJxjIs9y+QHjgIAAFBUX43j1aWTtKJFjTX1k7diNypozKCou5gFKkuAcE3mWcf369etdvdOIESMw\ndOhQvPDSrzDE5I/4CVEyLO2KLa+XYcPOUuTl5SE5OVm2/ZD+cI6JPMet2ABAXFwcbDYbsl/+NS53\nduKB6LskfWVNd7cVa18txoadpcjKysLatWsl2zaRHeeYyDNcfs7mWvn5+Vi9ejUmR43FrrXPYVz4\nyIHvNICa2vNI3fgKPj51Gnl5ecjMzBz0Non6wzkmktegYwMAFRUVSF20CHV1dXg+JQnpjz6C4UGB\nLm/nYnMLCt98B5tLyjBq1CgU796N2NjYwS6PSBTOMZF8JIkNcOXVPdnZ2SgoKIBgsyHpwalIS0zA\n5PFjETDE5Px+lztw/NRp7Nz/HsoOHIHBxwcZGRnIycnhk6jkcZxjInlIFhu7S5cuoaioCNsLC3H2\n3DkYjUZERY5C9G2jERoceOUDozq70NDUgqozX6D6bB2sVisiIyKwND0dqamp/PsD8jrOMZG0JI+N\nnc1mg8Vi6fk6UVWF5uYmdHR0wmTyR1BQMCZFR8NsNvd88a07SGk4x0TSkC02REREdvwnGBERyY6x\nISIi2TE2REQkO8aGiIhkx9gQEZHsGBsiIpIdY0NERLJjbIiISHb/H72M4SXshgLEAAAAAElFTkSu\nQmCC\n", "text/plain": [ "Graphics object consisting of 38 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOkAAAGbCAYAAAAhqredAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X1YU3eeP/x3HkhkKg5EFH7dtgJqLdJWIUhHSlsfqoNT\nbffWFqYjoikzHaHS3VUUmTZYga08aGc6aNrbuW0A2d0Ra3dq/d1j5x5Htyqz4xDA/gosaoG4fYDy\nlFoVEpKc+w8mWZGEnIQk5JzzeV1XrvZKTs73Ez6+OTkn4fsVMQzDgBASsMRTXQAhZGIUUkICHIWU\nkABHISUkwFFICQlwFFJCAhyFlJAARyElJMBRSAkJcFJf7dhqtUKn06GhoQE6nQ7NTU0YGBiAyWSC\nTCaDQqHA4vh4KJVKJCYmQqlUQiym3xmE3E3k7a8F9vX1QavV4h2NBp1dXZBKJYiLiUL8/LmInBkG\nuSwIRtMIuvsH0XT1c7R0dMFstiAmOhpbs7OhUqkQHh7uzZII4TSvhXRoaAiFhYWorKwEY7UifeWT\nyHo2FUkLF2CaXOb0ecNGEy61tuPIydM4duYTiMRi5ObmoqioCMHBwd4ojRBO80pI6+vrodqyBXq9\nHgWZ6che/wxmhYW6vZ/eQQM0H5xCaU0d5syZA21VFZKTkydbHiGcNumTwIqKCqSkpCBMLkFj9UEU\nZm30KKAAMCssFHuyMtBYfRChMglSUlKwf//+yZZICKdN6kiqVqtRUlKC3ZnpKH45ExKJxGuFmc0W\nqA9Xo+xoHdRqNYqKiry2b0K4xOOruxUVFSgpKUHpK1nYlfGCN2sCAEilEuzLeQmhIdNRUFyMGTNm\nIC8vz+vjEBLoPDqS1tfXIyUlBfmb0vBmtsoXdY1RoHkP5bXHcfHiRSxdutTn4xESSNwO6dDQEBYv\nWoQwuQQX3j3g1be4zpjNFqRs3QGDyYLmy5fpqi8RFLcvHBUWFkKv10P72g6/BBQYfeurfX079Ho9\nCgsL/TImIYHCrSNpX18f7rvvPhRsSkNh1kZf1uXQ3iO1KD16HF9++SVmzpzp9/EJmQpuHUm1Wi3A\nMMjZsNZX9UwoZ/1aMFbraB2ECATrI6nVasW8uXOR8tBcVO/Z6eu6nMrcW4769k5cvXaNvutLBIH1\nv3KdTofOri5kPZvqy3pcylqXio7OTuh0uimtgxB/YR3ShoYGSKUSJC1c4Mt6XEpauAASiYRCSgTD\nrSNpXEzUhF+W94fgaXLExcyhkBLBYB3S5qYmxM+f68taWEt4cB6aGhunugxC/IJ1SAcGBhA5M8yX\ntbAWoQjF4ODAVJdBiF+wDqnJZIJcFuTLWliTy4JgNJqmugxC/IJ1SGUyGYymEV/WwprRNAL5FJ8b\nE+IvrEOqUCjQ3T/oy1pY6xkwICxMMdVlEOIXrEO6OD4eTVc/92UtrDVeuYb4hISpLoMQv2AdUqVS\niZaOLgxP8bng0LARLR16KJXKKa2DEH9hHdLExESYzRZcam33ZT0uXWpth8VioZASwXDrSBodFYUj\nJ0/7sh6Xjnx0GjHR0RRSIhisQyoWi5Gdk4NjZz5Bn+FbX9bkVO+gAXVnziM7J4e+XE8Ew61/6SqV\nCiKxGJoTp3xVz4Q0H5yCSCyGSuX7KVsICRRuhTQ8PBy5ubnYV3MMbV3XfVWTQ21d11FaU4fc3Fz6\ng28iKJya4+jbESuamptpjiMiKG6f2AUHB0NbVYVLLe1QH67xRU3jqA9Xo6HtCrRVVRRQIjgeXX1J\nTk5GeXk5SmuOoexonbdrGqPsaB3KjtZh3759NJ0nESSPJ8fOy8vDjRs3UFBcDMN3N1Hy880+m8Fe\nJBKhubkZZrMZUqnPVmskJCBN6l98UVERQkJCkJ+fj3NNn+K917YjNuqBSRfV1nUdqpK38NfWdlRU\nVCA6Ohrp6ekAgJqaGgoqERSvr6q2OzMNOevXemVVtarqavtb3BMnTiA9PR1paWkUVCIoPlufNG3l\nE8haN7o+afA0ufPnDRtH1yf96DTqzpyfcH1SCioRIq+v9N3f329f6bujsxMSiQRxMXOQ8OA8RChC\n7St99wwY0HjlGlo69LBYRlf6zs7JgUqlmvBzUAoqERqvh9TGarVCp9PZb02NjfimpwfdPd2IjIjE\n7IgIxCckQKlU2m9sv+pHQSVC4rOQOtLY2AilUgmdToeESf49KAWVCAVnv6W+YcMGHDt2DHV1dcjM\nzITZbJ7qkgjxCc6GFKCgEmHgdEgBCirhP86HFKCgEn7jRUgBCirhL96EFKCgEn7iVUgBCirhH96F\nFKCgEn7hZUgBCirhD96GFKCgEn7gdUgBCirhPt6HFKCgEm4TREgBCirhLsGEFKCgEm4SVEgBCirh\nHsGFFKCgEm4RZEgBCirhDsGGFKCgEm4QdEgBCioJfIIPKUBBJYGNQvo3FFQSqGiKvTvYgurukha2\n6UsbGhqg0+nQ3NSEgYEBmEwmyGQyKBQKLI6Ph1KpRGJiolvTlxJCIb2LO0Ht6+uzTwTe2dUFqVSC\nuJgoxM+fi8iH59snAu/uH0TD+XOorq6C2Tw6EfjW7GyoVCqEh4f78+URDqKQOuAqqHcvqZG+8klo\nd72CpIULME0uc7rfYaNpdEmNk6fx+muvQa1WO11SgxAbzk6O7Q+OJuC+c3Gqgsx0ZK9/xiuLU2mr\nqpCcnOyDV0G4jk6MJnD3xaSysjKkpKQgTC5BY/VBFGZt9CigADArLBR7sjLQWH0QoTIJUlJSsH//\nfi+/AsIHdCRl4cSJE3jhhRfAMAx2Z6aj+OVMny2YrFarUVRU5LV9E+6jc1IWOjo6wDAMSl/Jwq6M\nF7y+f6lUgn05LyE0ZDoKiosxY8YM5OXleX0cwk0UUhfq6+uRn5+P3ZnpPgnonfI3pcHw3U3s2rUL\njz/+uH0BZSJsdE46gaGhIai2bEFS3AIUv5zplzGLX96MJQsXYMvmzRgaGvLLmCSwUUgnUFhYCL1e\nD+1rO7x6DjoRqVQC7evbodfrUVhY6JcxSWCjkDrR19eHyspKFGSm46Go+/06dmzUA9idmYbKykr0\n9/f7dWwSeCikTmi1WoBhkLNh7ZSMn7N+LRirdbQOImgUUgesVive0WiQtuIJhId+f8Jtzzd/hud2\n7sF96zZCkrwGJ8//eczjL5UcgCR5zZjbM9vVLmuYFRaKtJVP4B2NBlardVKvh3AbhdQBnU6Hzq4u\nZD2b6nLbW0PDWDR/Lg7mvQKRSORwmzVLE9H9v/8NX58avf1r0W5WdWStS0VHZyd0Op1b9RN+oY9g\nHGhoaIBUKkHSwgUut01dmojUpYkAAGffC5EHBXn0zaSkhQsgkUig0+mwZMkSt59P+IFC6oBOp0Nc\nTNSEX5Z3x7nGTxH5ox8jLGQ6licuRsnLm6H4fojL5wVPkyMuZg4dSQWOQupAc1MT4ufP9cq+Un+w\nBOuXpSD63gh8/uXX+MU7WjyzQ4363/zS6dvjOyU8OA9NjY1eqYVwE4XUgYGBAUQ+PN8r+0p7+kn7\n/8fFROGRudGY97wK5xo/xXLlIpfPj1CE4pPWK16phXATXThywGQyQS4L8sm+o++NRHjoDFz74itW\n28tlQTAaTT6phXADhdQBmUwGo2nEJ/v+4pte9H/7Hf7XTAWr7Y2mEci9dG5MuIne7jqgUCjQ3T/I\nattbQ8O49sVX9iu7HV924/LVDihmhEAxIwR7j9Riw/IURCrCcO2Lr7Bb8x4evP/v8MMfKFntv2fA\ngLAwdoEm/EQhdWBxfDwazp9jtW1D2xWs2JYPkUgEkUiEvMrfAAAy1zwNzc5t+D/XOnH092dguHkT\n94bPxOrHlCj62SYEsZjgDAAar1xD0lMrPH0phAcopA4olUpUV1dh2Ghy+THMUwmPwlL/e6eP//5X\n/+xxHUPDRrR06JG9nd1Rl/ATnZM6kJiYCLPZgkut7VNax6XWdlgsFiiVFFIho5A6oFQqER0VhSMn\nT09pHUc+Oo2Y6GgKqcBRSB0Qi8XIzsnBsTOfoM/w7ZTU0DtoQN2Z88jOyaGJtAWOuu+ESqWCSCyG\n5sSpKRlf88EpiMRiqFSqKRmfBA4KqRPh4eHIzc3FvppjaOu67tex27quo7SmDrm5uZg5c6ZfxyaB\nh6b0nMDQ0BAWL1qEMLkEF9494JcpVMxmC1K27sC3I1Y0NTfTzPaEjqQTCQ4OhraqCpda2qE+XOOX\nMdWHq9HQdgXaqioKKAFAIXUpKSkJixYtQmnNMZQdrfPpWGVH61B2tA779u2j6TyJHYV0AmazGZmZ\nmfjss8/w/PPPo0DzHgo078FisXh5HIt93yKRCM3NzbQ+KrGjkDphC+jx48fx29/+FsePH0d5eTnK\na48jZesOr11Mauu6jpStO1BeexwVFRU4fvw4LWRMxqCQOnB3QDds2AAA2LlzJy5cuIBBowUJm7dh\n75Fa9A4aPBqjd9CAvUdqkbB5GwwmCy5evIi8vDxacZyMx/iRTqdjADA6nc6fw7plZGSEefHFFxmp\nVMq8//77Dre5ffs2k5eXx8jlckYWFMRkpK5gzh4qZ26d/ZCx/vm009utsx8yZw+VMxmpKxhZUBAj\nl8uZvLw85vbt2+PGeP/99xmJRMK8+OKLzMjIiK9fNglg9BHMHZwdQZ3p7++3r/Td0dkJiUSCuJg5\nSHhwHiIUofaVvnsGDGi8cg0tHXpYLKMrfWfn5EClUk34Oaij9VGJ8FBI/8bdgN7JarVCp9PZb02N\njfimpwfdPd2IjIjE7IgIxCckQKlU2m9sv+pHQSX0dpdh9xbXXd58rfTWV9gEf+FoMkdQf6GLScIm\n6JByIaA2FFThEmxIuRRQGwqqMAkypFwMqA0FVXgEF1IuB9SGgiosggopHwJqQ0EVDsGElE8BtaGg\nCoMgQsrHgNpQUPmP9yHlc0BtKKj8xuuQCiGgNhRU/uJtSIUUUBsKKj/xMqRCDKgNBZV/eBdSIQfU\nhoLKL7wKKQX0f1BQ+YM3IaWAjkdB5QdehJQC6hwFlfs4H1IKqGsUVG7jdEgpoOxRULmLsyGlgLqP\ngspNnAwpBdRzFFTu4VxIKaCTR0HlFp/ND2mb5rKhoQE6nQ7NTU3o6e5GkFSC59atQ0RkJBbHx0Op\nVCIxMZHVNJcUUO+xBTU9PR0AWE8X6qivAwMDMJlMkMlkUCgUbveVTMzrIe3r67NPGN3Z1QWpVIK4\nmCjEz5+LVQ/Pt08Y3d0/iIbz51BdXQWzeXTC6K3Z2VCpVAgPDx+3Xwqo97kT1In6GjmJvhLXvDY5\n9tDQEAoLC1FZWQnGakX6yieR9WwqkhYuwDS5zOnzho0mXGptx5GTp3HszCcQicXIzc1FUVGRfX1O\nLgY0kCcCv9tEE3D7sq+EHa+EtL6+HqotW6DX61GQmY7s9c9gVlio2/vpHTRA88EplNbUYc6cOdBW\nVSEpKYlzAQW4FVLAcVB92dfk5GQfvAp+mvTJQkVFBVJSUhAml6Cx+iAKszZ61EgAmBUWij1ZGWis\nPohQmQQpKSlYsmQJ5wLKRXdfTCorK/NpX/fv3+/lV8BfkzqSqtVqlJSUYHdmOopfzoREIvFaYWaz\nBerD1Sg7Wofnn38ex48f99q+/YFrR1KbEydO4IUXXgDDMD7vq1qtRlFRkdf2zVceXziqqKhASUkJ\nSl/Jwq6MF7xZEwBAKpVgX85LCA2ZjgLNe9i/fz/y8vK8Pg4Zq6OjAwzD+KevxcWYMWMG9dUFj0Ja\nX1+P/Px87M5M90kj75S/KQ2G725i165dePzxx7F06VKfjidk1NfA5Pbb3aGhISxetAhhcgkuvHvA\nq2+FnDGbLUjZugMGkwXNly9z4uog197uUl8Dl9sXjgoLC6HX66F9bYdfGgmMvkXSvr4der0ehYWF\nfhlTaKivgcutkPb19aGyshIFmel4KOp+X9XkUGzUA9idmYbKykr09/f7dWy+o74GNrdCqtVqAYZB\nzoa1vqpnQjnr14KxWkfrIF5DfQ1srENqtVrxjkaDtBVPIDz0+/b7zzd/hud27sF96zZCkrwGJ8//\n2f6Y2WxB/qEjWJSxFSEr/h73rduILUX78XXf2N+Ygze+Q8aeMoQ+vR6K1c/jp2/+EreGhsfVMCss\nFGkrn8A7Gg2sVqsnr5fcxVlfAf/1lvo6MdYh1el06OzqQtazqWPuvzU0jEXz5+Jg3isQiURjHrtt\nHMblq5+jMCsDjdWH8EFpIdqvf4G/37V3zHYb95Shres6/lhZilP7i3C++TNsLXvbYR1Z61LR0dkJ\nnU7HtnQyAWd9BfzbW+qrc6w/gmloaIBUKkHSwgVj7k9dmojUpYkAgLsvFM+45x6c/tWbY+6r3JGD\nH/z0H/HFN724b/YstHVdx8d/0aFBW4n4BfMAAL/eno21eYWoyP0ZImcqxjw/aeECSCQS6HQ6LFmy\nhP0rJQ456yvg395SX51z60gaFxM14Zeq2TB8dxMiERA6fToA4D8/+y+EhUy3NxEAnl4SDxFE+EtL\n+7jnB0+TIy5mDv3G9RJv9RWYXG+pr86xDmlzUxPi58+d1GBGkwkF72jxk1XLMf17o5+JdfcPYPZd\n3wmVSCRQzAhBd/+Aw/0kPDgPTY2Nk6qFjPJGXwHv9Jb66hjrt7sDAwOIfHi+xwOZzRakvfbPEImA\nQzu3udyeATPuPMgmQhGKM80taAzghra1tY35b6Dq6e7Gqkn0FfBebyMUofik9cqkauEj1iE1mUyQ\ny4I8GsTWxP/u6cOZg6X237QAEDlTgW8GDWO2t1gsGLxxExGKMIf7k8uC0N3TDaVS6VE9/pSRkTHV\nJUwoSCrxuK+Ad3srlwXBaDR5XAtfsQ6pTCaD0TTi9gC2JnZ89TX+dLAcYTNCxjy+9OFYGG7eQlP7\nNfu5y5mGZjBg8Fjc+IsZAGA0jSAyIhK/O3nS7Xr8pa2tDRkZGaitrUVsbOxUl+PUc+vWedRXwPu9\nNZpGIPfCuTHfsA6pQqFAd//guPtvDQ3j2hdf2a/+dXzZjctXO6CYEYJ7wxV4/hfFaL7agY8q9mLE\nYkbPwOg+FDNCECSV4qGo+/HDx5R4ufRtaHZug2nEjFff0uDFVcvGXdm16RkwYHZEBCe+ExsbGxvQ\ndUZERjrsK+D/3vYMGBAW5rjnQsY6pIvj49Fw/ty4+xvarmDFtnyIRCKIRCLkVf4GAJC55mnsydqI\njy78BSKRCPGbXwEweilfJBLhTwfL8GT8IwCAf9mbj9wDh7Dq1QKIxWJsWJ6Ct/9pq9NaGq9cQ9JT\nK9x5ncQJZ30F/N9b6qtjrEOqVCpRXV2FYaNpzOX6pxIehaX+906fN9FjNqEh03H0jXxWdQwNG9HS\noUf29sA/H+UCZ30F/Ntb6qtzrD+CSUxMhNlswaXW8Z9d+tOl1nZYLBZOXDTiAupr4GMdUqVSieio\nKBw5edqX9bh05KPTiImOpmZ6CfU18LEOqVgsRnZODo6d+QR9hm99WZNTvYMG1J05j+ycHJpw2Uuo\nr4HPrZ+ISqWCSCyG5sQpX9UzIc0HpyASi6FSqaZkfL6ivgY2t0IaHh6O3Nxc7Ks5hrau676qyaG2\nrusoralDbm4uZs6c6dex+Y76Gtg4NcfRtyNWNDU3c2IuHJrjyDUu9nUquH0CEBwcDG1VFS61tEN9\nuMYXNY2jPlyNhrYr0FZVUSN9hPoauDw6S09OTkZ5eTlKa46h7Gidt2sao+xo3eitrIymffSx5ORk\nbN++3a993bdvH/XVBY8nx87Ly8ONGzdQUFwMw3c3UfLzzT6b6fx73/sefvSjH3lt38SxlpYWHD16\nFLNnz0aB5j2f91UkEqG5uRlms5nVsotCNanr3UVFRSgvL0d57XGkbN3htYsObV3XkbJ1B8prj+ON\nN97A3LlzsXz5crS2tnpl/2S8lpYWrFixApGRkWhpafF5XysqKnD8+HFayJiFSX8otXPnTly4cAGD\nRgsSNm/D3iO16L3rz5PY6h00YO+RWiRs3gaDyYKLFy9iz549+NOf/oSIiAgKqo/cGdAzZ84gPDzc\n533Ny8ujFcdZ8tn6pGkrn0DWutF1LIOnyZ0/b9g4uo7lR6dRd+a803Us+/r6sGLFCvT09ODs2bNY\nuHChN8r2Ga5c3XUU0Dv5uq/AxOujEi+G1Ka/v9++InRHZyckEgniYuYg4cF5iFCE2leE7hkwoPHK\nNbR06GGxjK4InZ2TA5VK5fTzMi4FlQshdRXQO/myrwAFdSJeD6mN1WqFTqez35oaG/FNTw+6e7oR\nGRGJ2RERiE9IgFKptN/YfCWMK0EN9JC6E9A7+aqvAAXVKcaPdDodA4DR6XST2k9vby/zyCOPMLNn\nz2ZaWlq8VJ13eeu1+sJnn33GzJ49m3n00UeZ3t7eSe/Pm6/1/fffZyQSCfPiiy8yIyMjk94fH3Dy\n28zh4eF0MclDnh5B/YUuJo3HyZACFFRPBHpAbSioY3E2pAAF1R1cCagNBfV/cDqkAAWVDa4F1IaC\nOorzIQUoqBPhakBtKKg8CSlAQXWE6wG1EXpQeRNSgIJ6J74E1EbIQeVVSAEKKsC/gNoINai8Cykg\n7KDyNaA2QgwqL0MKCDOofA+ojdCCytuQAsIKqlACaiOkoPI6pIAwgiq0gNoIJai8DynA76AKNaA2\nQgiqIEIK8DOoQg+oDd+DKpiQAvwKKgV0LD4HVVAhBfgRVAqoY3wNquBCCnA7qBTQifExqIIMKcDN\noFJA2eFbUAUbUoBbQaWAuodPQRV0SAFuBJUC6hm+BFXwIQUCO6gU0MnhQ1BpzsS/sQV1xYoVWL58\nuVvThdqmuWxoaIBOp0NzUxN6ursRJJXguXXrEBEZicXx8VAqlUhMTGQ9zSUF1DtsQU1PTwcAt6YL\nddTbgYEBmEwmyGQyKBQKj3rrDgrpHdwNal9fn33C6M6uLkilEsTFRCF+/lyseni+fcLo7v5BNJw/\nh+rqKpjNoxNGb83Ohkqlcho8Cqh3uRvUiXobOcneus2f84cG8ly0d3I1r+/t27eZvLw8Ri6XM7Kg\nIGZT6krmnKaCuX3uJGP982mnt9vnTjLnNBXMptSVjCwoiJHL5UxeXh5z+/btMfv39ry4vsaVvjKM\n63l9fd1bT/hsBntHAn1W9zs5mym/vr4eqi1boNfrUZCZjuz1z2BWWKjb++8dNEDzwSmU1tRhzpw5\n0FZVITk5mZNHUC71FXA+U76ve+spunDkhKOLSRUVFUhJSUGYXILG6oMozNroURMBYFZYKPZkZaCx\n+iBCZRKkpKQgLy+PcwHlIkcXk3zd2/3793tcL52TTuDOc9QlS5bg9u3b2J2ZjuKXM722sG5s1AO4\n8O6B0YV1DxzA7NmzKaB+cOc56qeffoqWlhaf9nbnzp24ceMGioqK3N4PHUldCA8Px/r163H79m2U\nvpKFN7NVXl35GgCkUgn25byEfTkv4ZtvvkFVVZVX908c27BhA37yk5+gpaXFL70tLi726IhKR1IX\n6uvrUVRUhN2Z6diV8YJPx8rflAbDdzexa9cuPP7441i6dKlPxxO6+vp61NbWBnxv6Ug6gaGhIai2\nbEFS3AIUv5zplzGLX96MJQsXYMvmzRgaGvLLmELEpd5SSCdQWFgIvV4P7Ws7vP42yBmpVALt69uh\n1+tRWFjolzGFiEu9pZA60dfXh8rKShRkpuOhqPv9OnZs1APYnZmGyspK9Pf3+3VsIeBabymkTmi1\nWoBhkLNh7ZSMn7N+LRirdbQO4lVc6y2F1AGr1Yp3NBqkrXgC4aHfn5IaZoWFIm3lE3hHo4HVap2S\nGviIi72lkDqg0+nQ2dWFrGdTx9xvtVqh/r+rMXfDFtyz7DnMf16FEu2/Ot3Pz0vfhiR5DX5d97sx\n9w/e+A4Ze8oQ+vR6KFY/j5+++UvcGhoe9/ysdano6OyETqfzzgsjTnvriru9d8Wd3lJIHWhoaIBU\nKkHSwgVj7i+tqcPhD/9fHMrbhrbf/gZl27JQUfs+Dh4/OW4fv/uPevy19Qr+btbMcY9t3FOGtq7r\n+GNlKU7tL8L55s+wteztcdslLVwAiURCIfUiZ711xZ3es+FObymkDuh0OsTFRGGaXDbm/v/8rA3P\nPrEUqUsT8UDkbKxfloLVjyXgr63tY7b78ps+/MMv38G/FOVDeteVw//q+m98/Bcd/p9f/BMSYx9E\n8qML8evt2fjtH/8D3f0DY7YNniZHXMwcCqkXOeutK2x7z5Y7vaWQOtDc1IT4+XPH3b/0kVj8qaEZ\nV//7SwDA5asduPhpC9YkL7FvwzAMNhftx86NLyA26oFx+/jzZ20IC5mO+AXz7Pc9vSQeIojwl5bx\nDU94cB6aGhu98bIInPfWFTa9dxfb3tI3jhwYGBhA5MPzx92/OzMdN27dRuyPfwaJWAwrY0XJz7fg\nx6uW2bcprTkGWZAU21541uG+u/sHMPuuL25LJBIoZoSMO5ICQIQiFGeaW9AYwEFta2sb899A1tPd\njVUOeusKm967K0IRik9ar7jcjkLqgMlkglwWNO7+Y3/8D/zb/3cO/1a0GwujH0Dz1Q784y/fxb3h\nCmxa8zR0/3UVlcc/RGP1IbfHZMBAJBKNu18uC0J3TzeUSqVHr8WfMjIyproEl4KkEoe9dcVV7z0h\nlwXBaDS53I5C6oBMJoPRNDLu/vxDR1CQ+WO8sPJJAEBcTBS6vu5BaU0dNq15Ghcut6DX8C0eeG6T\n/TkWqxU7fn0Ybx/7HT4/UYXImQp8M2gYs1+LxYLBGzcRoQgbN6bRNILIiEj87qRnFyj8oa2tDRkZ\nGaitrUVsbOxUlzOh59atc9hbV1z13hNG0wjkLM6NKaQOKBQKdPcPjrv/9rARdx/sxCKR/bOuzDUr\nsSopfszjP/yH17BpzUqo1q4GACx9OBaGm7fQ1H7Nfl56pqEZDBg8Fjf+imPPgAGzIyI48cfUsbGx\nAV9nRGSkw9664qr3nugZMCAsTOFyOwqpA4vj49Fw/ty4+9elPIY3q3+L+yNmIS56Dhrbr+FXx/4d\nWetGP3MLmxGCsBkhY54TJJUgcmYY5t//dwCAh6Luxw8fU+Ll0reh2bkNphEzXn1LgxdXLUPkzPEN\na7xyDUm5X6H0AAAbZUlEQVRPrfD+ixQoZ711xVXvPcG2txRSB5RKJaqrqzBsNI25VF+54xWoD1dj\n2/5D+GbQgHvDZ2Lr/7UWatVPnO7L0Xnmv+zNR+6BQ1j1agHEYjE2LE/B2/+0ddx2Q8NGtHTokb09\n8M9HucJZb13xpPcTcae3FFIHEhMTYTZbcKm1HU/GP2K//57gaXjrH36Ot/7h56z39fmJqnH3hYZM\nx9E38l0+91JrOywWCycuGnGFs9664knvJ+JOb+lzUgeUSiWio6Jw5OTpKa3jyEenERMdTSH1Ii72\nlkLqgFgsRnZODo6d+QR9hm+npIbeQQPqzpxHdk6O1ydbFjIu9pa674RKpYJILIbmxKkpGV/zwSmI\nxGKoVKopGZ/PuNZbCqkT4eHhyM3Nxb6aY2jruu7Xsdu6rqO0pg65ubmYOXP8F/TJ5HCttzQ59gSG\nhoaweNEihMkluPDuAb9Ms2E2W5CydQe+HbGiqbkZwcHBPh9zsrjWV4BbvaUj6QSCg4OhrarCpZZ2\nqA/X+GVM9eFqNLRdgbaqihMB5Sou9ZZC6kJycjJ27NiB0ppjKDta59Oxyo7Wjd7Kymg6Tz9ITk7G\n6tWrA763FFIXWltbUVNTg9mzZ6NA8x4KNO/BYrF4dQyz2WLf9/e+9z386Ec/8ur+iWMlJSX4+OOP\nsWzZMr/0Vq1WIy8vz+19UEgn0NraiuXLlyMyMhItLS0oLy9Hee1xpGzd4bULDm1d15GydQfKa4/j\njTfewNy5cwNuIWM+KikpgVqtRnFxMc6ePevz3lZUVHi0xARAIXXqzoDa1mbZuXMnLly4gEGjBQmb\nt2HvkVr03vUXLWz1Dhqw90gtEjZvg8FkwcWLF7Fnz56AXXGcT+4M6Ouvvw4APu+tJ0dQu0kvnugG\nrqxj2dLSMuH6oHevYZmRuoI5e6icuXX2wwnXsLx19kPm7KFyJiN1xYRrWLpaHzXQcKWvDMMwxcXF\nDACmuLjY4eO+7q0nKKR3cRXQO/X19TEVFRVMTHQ0A4CRSCTMo/NjmC3PrGbyN6UxhVkbmfxNacyW\nZ1Yzj86PYSQSCQOAiYmOZioqKpi+vj6n++ZSULnQV4ZxHdA7+bK37qLPSe/g6C0uG1arFTqdzn5r\namzENz096O7pRmREJGZHRCA+IQFKpdJ+Y/N1MGcLGQeaQO8r4PgtLhuOejs4OACj0QS5XIawMIVH\nvXWL1+LOQiD/xnXnCMqGt14rF46ogdxXhnHvCBqI6MIRPD+C+oOjFccJe54eQQOJ4EMayAG1oaB6\nhg8BBQQeUi4E1IaC6h6+BBQQcEi5FFAbCio7fAooINCQcjGgNhTUifEtoIAAQ8rlgNpQUB3jY0AB\ngYWUDwG1oaCOxdeAAgIKKZ8CakNBHcXngAICCSkfA2oj9KDyPaCAAELK54DaCDWoQggowPOQCiGg\nNkILqlACCvA4pEIKqI1QgiqkgAI8DakQA2rD96AKLaAAD0Mq5IDa8DWoQgwowLOQUkD/B9+CKtSA\nAjwKKQV0PL4EVcgBBXgSUgqoc1wPqtADCvAgpBRQ17gaVAroKE6HlALKHteCSgH9H5wNKQXUfVwJ\nKgV0LE6GlALquUAPKgV0PM6FlAI6eYEaVAqoY1Jf7dg2X2lDQwN0Oh2am5rQ092NIKkEz61bh4jI\nSCyOj4dSqURiYiKr+UopoN5jC+qKFSuwfPly1vP6+qKvAAV0Il6fHLuvrw9arRbvaDTo7OqCVCpB\nXEwU4ufPReTMMMhlQTCaRtDdP4imq5+jpaMLZrMFMdHR2JqdDZVK5TB8XAsoFyaMBthPwO2rvgIU\nUJe8NYHv3WtobEpdyZzTVDC3z52ccA2N2+dOMuc0Fcym1JVO19Dw9sTV/hDoE0bfaaIJuH3ZV4bh\n/sTV/uCVI2l9fT1UW7ZAr9ejIDMd2eufwaywULf30ztogOaDUyitqcOcOXOgrapCaGgop46gNlw5\nkto4OqL6sq/Jycl0BGVp0iGtqKhAfn4+kuIW4L3XtiM26oFJF9XWdR2qkrfw19Z23HPPPYiJieFU\nQAHuhRQYG9RNmzbhrbfe8llfV69ejY8//pgCysKkru6q1Wrs2rUL+ZvScOHdA15pJADERj2AC+8e\nwK6MF3Dz5k2sWrWKUwHlKtvFJIZhcODAAZ/21bbCNgXUNY+v7lZUVKCkpASlr2RhV8YL3qwJACCV\nSrAv5yWEhkxHwYEDiIyMnNxCrIQVrVaL3t5e//RV8x72799PfXXBo5DW19cjPz8fuzPTfdLIO+Vv\nSoPhu5vYtWsXHn/8cSxdutSn4wkZ9TUwuX1OOjQ0hMWLFiFMLsGFdw9AIpH4qjY7s9mClK07YDBZ\n0Hz5MoKDg30+5mRx7ZyU+hq43D4nLSwshF6vh/a1HX5pJDD6Fkn7+nbo9XoUFhb6ZUyhob4GLrdC\n2tfXh8rKShRkpuOhqPt9VZNDsVEPYHdmGiorK9Hf3+/XsfmO+hrY3AqpVqsFGAY5G9b6qp4J5axf\nC8ZqHa2DeA31NbCxDqnVasU7Gg3SVjyB8NDv2+8/3/wZntu5B/et2whJ8hqcPP9n+2NmswX5h45g\nUcZWhKz4e9y3biO2FO3H131jf2MO3vgOGXvKEPr0eihWP4+fvvlL3BoaHlfDrLBQpK18Au9oNLBa\nrZ68XnIXZ30F/Ndb6uvEWIdUp9Ohs6sLWc+mjrn/1tAwFs2fi4N5r0AkEo157LZxGJevfo7CrAw0\nVh/CB6WFaL/+Bf5+194x223cU4a2ruv4Y2UpTu0vwvnmz7C17G2HdWStS0VHZyd0Oh3b0skEnPUV\n8G9vqa/Osf4IpqGhAVKpBEkLF4y5P3VpIlKXJgIA7r5QPOOee3D6V2+Oua9yRw5+8NN/xBff9OK+\n2bPQ1nUdH/9FhwZtJeIXzAMA/Hp7NtbmFaIi92eInKkY8/ykhQsgkUig0+mwZMkS9q+UOOSsr4B/\ne0t9dc6tI2lcTBSmyWWTGtDw3U2IREDo9OkAgP/87L8QFjLd3kQAeHpJPEQQ4S8t7eOeHzxNjriY\nOfQb10u81Vdgcr2lvjrHOqTNTU2Inz93UoMZTSYUvKPFT1Ytx/TvjX4m1t0/gNl3fWlbIpFAMSME\n3f0DDveT8OA8NDU2TqoWMsobfQW801vqq2Os3+4ODAwg8uH5Hg9kNluQ9to/QyQCDu3c5nJ7Bsy4\n8yCbCEUozjS3oDGAG9rW1jbmv4Gqp7sbqybRV8B7vY1QhOKT1iuTqoWPWIfUZDJBLgvyaBBbE/+7\npw9nDpbaf9MCQORMBb4ZNIzZ3mKxYPDGTUQowhzuTy4LQndPN5RKpUf1+FNGRsZUlzChIKnE474C\n3u2tXBYEo9HkcS18xTqkMpkMRtOI2wPYmtjx1df408FyhM0IGfP40odjYbh5C03t1+znLmcamsGA\nwWNx4y9mAIDRNILIiEj87uRJt+vxl7a2NmRkZKC2thaxsbFTXY5Tz61b51FfAe/31mgagdwL58Z8\nwzqkCoUC3f2D4+6/NTSMa198Zb/61/FlNy5f7YBiRgjuDVfg+V8Uo/lqBz6q2IsRixk9A6P7UMwI\nQZBUioei7scPH1Pi5dK3odm5DaYRM159S4MXVy0bd2XXpmfAgNkREZz4TmxsbGxA1xkRGemwr4D/\ne9szYEBYmOOeCxnrkC6Oj0fD+XPj7m9ou4IV2/IhEokgEomQV/kbAEDmmqexJ2sjPrrwF4hEIsRv\nfgXA6KV8kUiEPx0sw5PxjwAA/mVvPnIPHMKqVwsgFouxYXkK3v6nrU5rabxyDUlPrXDndRInnPUV\n8H9vqa+OsQ6pUqlEdXUVho2mMZfrn0p4FJb63zt93kSP2YSGTMfRN/JZ1TE0bERLhx7Z2wP/fJQL\nnPUV8G9vqa/Osf4IJjExEWazBZdax3926U+XWtthsVg4cdGIC6ivgY91SJVKJaKjonDk5Glf1uPS\nkY9OIyY6mprpJdTXwMc6pGKxGNk5OTh25hP0Gb71ZU1O9Q4aUHfmPLJzclhNuExco74GPrd+IiqV\nCiKxGJoTp3xVz4Q0H5yCSCyGSqWakvH5ivoa2NwKaXh4OHJzc7Gv5hjauq77qiaH2rquo7SmDrm5\nuZg5c6Zfx+Y76mtg49QcR9+OWNHU3MyJuXBojiPXuNjXqeD2CUBwcDC0VVW41NIO9eEaX9Q0jvpw\nNRrarkBbVUWN9BHqa+Dy6Cw9OTkZ5eXlKK05hrKjdd6uaYyyo3Wjt7IymvbRx5KTk7Fq1Srqa4Dx\neHLsvLw83LhxAwXFxTB8dxMlP9/s1bdIZrMF6sPV9n8sw8Pjp1Mh3lVcXIw//OEPWLZsGQo07/m8\nr2q1mibGZmFS65MWFRUhJCQE+fn5ONf0qU/WDKmoqMDQ0BDUajUA0LIEPlJcXIzCwkL72iy2NX58\n2VcKKDuT/lBq586duHDhAgaNFiRs3oa9R2rRe9efJ7HVO2jA3iO1SNi8DQaTBRcvXkReXh7UajWK\nioqgVqtRUlIy2ZLJXe4OKOCfvhKWvLWG4t3rWGakrmDOHipnbp39cMJ1LG+d/ZA5e6icyUhdMeE6\nlgzDMEVFRZxZy5Ir65O6+pn6o69kYl5f6bu/v9++InRHZyckEgniYuYg4cF5iFCE2leE7hkwoPHK\nNbR06GGxjK4InZ2TA5VKNeHnZY5+6wciLnwE487P0td9Jc55PaQ2VqsVOp3OfmtqbMQ3PT3o7ulG\nZEQkZkdEID4hAUql0n5j+5UwLgQ10EPq6c/QUV8HBwdgNJogl8sQFqbwuK/ECX8etr35FjDQ3/oG\n8tvdQP/ZkbEmdXV3Ktmu9tJVX/dw4V0IGYuzIQUoqO6igHITp0MKUFDZooByF+dDClBQXaGAchsv\nQgpQUJ2hgHIfb0IKUFDvRgHlB16FFKCg2lBA+YN3IQUoqBRQfuFlSAHhBpUCyj+8DSkgvKBSQPmJ\n1yEFhBNUCih/8T6kAP+DSgHlN0GEFOBvUCmg/CeYkAL8CyoFVBgEFVKAP0GlgAqH4EIKcD+oFFBh\nEWRIAe4GlQIqPIINKcC9oFJAhUnQIQW4E1QKqHAJPqRA4AeVAipsFNK/CdSgUkAJhfQOngbVNs1l\nQ0MDdDodmpua0NPdjSCpBM+tW4eIyEgsjo+HUqlEYmIi62kuKaAEoJCO405Q+/r67BNGd3Z1QSqV\nIC4mCvHz52LVw/PtE0Z39w+i4fw5VFdXwWwenTB6a3Y2VCoVwsPDHe6bAkrs/Dl/aCDPRXu3ieam\nvXvphU2pK5lzmgrm9rmTEy69cPvcSeacpoLZlLpywqUXaF5ccic6kjrh7IhaX18P1ZYt0Ov1KMhM\nR/b6ZzArLJTVPqfJZXgy/hE8Gf8I9r/6M2g+OIXSX/8aJz/8ENqqKiQnJ9MRlIxDIZ3A3UGVy+XI\nz89HUtwC/Hv1wUktBzgrLBR7sjKQtvJJqEreQkpKClatWoU//OEPFFAyBoXUhbuDujszHcUvZ3pt\nYd3YqAdw4d0D9oV1ly1bRgElY9BKOixMmzYNAFD6ShbezFZ5deVrAJBKJdiX8xL25byEc+fOYf/+\n/V7dP+E2OpK6UF9fj/z8fOzOTMeujBd8Olb+pjQYvruJXbt24fHHH8fSpUt9Oh7hBjqSTmBoaAiq\nLVuQFLcAxS9n+mXM4pc3Y8nCBdiyeTOGhob8MiYJbBTSCRQWFkKv10P72g6vv8V1RiqVQPv6duj1\nehQWFvplTBLYKKRO9PX1obKyEgWZ6Xgo6n6/jh0b9QB2Z6ahsrIS/f39fh2bBB4KqRNarRZgGORs\nWDsl4+esXwvGah2tgwgahdQBq9WKdzQapK14AuGh359w2/PNn+G5nXtw37qNkCSvwcnzfx7z+Esl\nByBJXjPm9sx2tcsaZoWFIm3lE3hHo4HVap3U6yHcRiF1QKfTobOrC1nPprrc9tbQMBbNn4uDea9A\nJBI53GbN0kR0/+9/w9enRm//WrSbVR1Z61LR0dkJnU7nVv2EX+gjGAcaGhoglUqQtHCBy21TlyYi\ndWkiAIBhGIfbyIOCWH918E5JCxdAIpFAp9NhyZIlbj+f8AOF1AGdToe4mChMk8u8sr9zjZ8i8kc/\nRljIdCxPXIySlzdD8f0Ql88LniZHXMwcOpIKHIXUgeamJsTPn+uVfaX+YAnWL0tB9L0R+PzLr/GL\nd7R4Zoca9b/5pdO3x3dKeHAemhobvVIL4SYKqQMDAwOIfHi+V/aV9vST9v+Pi4nCI3OjMe95Fc41\nforlykUunx+hCMUnrVe8UgvhJrpw5IDJZIJcFuSTfUffG4nw0Bm49sVXrLaXy4JgNJp8UgvhBgqp\nAzKZDEbTiE/2/cU3vej/9jv8r5kKVtsbTSOQe+ncmHATvd11QKFQoLt/kNW2t4aGce2Lr+xXdju+\n7Mblqx1QzAiBYkYI9h6pxYblKYhUhOHaF19ht+Y9PHj/3+GHP1Cy2n/PgAFhYewCTfiJQurA4vh4\nNJw/x2rbhrYrWLEtHyKRCCKRCHmVvwEAZK55Gpqd2/B/rnXi6O/PwHDzJu4Nn4nVjylR9LNNCJKy\n+9E3XrmGpKdWePpSCA9QSB1QKpWorq7CsNHk8mOYpxIehaX+904f//2v/tnjOoaGjWjp0CN7O7uj\nLuEnOid1IDExEWazBZda26e0jkut7bBYLFAqKaRCRiF1QKlUIjoqCkdOnp7SOo58dBox0dEUUoGj\nkDogFouRnZODY2c+QZ/h2ympoXfQgLoz55Gdk8NqIm3CX9R9J1QqFURiMTQnTk3J+JoPTkEkFkOl\nUk3J+CRwUEidCA8PR25uLvbVHENb13W/jt3WdR2lNXXIzc3FzJkz/To2CTwixtmfbvhAY2MjlEol\ndDodEhIS/DWsx4aGhrB40SKEySW48O4Bv0yhYjZbkLJ1B74dsaKpuRnBwcE+H5MENjqSTiA4OBja\nqipcammH+nCNX8ZUH65GQ9sVaKuqKKAEAIXUpeTkZKxevRqlNcdQdrTOp2OVHa0bvZWV0XSexI5C\n6kJJSQk+/vhjLFu2DAWa91CgeQ8Wi8WrY5jNFvu+1Wo18vLyvLp/wm0U0gmUlJRArVajuLgYZ8+e\nRXl5OcprjyNl6w6vXUxq67qOlK07UF57HBUVFSgqKvLKfgl/UEiduDOgtrVZdu7ciQsXLmDQaEHC\n5m3Ye6QWvYMGj/bfO2jA3iO1SNi8DQaTBRcvXqQjKHGIvrvrgKOA2iQnJ6P58mUUFhaitLIS+6qP\nIW3lE8hal4qkhQsQPE3udL9Dw0Zcam3HkY9Oo+7MeYjEYuS++iqKioroIhFxij6CuctEAb1bf3+/\nfaXvjs5OSCQSxMXMQcKD8xChCLWv9N0zYEDjlWto6dDDYhld6Ts7JwcqlYo+ByUuUUjv4E5A72S1\nWqHT6ey3psZGDA4OwGg0QS6XISxMgfiEBCiVSvuNvupH2KK3u3/jaUCB0e/6LlmyhKbdJD5Bv84x\nuYAS4muCDykFlAQ6QYeUAkq4QLAhpYASrhBkSCmghEsEF1IKKOEaQYWUAkq4SDAhpYASrhJESCmg\nhMt4H1IKKOE6XoeUAkr4gLchpYASvuBlSCmghE94F1IKKOEbXoWUAkr4iDchpYASvuJFSCmghM84\nH1IKKOE7ToeUAkqEgLMhpYASoeBkSCmgREh8NqWnbZrLhoYG6HQ6NDc1oae7Gz3f9CBidgQiIiOx\nOD4eSqUSiYmJrKe5pIASofF6SPv6+uwTRnd2dUEqlSAuJgrx8+cicmaYfcLo7v5BNF39HC0dXTCb\nRyeM3pqdDZVKhfDwcIf7poASIfJaSIeGhlBYWIjKykowVivSVz6JrGdHl16YJpc5fd6w0TS69MLJ\n0zh25pPRpRdyc8ctvUABJULllZDW19dDtWUL9Ho9CjLTkb3+GcwKC3V7P72DBmg+OIXSmjrMmTMH\n2qoqJCcnU0CJoE06pBUVFcjPz0dS3AK899p2xEY9MOmi2rquQ1XyFv7a2o7Vq1fj448/poASwZpU\nSNVqNUpKSrA7Mx3FL2dCIpF4rTCz2QL14WqUHa3DsmXLcPbsWa/tmxAukbzxxhtvePLEiooKqNVq\nlL6ShcKsjV5fgEgsFuPpJfGYJpfhyPF/x/Tp05GcnOzVMQjhAo+OpPX19UhJSUH+pjS8ma3yRV1j\nFGjeQ3ntcVy8eBFLly71+XiEBBK3Qzo0NITFixYhTC7BhXcPePUtrjNmswUpW3fAYLKg+fJlWnCX\nCIrb71ELCwuh1+uhfW2HXwIKAFKpBNrXt0Ov16OwsNAvYxISKNw6kvb19eG+++5DwaY0FGZt9GVd\nDu09UovSo8fx5Zdf0grZRDDcOpJqtVqAYZCzYa2v6plQzvq1YKzW0ToIEQjWR1Kr1Yp5c+ci5aG5\nqN6z09d1OZW5txz17Z24eu0aLWlPBIH1v3KdTofOri5kPZvqy3pcylqXio7OTuh0uimtgxB/YR3S\nhoYGSKUSJC1c4Mt6XEpauAASiYRCSgTDrSNpXEzUhF+W94fgaXLExcyhkBLBYB3S5qYmxM+f68ta\nWEt4cB6aGhunugxC/IJ1SAcGBhA5M8yXtbAWoQjF4ODAVJdBiF+wDqnJZIJcFuTLWliTy4JgNJqm\nugxC/IJ1SGUyGYymEV/WwprRNAL5FJ8bE+IvrEOqUCjQ3T/oy1pY6xkwICxMMdVlEOIXrEO6OD4e\nTVc/92UtrDVeuYb4hISpLoMQv2AdUqVSiZaOLgxP8bng0LARLR16KJXKKa2DEH9hHdLExESYzRZc\nam33ZT0uXWpth8VioZASwXDrSBodFYUjJ0/7sh6Xjnx0GjHR0RRSIhisQyoWi5Gdk4NjZz5Bn+Fb\nX9bkVO+gAXVnziM7J4e+XE8Ew61/6SqVCiKxGJoTp3xVz4Q0H5yCSCyGSuX7KVsICRRuhTQ8PBy5\nubnYV3MMbV3XfVWTQ21d11FaU4fc3Fz6g28iKJya4+jbESuamptpjiMiKG6f2AUHB0NbVYVLLe1Q\nH67xRU3jqA9Xo6HtCrRVVRRQIjgeXX1JTk5GeXk5SmuOoexonbdrGqPsaN3orayMpvMkgiT19Il5\neXm4ceMGCoqLYfjuJkp+vtlnM9ir1Wrk5eV5bd+EcEnArwVTXl5OASWC5vVV1XZnpiFn/VqvrKpW\nVV1Nb3GJ4PlsfdK0lU8ga93o+qTB0+TOnzdsHF2f9KPTqDtz3un6pIQIlddX+u7v77ev9N3R2QmJ\nRIK4mDlIeHAeIhSh9pW+ewYMaLxyDS0delgsoyt9Z+fkQKVS0eeghNzB6yG1sVqt0Ol09ltTYyMG\nBwdgNJogl8sQFqZAfEIClEql/UZf9SNkPJ+FlBDiHXToIiTAUUgJCXAUUkICHIWUkABHISUkwFFI\nCQlwFFJCAhyFlJAA9/8DNzVkAnZBRbEAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 32 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p.show_distancePartitions(vertex_size = 650)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "The Krein parameters are also nonnegative. The graph would not be $Q$-polynomial, but we still have $q^3_{33} = 0$." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "0: [ 1 0 0 0]\n", " [ 0 306 0 0]\n", " [ 0 0 900 0]\n", " [ 0 0 0 153]\n", "\n", "1: [ 0 1 0 0]\n", " [ 1 68 220 17]\n", " [ 0 220 1700/3 340/3]\n", " [ 0 17 340/3 68/3]\n", "\n", "2: [ 0 0 1 0]\n", " [ 0 374/5 578/3 578/15]\n", " [ 1 578/3 610 289/3]\n", " [ 0 578/15 289/3 272/15]\n", "\n", "3: [ 0 0 0 1]\n", " [ 0 34 680/3 136/3]\n", " [ 0 680/3 1700/3 320/3]\n", " [ 1 136/3 320/3 0]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.kreinParameters()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "We check the remaining known feasibility conditions. We skip the sporadic nonexistence check since the intersection array is already included." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "p.check_feasible(skip = [\"sporadic\"])" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "We now compute the triple intersection numbers with respect to three mutually adjacent vertices $u, v, w$. Note that we have $a_1 = 6$, so such triples must exist. The parameter $a$ will denote the number of vertices adjacent to all of $u, v, w$." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "0: [0 0 0 0]\n", " [0 1 0 0]\n", " [0 0 0 0]\n", " [0 0 0 0]\n", "\n", "1: [ 0 1 0 0]\n", " [ 1 a -a + 5 0]\n", " [ 0 -a + 5 a + 123 0]\n", " [ 0 0 0 0]\n", "\n", "2: [ 0 0 0 0]\n", " [ 0 -a + 5 a + 123 0]\n", " [ 0 a + 123 19/8*a + 4641/8 -27/8*a + 967/8]\n", " [ 0 0 -27/8*a + 967/8 27/8*a + 57/8]\n", "\n", "3: [ 0 0 0 0]\n", " [ 0 0 0 0]\n", " [ 0 0 -27/8*a + 967/8 27/8*a + 57/8]\n", " [ 0 0 27/8*a + 57/8 -27/8*a + 71/8]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "S111 = p.tripleEquations(1, 1, 1, params = {\"a\": (1, 1, 1)})\n", "S111" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "The number of vertices at distance $3$ from all of $u, v, w$ should be a nonnegative integer. Nonnegativity is only achieved when $a = 0, 1, 2$, however integrality is not achieved in any of these cases." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "[71/8, 11/2, 17/8, -5/4]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = S111[1, 1, 1]\n", "[S111[3, 3, 3].subs(a == x) for x in [0, 1, 2, 3]]" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "We thus conclude that a graph with intersection array $\\{135, 128, 16; 1, 16, 120\\}$ **does not exist**." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 7.6", "language": "", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }