{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Nonexistence of a distance-regular graph with intersection array $\\{55, 54, 50, 35, 10; 1, 5, 20, 45, 55\\}$\n", "\n", "We will show that a distance-regular graph with intersection array $\\{55, 54, 50, 35, 10; 1, 5, 20, 45, 55\\}$ does not exist. The existence of such a graph would give a counterexample to a conjecture by MacLean and Terwilliger, see [Bipartite distance-regular graphs: The $Q$-polynomial property and pseudo primitive idempotents](http://dx.doi.org/10.1016/j.disc.2014.04.025) by M. Lang." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "import drg" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Such a graph would be bipartite with $3500$ vertices." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "deletable": true, "editable": true, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n", "3500\n" ] } ], "source": [ "p = drg.DRGParameters([55, 54, 50, 35, 10], [1, 5, 20, 45, 55])\n", "print(p.is_bipartite())\n", "print(p.order())" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "We see that all intersection numbers are nonnegative integers." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAACoCAYAAAA2AUNPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAE+BJREFUeJzt3Xl4lNWhx/HfzGQ1CCQsSRUMBBAkFAwBFEyrqKhYQEuL\nVKmUyK1CIHoFwQUSlqqNBFQkBEUxgFYLWheKS1WqVUAFEpYrIBCBKKuQBHDJPnP/QEYCHJgJOSZj\nv5/nyfPozJkzZ37Jy2/eed+ZcXg8Ho8AALDIWdcLAAD8/FE2AADrKBsAgHWUDQDAOsoGAGAdZQMA\nsI6yAQBYR9kAAKyjbAAA1lE2AADrKBsAgHWUDQDAOsoGAGAdZQMAsI6yAQBYR9kAAKyjbAAA1lE2\nAADrKBsAgHWUDQDAOsoGAGAdZQMAsI6yAQBYR9kAAKyjbAAA1lE2AADrKBsAgHWUDQDAOsoGAGAd\nZQMAsI6yAQBYR9kAAKyjbAAA1lE2AADrKBsAgHWUDQDAOsoGAGAdZQMAsI6yAQBYR9kAAKyjbAAA\n1lE2AADrKBsAgHWUDQDAOsoGAGAdZQMAsI6yAQBYR9kAAKyjbAAA1lE2AADrKBsAgHWUDQDAOsoG\nAGAdZQMAsI6yAQBYR9kAAKyjbAAA1lE2AADrKBsAgHWUDQDAOsoGAGAdZQMAsI6yAQBYR9kAAKyj\nbAAA1gXZmtjtdis3N1dr1qxRbm6u1q1dq6KiIpWXlyskJERRUVG6OCFBiYmJ6tatmxITE+V0/nd0\nH9mYkY0Z2ZiRjVl9ycbh8Xg8tTnhwYMHlZOToznZ2dqxc6eCglyKj2ulhHZtFNMkUqEhwSorr9C+\nwmKt3faFNm7fqcrKKsW1bq0RI0cqOTlZTZs2rc0l1RtkY0Y2ZmRjRjZm9S2bWiubkpISpaena9as\nWfK43Rp81a81fMB16tGxvcJCQ4y3Ky0r16pNWzRvydtatOxDOZxOpaamaurUqQoPD6+NpdU5sjEj\nGzOyMSMbs/qaTa2UzcqVK5U8bJgKCgp0/9DBGjnwN2oW2djveQ4UH1L2K0uVsXCxYmNjlTN/vnr1\n6nW2y6tTZGNGNmZkY0Y2ZvU5m7N+YS4zM1NJSUmKDHUpb0GW0ocPqdGDk6RmkY01afgflbcgS41D\nXEpKStL06dPPdol1hmzMyMaMbMzIxqy+Z+OaPHny5JreOC0tTWlpabpv6GA9P2m8mkdFntVijmnW\nuJGGXd9H5RUVmjT9cbndbvXu3btW5v6pkI0Z2ZiRjRnZmAVCNjUum8zMTKWlpSlj1HClDx9S62cv\nOJ1OXd09QWGhIUqfMVMNGjQImF1csjEjGzOyMSMbs0DJpkbHbFauXKmkpCTde+tNenhkst936q/7\ns5/VtOdf0ooVK9SzZ0/r93c2yMaMbMzIxoxszAIpG7/LpqSkRBd36aLIUJeWPzlDLpfLrzusicrK\nKiWNGKtD5VVat359vT1rhGzMyMaMbMzIxizQsvF7fys9PV0FBQXKmTD2J3lwkhQU5FLOxDEqKChQ\nenr6T3KfNUE2ZmRjRjZmZGMWaNn4tWdz8OBBtWjRQvffepPShw/xe6Fna8q855Xx3EvavXu3mjRp\n8pPf/+mQjRnZmJGNGdmYBWI2fu3Z5OTkSB6PUn7Xr0YLPFspA/vJ43YfXUc9QzZmZGNGNmZkYxaI\n2fi8Z+N2u9W2TRsldWijBZPG1XiRZ2volGlauWWHtuXn15vPNvI1mynzntfUeX+rdlmH2Jba+OJc\nSVLvlHH6cN1n3uscDoduv/F6ZY8b7dM6AimbM2WxffdejZv1tJZv2Kiy8gr17dldM+8eqeZRJ79v\noLyiQpcMv0sb8ndo7cLZ6tw27qQx9Tmbds2jFBoSrNzP87W3sEivPpKuAb869cHXOzJm6pklb+ux\n/71Dd950o/fybV/t1visZ7RiwyaVV1Soc9vW+svtf9LlXTt7x7h69a02l8Ph0AtT7tPSFZ8EbDav\nfrBCc197U7lb8lV4+Mgpf/++bFeBmM2J29RfF/xdr/1npT4v2KXw0BD1+mVHZYy6TRde0MI75unX\n39KL77yvvC35+ub7EhW/+7IaRkRUm7/4yDdKnZGtpSs+ldPp1MArLtPMu0cqIjys2jh/tymf08vN\nzdWOnTs1fMB1vt7EiuH9r9P2HTuUm5tbp+s4nj/ZdIqL1b43XtTepUd/Pnpyhvc6h8OhP9/Q13v9\nnn++oGmjhvu8jkDLxpTF96WluvauB+R0OvX+7GlaMfdRlZVXaMC4Sae8j/FZ89SiWVM5HA7jOupz\nNld1T1CXdm2Udc+o0z6G1/6zUqs3bdX5zU5+2aLf2HRVVbn1/uxHlDs/S53bxqnfPen6uuhQtXHz\n08ZW+/u68fKeAZ3Nd6WluqxLvDJSbjNm5+t2FWjZnLhNLV+/UaMHDdAn8x7Xu0/8VRWVlbr2rgdU\nUlrmHVNSVqbrenbXA8NuNuY1ZNIj2rzzS703K0NLp0/VR+s+04hHZp40zt9sfP7U5zVr1igoyKUe\nHdv7ehMrenRsL5fLpdzcXHXv3r1O13KMP9kEuVynfVfvOWGhNX7Xb6BlY8pixYZNKtj3tdY9N8f7\nbGp++lhFXTNI/16zTld2u9g79q2PV+u91Xl6+eE0vfnxauM66nM2qYNu8H5mlemFht1fH9Rdj83R\n248/pN+MSat2XeHhI8rftUfPThij+LhWkqSMlNs055Wl+mz7Tl0Z9WNejRpEnJR5IGfzx+uukiQV\n7N1vzE7ybbsKtGxO3KbeePQv1f4/J22soq//g3K3bFNSl06S5N0b/k/ehlPO/fnOr/SvT3O1JmeW\nEtq3lSQ9MWak+t2TrszUPyumSZR3rL/Z+LVnEx/X6rQf5PZTCA8LVXxcbL17puFrNtt27VGL/kPU\n9vfJunXyI/pq/4Fq17/wr/fVvO9gdR4yQg/Myan2rORMAi0bUxZl5RVyOBwKCf7xuVBocLCcDoeW\nr9/ovWx/UbHuyJip5yaNV/gZsg+0bI7n8Xj0p6nTNW7IIF3U6oKTrm/SqKE6xLbUwrfe0/elpaqs\nrNKTr76h6KjGSuzQrtrY0dNnq3nfwbp0+F3KWfqOpMDOxle+bFc/t2wOffOdHA6Hohqe6/PcH3+2\nWZHnNvAWjSRd3T1BDjn06cYt1cb6m43Pezbr1q5VQrs2vg63quuFbbU2L6+ul+HlazaXxndQzsSx\nan9BC+0tLNKUZ57Xr0eM1WcvzFVEeJhuuba3YmOidV7TKG3I36F7Z8/Ttq9266WHJ/q8lkDJ5nRZ\nXNqpgyLCwzQ+a54eHjFMbo9H92U/K7fHo72FRd45bnvwUY0c2E8J7duqYO/+M64lULI5UcbCRQoJ\nDtLoQQOMY96Z+bB+e98UNbxqoJwOh6KjIvXWYw+pUYMfX4+fevtQXZnYReeEhemdT3M1KjNL35WU\navSgAQGbjS982a5+btl4PB7d/fiTSuocr46tY32ee19hkZqfsHfncrkU1fBc7Ttu2zvGn2x8Lpui\noiLFdGp35oE/geioxlq2bqPy6skfwP59+9THh2yuvbSb9787tWmlHh3bq9Vvh2rxsg+V3O8a/c+A\nHw9Sxse1UkyTKPW5837t2LNPrc+L8WktgZLNmbJY9OADGpWZpVkvvS6X06mb+1yhhAvbyPXDgcgn\nFr+mb77/XvfeepMkyaMzn+cSKNkcL/fzbZr10uvKWzD7tONGTc9SdGSklj81Q2EhIXpmydvqf0+6\nVufMUvQPn5M1YdjN3vFd2sXp25JSTX/hZY0eNCAgs/GVL9vVzy2blMwsbdr5pZY/NeO043zlkeeU\nx3iioxrrw01bfZrD57IpLy9XaEiw76uzKDQkWPv271NiYmJdL0WSFBzkqlE2jRpE6MKW5yt/155T\nXn9JfHt5PB7l79rjc9kEajYnZtGnR1dtfelZFR3+RkFBTjWMiNB5/W5W3PlHc/ggd4M++exzhf26\nf7V5uiffqSHX9tazE8eedB+BmM3y9Rt14NBhXXDDrd7LqtxujX1irmYuek1f/GO+lq1eqzdXrlbx\nu//wHuPKumeU3l2VpwVvvqfxfxx0yrkviW+vh+a/qPKKioDMpqZ82a4COZvR02frrY9X68M50/WL\npv69PyimSZS+Lq5+UklVVZWKj3zrfdJyvNCQYJWVlfs0t89lExISorLyCl+HW1VWXqGY6Bi9tmRJ\nXS9FknRD//41yubb70v0xe69uvW4g27HW7vlCzkcDv3CcP2pBGo2piyiGh19vfnfa9bpwKHD6p90\nqSTpibEj9eCIP3nH7TlQqOvunqhFDz5gPFEjELMZ2vcq9emRUO2ya++aoFv7XqXkftdIkkp+2NhP\nfOLpdDjkdruNc6/d+oUiz22gkODggMzmRKc7k+94vmxXgZrN6OmzteSjj/VBdqYuiGnu99w9O12k\nQ99+p7Vb8r3HbZatWSePPLok/uTtqqy8QqE+HlfzuWyioqK0r7DY1+FW7S86pObR0eratWtdL0WS\nFB0T41M242Y9rf5Jlyo2prl2HyjU5GeeU5DLpZuvuULbd+/VC++8r+t7dVeThg21Pn+7xs6cq8sT\nfqlObVr5vJZAyeZ0WUjS/Dfe0UWtLlCzxo208v826e7Hn9Ldfxiodi3PlyS1aN6s2nwRYWHyeDyK\nOz9G553i1GCp/mbzXUmp8nft8Z5NtX33Pq3ftl1RDc9Vy+hmijzhAG9wkEsxTSK9WfT85UWKbNhA\nw6ZO18TbblF4aKjmvvamdu7br36XXSJJWrr8U31dfEiXduqg0OBgvbMqTxkLF2nckKN7PYGaTfGR\nb/Tl/gPafeCgPB6PPt+5Sx6PFNMkUtFRkT5tV4GazYlSMrP093c/0OvTJisiPEz7i46OaRQR4T2Z\nYH9RsfYVFmvbrt3yeDzakL9D555zji744e+sQ6uWuvaSRN2eMVPZ40arvKJSdz6arZv7XFHtTLRj\n9hcdUmSkb0+GfS6bixMStOajD3wdblXe1nz1uPzKul6Gl6/Z7D5wUEMmPaLCw0fULLKRkjrH6+Nn\nHleTRg1VUlamZavX6onFr+u7klK1jG6q31/5q2qvJfsiULI5XRaStKVglx6Yk6Pib75Vq5hoTUy+\nRXcNvvGkeY53pme29TWbNZu36srR98rhcMjhcOieWU9Lkob2vVrPThxz0u1OfJxNGjXUW489qIlP\nLtDVqferorJS8a1j9fq0yd5/UIODXJr98hKNmfmUPB6pbYtf6LH/vcN7PCNQs1ny0Se67aFHvdff\nMilDkpR+2xClDx+ikOCgM25XgZrNiZ569Q05HA71HjW+2uXPThijoddfLUl68tU3NHXe37x5XZEy\n/qQxf5tyr1JnzFafO++X0+nU73onaebdI065Fn+y8fkTBObMmaM770zVkfderdPTn0tKy9Tw6oHK\nysrSiBGnDuCnRjZmZGNGNmZkYxao2fj8Pptu3bqpsrJKqzZtOfNgi1Zt2qKqqqp6c7BOIpvTIRsz\nsjEjG7NAzcbnsklMTFTrVq00b8nbNV5cbZj3z7cV17p1vfrlk40Z2ZiRjRnZmAVqNj6XjdPp1MiU\nFC1a9qEOHjpc4wWejQPFh7R42UcamZJSbz4UTyKb0yEbM7IxIxuzQM3GrwSTk5PlcDqV/Y+lNVrg\n2cp+ZakcTqeSk+1//am/yMaMbMzIxoxszAIxG7/KpmnTpkpNTdVfFy7S5p1f+r3As7F555fKWLhY\nqamp9e6LjCSyOR2yMSMbM7IxC8Rs/PqmTqluv/f6cIVba9et4zvBj0M2ZmRjRjZmZGN2Ntn4/UJk\neHi4cubP16qNW5Q2d6G/N6+RtLkLtGbzVuXMn19vf/ES2ZwO2ZiRjRnZmAVaNq7JkydP9vcOW7Zs\nqYiICE2a/pjCQkOU1CXe3yl89shzizVl3vOaNm2aBg8ebO1+agvZmJGNGdmYkY1ZIGVTo7KRpF69\nesntdit9xkyVlperd9fOtXrGRmVllSY8OV9T5j2vtLQ0TZgwodbmto1szMjGjGzMyMYsULKpcdlI\nUu/evRUREaEpj87Uv1bl6rLOHdWscaOaTue1eeeXumH8FL207ENlZmYG1C/+GLIxIxszsjEjG7NA\nyMbvEwROZeXKlUoeNkwFBQW6b+hNShnYr0ZfbXyg+JCyX1mqjIWLFRsbq/kLFqhnz55nu7w6RTZm\nZGNGNmZkY1afs6mVspGOnhmRnp6uWbNmyeN266arfqXh/a9Tj47tFR4War5daZlWbdqief98W4uX\nfSSH06nU1FRNnTq1Xh+c8wfZmJGNGdmYkY1Zfc2m1srmmMLCQuXk5GhOdra279ghl8ul+LhYdb2w\nraKjGh/9sp3yCu0vOqS8rfnauL1AVVVVimvdWiNTUpScnFwvz2uvDWRjRjZmZGNGNmb1LZtaL5tj\n3G63cnNzvT9r8/JUXFyksrJyhYaGKDIySglduyoxMdH7U58+EsImsjEjGzOyMSMbs/qSjbWyAQDg\nmP+OagcA1CnKBgBgHWUDALCOsgEAWEfZAACso2wAANZRNgAA6ygbAIB1lA0AwDrKBgBgHWUDALCO\nsgEAWEfZAACso2wAANZRNgAA6ygbAIB1lA0AwDrKBgBgHWUDALCOsgEAWEfZAACso2wAANZRNgAA\n6ygbAIB1lA0AwDrKBgBgHWUDALCOsgEAWEfZAACso2wAANZRNgAA6ygbAIB1lA0AwDrKBgBgHWUD\nALCOsgEAWEfZAACso2wAANZRNgAA6ygbAIB1lA0AwDrKBgBgHWUDALCOsgEAWEfZAACso2wAANZR\nNgAA6ygbAIB1lA0AwDrKBgBgHWUDALCOsgEAWEfZAACso2wAANZRNgAA6ygbAIB1lA0AwDrKBgBg\nHWUDALCOsgEAWEfZAACso2wAANZRNgAA6ygbAIB1/w/RtJMGspPvtQAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 12 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAACQCAYAAADeKMaPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAH41JREFUeJzt3XlUU3fex/FPFjYBIQEEK8oiSgWXQnABGR+pWned6qjj\nqChDtYJiq57qqGVtn4qAVYqiVWlA6SI+day1U9spzzhacXQIaEewqBXQqlBWrRYJJHn+8MBTTLD3\nkvyEJN/XOZzjgZt7f77J4UtyL4lAo9FoQAghhDAk7O4FEEIIMX00bAghhDBHw4YQQghzNGwIIYQw\nR8OGEEIIczRsCCGEMEfDhhBCCHM0bAghhDAnZrVjtVoNhUKBwsJCKBQKXCwuRn19PZRKJSwtLSGV\nSvFCQABkMhmCgoIgk8kgFNLs44Mas0eN2aPGbPWUvgJDv4JAbW0t5HI59mRmoryiAmKxCP7enggY\nNBBuThJYWVqgWdmCqroGFF/7ASU3KtDaqoK3lxdWRkUhIiICzs7OhlySyaHG7FFj9qgxWz2tr8GG\nTVNTE+Li4pCRkQGNWo0FE8YhctYUjPLzhbWVZae3e9SsxIXSMmQdP4nD+achEAoRExODpKQk2NjY\nGGJpJoMas0eN2aPGbPXUvgYZNgUFBYhYtgyVlZXYFL4AUXOmw0XiyHs/NQ2NyDx6AskH8+Dh4QF5\ndjZCQkL0XZ5JoMbsUWP2qDFbPbmv3k/MpaamIjQ0FBIrEYpydiEuclGX/nMA4CJxRHzkYhTl7IKj\npQihoaFIS0vTd4lGjxqzR43Zo8Zs9fS+ooSEhISu3jg2NhaxsbH4S/gC5MZvQB+pRK/FtHFxdMCy\naZOgbGlBfNpOqNVqhIWFGWTfxoYas0eN2aPGbBlD3y4Pm9TUVMTGxiJ5VSTiIhcZ/OoFoVCIiSMD\nYG1libjt6bCzszO7h8nUmD1qzB41ZstY+nbpnE1BQQFCQ0Oxccl8vBMVwfugfG3K/AApuUdw9uxZ\nBAcHMz9eT0CN2aPG7FFjtoypL+9h09TUhBdGjIDESoRv926HSCTidcCuaG1VIXTlejQqVbh46ZLJ\nX3lCjdmjxuxRY7aMrS/vx1txcXGorKyEfMv6Z/KfAwCxWAT5m+tQWVmJuLi4Z3LM7kSN2aPG7FFj\ntoytL69HNrW1tXB3d8emJfMRF7mI90L1lZiVi+RDR3D79m04OTk98+M/C9SYPWrMHjVmyxj78npk\nI5fLAY0G0XNndGmB+oqeMwMatfrxOkwUNWaPGrNHjdkyxr6cH9mo1Wr4DByI0OcHIif+jS4vUl/h\niSkoKCvHtevXTe71kagxe9SYPWrMlrH25fwdUCgUKK+oQOSsKXotUF+RM6fgRnk5FApFt66DBa6N\nE7NyIQqZ2uHDf+EKndtOW/smRCFTcfzMOc7rMMfGhmh6q7oGM9bHwi5sNvpOX4gNuw5ArVbr3Ic5\nNn7wSxNe37EXXi+Hw3b8bPzu1XUovHJV5z5eTU6HKGQq3ss71uHzXi+Hd/geicdOQ0ruEZ37MNXG\nnfXdmvMJRv95DRwmzIHbtD9izsYkXL35Y4dt9n/2JV5ctQGOE+dAFDIV9x8+1Np/w/2fsTh+Gxwn\nzoH0pT/glXd24GHTI63t+Pbl/KrPhYWFEItFGOXny/UmTIzy84VIJIJCocDIkSO7dS2GxqfxUG8P\nfJORjLbHpWIdJwh3fHwUIqEQAoGA1zrMtbE+TdVqNaavi8VzLlKc278Td2rrEJ6UCksLMd5+dZnW\nfsyx8Svv7EBp+U3kJmxEX2cpDp3Mx6Q1m1D68T70df7/5/2P/bMA/y69in4u2ucCBAIB3lqxFMtn\nT2n/Ptn30n1FlKk27qzvt5dKsHreLAQNGYzWVhU275Fj8mubUfrxfthYWwEAmpqbMSV4JKYEj8Tm\nPbqfAlsUvw3V9Q34JiMZypZWRLy9HSu3peNQwsYO2/Hty+uRjb+351NfyO1ZsLG2gr+3h8n9tgLw\naywWieAicUQf6eMPqYN9h69funYD6XnHkLVlHfj+KZW5Ntan6VfnFfi+8hZyEzZimI8XJo8JQtLy\ncGR+egKtrSqtY5lb40fNShw9dRYpq1/B2BH+8O7XF/GRi+Hj/hz2HP2ifbvbP9XitR178GHSRp3D\nHgDsell3+D61/SB9kqk27uw+/MW7b2HJ1IkY4jkAw3y8II9dj5vVNVCUXWvfZs3832PD4nkY3ckv\ntN9X3MJX5xU4sHktgoYMRshwP7y3LgqffPNPVNXVd9iWb1/Ow+ZicTECBg3kujlTgYN9UFxU1N3L\nMDg+ja/9eAfuMxfB5w8RWJKwDbeqa9q/1vSoGYvik7Fr/Sr0kXbttZHMsbE+Tf91+XsMG+gJZ0eH\n9s9NHiPDvQcPUVJeqfN45tS4VaWCSq2GlaVFh8/bWFni7HclAACNRoOlSWl4Y9E8DPEc0On+tx3K\ng8uU+ZAtXYW0D/8HKpX2MG9jio25/pxo/PkhBAIBpL3tf3PbNucuX4HE3g4Bvj7tn5s4MgACCHC+\npExrez59OT+NVl9fD7ehg7huzpSr1BH5F0tQZGJ3ouqqKkzi0HiM//OQv7kevgPccbeuHokHcjFu\n5Xpc/mgfbG2ssTb9fYwd7o8ZoaO7vBZza6xv06q6erg+8XpUrhJJ+9dGDPLWuo05NbbrZYPgoUPw\ntvwjPO/hDlepBB99/Q+cu3wFg9z7AQCSDx6GpYUYq+fN6nTfa+b/HoG+PpD2tkfBf0qxKfMDVNU1\nIG3Ncp3bm2JjLj8nNBoN1u7ci9Dh/vDz8uC876q6evR54sU7RSIRpL3ttR7ZAI/7ni7Vfd7tSZyH\njVKp1PqtpLtYWVqgqroKMpmsu5diUBZiEafGk8cEtf976EBPjPLzhefL4cjLPw1nh974h+ISig/u\n1mst5taYZdPOzpmZW+NDCRsQ+d/vwn3WYohFIgT6+uBPk8JQdPU6isquIePIZyjKeXrj1//4cvu/\nhw70hIVYjKiUDGyNjoCFWPvHmSk25vJzIjp1F0orbuLb97cb5JgaaHTej60sLdDcrOS0D87DxtLS\nEs3KFu6rY6hZ2QI3VzccO368u5diULNnzuxSYwc7Wwzu3w/Xf7yD766X48adu3CcOLfDNnM3vYVx\nLwxD/q5tnPZp7o35NnVzkmpdWVXd0AAAWo942phbY6/n3PC/u1PQ9KgZ93/5Ba5SCRbGboVXXzec\nuViCmsZ7GDB7Sfv2KrUa69/bh/TDx/DDp9k6jzXa3xetKhUq7lZjUP9+Wl83xca/dR9enbYbX577\nN07vSetw4QUXbk5S/NTQ2OFzKpUKDfcf6LwfNytbYMXxPD7nYSOVSlFV18B1c6aq6xvRx9UVgYGB\n3b0Ug3J1c+tS4we/NOGH23exxEmK+RPGYfnsjpdEDlu0EjtfX4kZY7k/rWbujfk2DR46BFtzPkFt\n47328zZfny+Cg50t/Lx0n38w18Y21lawsbZCw/2f8dV5BVJXv4I548di0qiADttNfm0LlkydgIgZ\nL3W6r+KrP0AoEGg99dPGFBs/re/qtN04fuYcTmWmYoBbH977Dh46BI0PHqK47Hr7eZv8wovQQIPR\n/toXFVTXN0IikXLaN+dh80JAAArPnOK6OVNFV69j1H+92N3LMDiujd/I2I+ZoWPg4dYHt2vqkHDg\nEMQiERa+NB5ODr11nsDu7+oCj76unNdibo31bfrS6ED4eQ1AeGIqklf9GXdr6xG37yBWzZ2p8+kd\nwPwaf31eAY1GA18Pd1y7dQcbd2VhiEd/LJs+CSKRCJInTmRbiEVwc5K0P2L51+UrOF9ShjDZcNj3\n6oWC/5Riffo+LJ4yAQ52tjrXYoqNO+sbnboLn/z9FD5LSYCtjTWq6x8PJAdb2/Yr16rrG1BV14Br\nP96GRqPBd9fLYd+rFwa4ukDS2x7Pe/bH5NEyrEhOR+Ybq6FsacWadzOxcNJ4uDlpDxU+fTkPG5lM\nhpycbDxqVnbr5c9Nj5pRcqMSUetM5znYNlwb366pxaL4bai7dx8uEgeEDvfHuQM74eTQW+f2fP/O\nxhwb69tUKBTi87QkRKdkYOyKdbC1tsbS6ZOQuHyJztubY+N7Dx5i8x45btfUQdrbHnNfDMXbK5Z2\n+iKSTza2srDA4W9OISkrF80tLfB6zg3r/jQXa391HufXTLVxZ33f/+sXEAgECFu1ocP2H2xZh/Bp\nEwEAe//6BZKyPoRAIIBAIMD46A1a23yYuBEx23dj0ppNEAqFmBsWivS1K7XWwbcv52ETFBSE1lYV\nLpSWYVzAMK43M7gLpWVQqVQmdcKvDdfGHyVt4rXf1rN/47W9OTY2RNP+ri74fHsSp9ubY+N5E8Zh\n3oRxnPfz5HmaAF8fFOzfyfn2ptq4s76qgi9/87bxkYsRH7n4qds42ttp/QGnLnz7cv47G5lMBi9P\nT2QdP8n1JkxkfX4S3l5eJncHAqjxs0CN2aPGbBlrX87DRigUIio6GofzT6O28V6XF6iPmoZG5OWf\nQVR0tEm9sF4basweNWaPGrNlrH15fRciIiIgEAqR+emJLi1QX5lHT0AgFCIigv3bn3YXasweNWaP\nGrNljH15DRtnZ2fExMRg68HDuFJxk/cC9XGl4iaSD+YhJibGJN8MqQ01Zo8as0eN2TLGvrzeqRPo\n3ve9vteiRvHFiyb9vuIANX4WqDF71JgtY+vL+8lMGxsbyLOzcaGkDLH7DvK9eZfE7stB4ZWrkGdn\nm/Sdpw01Zo8as0eN2TK2vqKEhIQEvgfs378/bG1tEZ+2A9ZWlggd4c93F5xtO5SHxKxcpKSkYMGC\nBcyO09NQY/aoMXvUmC1j6tulYQMAISEhUKvViNuejkdKJcIChxv0qo/WVhW27M1GYlYuYmNjsWXL\nFoPt21hQY/aoMXvUmC1j6dvlYQMAYWFhsLW1ReK76fjqggJjh/vB5Vfv59FVVypuYvaGRBzJP43U\n1FSzu/P8GjVmjxqzR43ZMoa+vC8Q0KWgoAARy5ahsrISfwmfj+g5M+DSyQvjPU1NQyMyj55A8sE8\neHh4IDsnB8HBwfouzyRQY/aoMXvUmK2e3NcgwwZ4fGVEXFwcMjIyoFGrMX/C7xA5cwpG+fl2+rat\nwOPX17lQWoasz08iL/8MBEIhYmJikJSUZPIn+PiixuxRY/aoMVs9ta/Bhk2buro6yOVy7MnMxI3y\ncohEIvh7eyBwsA9cpY6P32xH2YLq+kYUXb2OkhuVUKlU8PbyQlR0NCIiIkz22nhDocbsUWP2qDFb\nPa2vwYdNG7VaDYVC0f5RXFSEn6qrUVVdBTdXN/RxdUVAYCBkMln7h6m9rARr1Jg9asweNWarp/Rl\nNmx0KSoqgkwmg0KhMKk3M+pJqDF71Jg9asxWd/SlXw8IIYQwR8OGEEIIczRsCCGEMEfDhhBCCHM0\nbAghhDBHw4YQQghzNGwIIYQwR8OGEEIIczRsCCGEMEfDhhBCCHM0bAghhDBHw4YQQghzNGwIIYQw\nR8OGEEIIczRsCCGEMEfDhhBCCHM0bAghhDBHw4YQQghzNGwIIYQwR8OGEEIIczRsCCGEMEfDhhBC\nCHM0bAghhDBHw4YQQghzNGwIIYQwR8OGEEIIczRsCCGEMEfDhhBCCHM0bAghhDBHw4YQQghzNGwI\nIYQwR8OGEEIIczRsCCGEMEfDhhBCCHM0bAghhDBHw4YQQghzNGwIIYQwR8OGEEIIczRsCCGEMEfD\nhhBCCHM0bAghhDBHw4YQQghzNGwIIYQwR8OGEEIIczRsCCGEMEfDhhBCCHM0bAghhDBHw4YQQghz\nNGwIIYQwR8OGEEIIczRsCCGEMCfQaDQaFjtWq9VQKBQoLCyEQqHAxeJiVFdVofqnarj2cYWrmxte\nCAiATCZDUFAQZDIZhEKafXxQY/aoMXvUmK2e0tfgw6a2thZyuRx7MjNRXlEBsVgEf29PBAwaCDcn\nCawsLdCsbEFVXQOKr/2AkhsVaG1VwdvLCyujohAREQFnZ2dDLsnkUGP2qDF71JitntbXYMOmqakJ\ncXFxyMjIgEatxoIJ4xA5awpG+fnC2sqy09s9albiQmkZso6fxOH80xAIhYiJiUFSUhJsbGwMsTST\nQY3Zo8bsUWO2empfgwybgoICRCxbhsrKSmwKX4CoOdPhInHkvZ+ahkZkHj2B5IN58PDwgDw7GyEh\nIfouzyRQY/aoMXvUmK2e3FfvJ+ZSU1MRGhoKiZUIRTm7EBe5qEv/OQBwkTgiPnIxinJ2wdFShNDQ\nUKSlpem7RKNHjdmjxuxRY7Z6el9RQkJCQldvHBsbi9jYWPwlfAFy4zegj1Si12LauDg6YNm0SVC2\ntCA+bSfUajXCwsIMsm9jQ43Zo8bsUWO2jKFvl4dNamoqYmNjkbwqEnGRiwx+9YJQKMTEkQGwtrJE\n3PZ02NnZmd3DZGrMHjVmjxqzZSx9u3TOpqCgAKGhodi4ZD7eiYrgfVC+NmV+gJTcIzh79iyCg4OZ\nH68noMbsUWP2qDFbxtSX97BpamrCCyNGQGIlwrd7t0MkEvE6YFe0tqoQunI9GpUqXLx0yeSvPKHG\n7FFj9qgxW8bWl/fjrbi4OFRWVkK+Zf0z+c8BgFgsgvzNdaisrERcXNwzOWZ3osbsUWP2qDFbxtaX\n1yOb2tpauLu7Y9OS+YiLXMR7ofpKzMpF8qEjuH37NpycnJ758Z8FasweNWaPGrNljH15PbKRy+WA\nRoPouTO6tEB9Rc+ZAY1a/XgdJooas0eN2aPGbBljX86PbNRqNXwGDkTo8wORE/9Glxepr/DEFBSU\nlePa9esm9/pI1Jg9asweNWbLWPty/g4oFAqUV1QgctYUvRaor8iZU3CjvBwKhaJb18EC18aJWbkQ\nhUzt8OG/cIXObaetfROikKk4fuYc53WYY2NDNL1VXYMZ62NhFzYbfacvxIZdB6BWq3XuwxwbP/il\nCa/v2Auvl8NhO342fvfqOhReuapzH68mp0MUMhXv5R3r8Hmvl8M7fI/EY6chJfeIzn2YauPO+m7N\n+QSj/7wGDhPmwG3aHzFnYxKu3vyxwzb7P/sSL67aAMeJcyAKmYr7Dx9q7b/h/s9YHL8NjhPnQPrS\nH/DKOzvwsOmR1nZ8+4q5/gcLCwshFoswys+X602YGOXnC5FIBIVCgZEjR3brWgyNT+Oh3h74JiMZ\nbY9LxTpOEO74+ChEQiEEAgGvdZhrY32aqtVqTF8Xi+dcpDi3fyfu1NYhPCkVlhZivP3qMq39mGPj\nV97ZgdLym8hN2Ii+zlIcOpmPSWs2ofTjfejr/P/P+x/7ZwH+XXoV/Vy0zwUIBAK8tWIpls+e0v59\nsu+l+4ooU23cWd9vL5Vg9bxZCBoyGK2tKmzeI8fk1zaj9OP9sLG2AgA0NTdjSvBITAkeic17dD8F\ntih+G6rrG/BNRjKULa2IeHs7Vm5Lx6GEjR2249uX1yMbf2/Pp76Q27NgY20Ff28Pk/ttBeDXWCwS\nwUXiiD7Sxx9SB/sOX7907QbS844ha8s68P1TKnNtrE/Tr84r8H3lLeQmbMQwHy9MHhOEpOXhyPz0\nBFpbVVrHMrfGj5qVOHrqLFJWv4KxI/zh3a8v4iMXw8f9Oew5+kX7drd/qsVrO/bgw6SNOoc9ANj1\nsu7wfWr7QfokU23c2X34i3ffwpKpEzHEcwCG+XhBHrseN6troCi71r7Nmvm/x4bF8zC6k19ov6+4\nha/OK3Bg81oEDRmMkOF+eG9dFD755p+oqqvvsC3fvpyHzcXiYgQMGsh1c6YCB/uguKiou5dhcHwa\nX/vxDtxnLoLPHyKwJGEbblXXtH+t6VEzFsUnY9f6Vegj7dprI5ljY32a/uvy9xg20BPOjg7tn5s8\nRoZ7Dx6ipLxS5/HMqXGrSgWVWg0rS4sOn7exssTZ70oAABqNBkuT0vDGonkY4jmg0/1vO5QHlynz\nIVu6Cmkf/g9UKu1h3sYUG3P9OdH480MIBAJIe9v/5rZtzl2+Aom9HQJ8fdo/N3FkAAQQ4HxJmdb2\nfPpyfhqtvr4ebkMHcd2cKVepI/IvlqDIxO5E1VVVmMSh8Rj/5yF/cz18B7jjbl09Eg/kYtzK9bj8\n0T7Y2lhjbfr7GDvcHzNCR3d5LebWWN+mVXX1cH3i9ahcJZL2r40Y5K11G3NqbNfLBsFDh+Bt+Ud4\n3sMdrlIJPvr6Hzh3+QoGufcDACQfPAxLCzFWz5vV6b7XzP89An19IO1tj4L/lGJT5geoqmtA2prl\nOrc3xcZcfk5oNBqs3bkXocP94eflwXnfVXX16PPEi3eKRCJIe9trPbIBHvc9Xar7vNuTOA8bpVKp\n9VtJd7GytEBVdRVkMll3L8WgLMQiTo0njwlq//fQgZ4Y5ecLz5fDkZd/Gs4OvfEPxSUUH9yt11rM\nrTHLpp2dMzO3xocSNiDyv9+F+6zFEItECPT1wZ8mhaHo6nUUlV1DxpHPUJTz9Mav//Hl9n8PHegJ\nC7EYUSkZ2BodAQux9o8zU2zM5edEdOoulFbcxLfvbzfIMTXQ6LwfW1laoLlZyWkfnIeNpaUlmpUt\n3FfHULOyBW6ubjh2/Hh3L8WgZs+c2aXGDna2GNy/H67/eAffXS/HjTt34Thxbodt5m56C+NeGIb8\nXds47dPcG/Nt6uYk1bqyqrqhAQC0HvG0MbfGXs+54X93p6DpUTPu//ILXKUSLIzdCq++bjhzsQQ1\njfcwYPaS9u1VajXWv7cP6YeP4YdPs3Uea7S/L1pVKlTcrcag/v20vm6KjX/rPrw6bTe+PPdvnN6T\n1uHCCy7cnKT4qaGxw+dUKhUa7j/QeT9uVrbAiuN5fM7DRiqVoqqugevmTFXXN6KPqysCAwO7eykG\n5erm1qXGD35pwg+372KJkxTzJ4zD8tkdL4kctmgldr6+EjPGcn9azdwb820aPHQItuZ8gtrGe+3n\nbb4+XwQHO1v4eek+/2CujW2srWBjbYWG+z/jq/MKpK5+BXPGj8WkUQEdtpv82hYsmToBETNe6nRf\nxVd/gFAg0Hrqp40pNn5a39Vpu3H8zDmcykzFALc+vPcdPHQIGh88RHHZ9fbzNvmFF6GBBqP9tS8q\nqK5vhEQi5bRvzsPmhYAAFJ45xXVzpoquXseo/3qxu5dhcFwbv5GxHzNDx8DDrQ9u19Qh4cAhiEUi\nLHxpPJwceus8gd3f1QUefV05r8XcGuvb9KXRgfDzGoDwxFQkr/oz7tbWI27fQayaO1Pn0zuA+TX+\n+rwCGo0Gvh7uuHbrDjbuysIQj/5YNn0SRCIRJE+cyLYQi+DmJGl/xPKvy1dwvqQMYbLhsO/VCwX/\nKcX69H1YPGUCHOxsda7FFBt31jc6dRc++fspfJaSAFsba1TXPx5IDra27VeuVdc3oKquAdd+vA2N\nRoPvrpfDvlcvDHB1gaS3PZ737I/Jo2VYkZyOzDdWQ9nSijXvZmLhpPFwc9IeKnz6ch42MpkMOTnZ\neNSs7NbLn5seNaPkRiWi1pnOc7BtuDa+XVOLRfHbUHfvPlwkDggd7o9zB3bCyaG3zu35/p2NOTbW\nt6lQKMTnaUmITsnA2BXrYGttjaXTJyFx+RKdtzfHxvcePMTmPXLcrqmDtLc95r4YirdXLO30RSSf\nbGxlYYHD35xCUlYumlta4PWcG9b9aS7W/uo8zq+ZauPO+r7/1y8gEAgQtmpDh+0/2LIO4dMmAgD2\n/vULJGV9CIFAAIFAgPHRG7S2+TBxI2K278akNZsgFAoxNywU6WtXaq2Db1/OwyYoKAitrSpcKC3D\nuIBhXG9mcBdKy6BSqUzqhF8bro0/StrEa7+tZ//Ga3tzbGyIpv1dXfD59iROtzfHxvMmjMO8CeM4\n7+fJ8zQBvj4o2L+T8+1NtXFnfVUFX/7mbeMjFyM+cvFTt3G0t9P6A05d+Pbl/Hc2MpkMXp6eyDp+\nkutNmMj6/CS8vbxM7g4EUONngRqzR43ZMta+nIeNUChEVHQ0DuefRm3jvS4vUB81DY3Iyz+DqOho\nk3phvTbUmD1qzB41ZstY+/L6LkREREAgFCLz0xNdWqC+Mo+egEAoREQE+7c/7S7UmD1qzB41ZssY\n+/IaNs7OzoiJicHWg4dxpeIm7wXq40rFTSQfzENMTIxJvhlSG2rMHjVmjxqzZYx9eb1TJ9C973t9\nr0WN4osXTfp9xQFq/CxQY/aoMVvG1pf3k5k2NjaQZ2fjQkkZYvcd5HvzLondl4PCK1chz8426TtP\nG2rMHjVmjxqzZWx9RQkJCQl8D9i/f3/Y2toiPm0HrK0sETrCn+8uONt2KA+JWblISUnBggULmB2n\np6HG7FFj9qgxW8bUt0vDBgBCQkKgVqsRtz0dj5RKhAUON+hVH62tKmzZm43ErFzExsZiy5YtBtu3\nsaDG7FFj9qgxW8bSt8vDBgDCwsJga2uLxHfT8dUFBcYO94PLr97Po6uuVNzE7A2JOJJ/GqmpqWZ3\n5/k1asweNWaPGrNlDH15XyCgS0FBASKWLUNlZSX+Ej4f0XNmwKWTF8Z7mpqGRmQePYHkg3nw8PBA\ndk4OgoOD9V2eSaDG7FFj9qgxWz25r0GGDfD4yoi4uDhkZGRAo1Zj/oTfIXLmFIzy8+30bVuBx6+v\nc6G0DFmfn0Re/hkIhELExMQgKSnJ5E/w8UWN2aPG7FFjtnpqX4MNmzZ1dXWQy+XYk5mJG+XlEIlE\n8Pf2QOBgH7hKHR+/2Y6yBdX1jSi6eh0lNyqhUqng7eWFqOhoREREmOy18YZCjdmjxuxRY7Z6Wl+D\nD5s2arUaCoWi/aO4qAgNDfVoblbCysoSEokUAYGBkMlk7R+m9rISrFFj9qgxe9SYrZ7Sl9mwIYQQ\nQtrQrweEEEKYo2FDCCGEORo2hBBCmKNhQwghhDkaNoQQQpijYUMIIYQ5GjaEEEKYo2FDCCGEuf8D\nmL8YsDCSohgAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 24 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAADpCAYAAADyBZqGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XlYlPX+//HnzLCooAKyaSKLGimujEsoLZSVpmRaaWWi\nHI4WGC1alikI1CkVKg1Fswg02+jkt8z6aSdbtLDUASuXXEIoF0i2FmMffn94nCMCOYN8VGbej+vi\numDmvj/329fcznvuZe5bU19fX48QQgihkPZSFyCEEML6SbMRQgihnDQbIYQQykmzEUIIoZw0GyGE\nEMpJsxFCCKGcNBshhBDKSbMRQgihnJ2qgY1GIwaDgV27dmEwGNidm0tpaSnV1dU4ODjg5ubGoMGD\n0ev1DBkyBL1ej1Yrvc8SkrF6krF6krFt0LT2FQSKi4vJyMhgZVoaR/LzsbPTERTgx+DePfHu4oqj\ngz1V1TUUlpSRe+gn9ublU1tbR4C/Pw9ERxMZGYm7u3trlmR1JGP1JGP1JGPb0mrNpqKigvj4eFJT\nU6k3Gpl847VE3TaaYX0Daefo0Ox8lVXV7Nh3gPQNm3hny1Y0Wi2xsbEkJSXRvn371ijNakjG6knG\n6knGtqlVmk12djaR06dTUFDAvIjJRE8ci4eri8XjnCwrJ239RhatzcLX15eMzExGjBhxoeVZBclY\nPclYPcnYdl3wjs/k5GRCQ0NxddSRs2Y58VFTWrTyAHi4urAw6j5y1izHxUFHaGgoKSkpF1pimycZ\nqycZqycZ2zZdQkJCQktnjouLIy4ujicjJrNu4Vw83VxbpSgPl85Mv/UmqmtqWJiyFKPRSFhYWKuM\n3dZIxupJxupJxqLFzSY5OZm4uDgWzYoiPmpKq58dotVqGTV0MO0cHYh/fhnOzs42t5ksGasnGasn\nGQto4TGb7OxsQkNDeWLqJJ6NjlRRVwPz0l5jybp3+frrrwkJCVG+vMuBZKyeZKyeZCzOsLjZVFRU\nMGjgQFwddXy16nl0Op2q2kxqa+sIfWAO5dV17P7uO6s/80QyVk8yVk8yFmezeHs2Pj6egoICMubP\nuSgrD4CdnY6MBbMpKCggPj7+oizzUpKM1ZOM1ZOMxdks2rIpLi6me/fuzJs6ifioKSrralJi+joW\nvf4ux44do0uXLhd9+ReDZKyeZKyeZCzOZdGWTUZGBtTXE3PHOFX1/K2YieOoNxpP12GlJGP1JGP1\nJGNxLrO3bIxGI7169iT0qp6sWfi46rqaFZG4hOwDRzh0+LDVXR9JMlZPMlZPMhZNMfsVMBgMHMnP\nJ+q20SrrOa+o8NHkHTmCwWC4pHWoYG7Gienr0I0Y0+An6J6ZpuerqquZlbwcj9GT6HTjBO566hl+\nLS03uw5bzHjV+o8YNDUal1ETcRk1kZEzHmXT9l2m58NiHm+Qt93IW4lJXt5gjF+KTjJuThzOYePp\nOvYe5i5/FaPR2GQdtpjxtt17GP/4QrqHT0E3Ygwbtm1v8PyZXM9dt59/8z3TNP4TIhq9DkvWvdtk\nHdaccVtk9lWfd+3ahZ2djmF9A1XWc17D+gai0+kwGAwMHTr0ktbS2izJuF+AL5+mLuLMdqndWQdg\nH1n6Mpu27+Tfzy6gk1MHHkxZwZ1PPc3WVc+bVYctZuzj5c6imCh6de8GQObHn3D7E4nkrl1BH78e\naDQaZowfw9MzI0yZd2jnaJrfaDQydnYc3Tzc2P7KUo4XlxCRlIyDvR3P3D+9UR22mPGpikoG9u5J\n5LhbuPOpZxrNd2LjWw3+/nj7DmY8t5Q7wkaaHtNoNDw9cxozxo82vQ4dOzR9xpk1Z9wWmd1sDAYD\nQQF+f3uhvIuhfTtHggJ8rfLTiiUZ2+l0TV7q4/dTp8jY+AlvJT3JdcEDAHhtwWz63jOTHXsPMCzo\n/I3MFjMeO3J4g7+fuX86q9Z/xDd7fqSPXw/gdHNp7vIqm7818GPBL3y2YjHuLp3p38ufpBkRzFuZ\nQULUVOzsGp6NZYsZjw4ZwuiQIQA0tffe061hth9s3U5Y8ED8uno3eNy5QzuzLnNjzRm3RWbvRtud\nm8vg3j1V1mK24Ct7kZuTc6nLaHWWZHzo6HG6h0+h152RTE1YzC9FJwEw/HiY2ro6bhw6yDRtoK8P\nPbw82L5nv9m12HLGRqORt//zBX9VVjGifx/T429u/hzPMZMZMOUBnlqZQUVllem5b/b8SP+efri7\ndDY9dsvVen778xR7jxQ0uRxbzvh8fi0t5+PsnU3uUl78ehYeoyehnzaLlDf+TV1dXbPjWGvGbZHZ\nWzalpaV49+utshazebm5sGX3XnKsbCUqKizkJjMyvjroKjIWzCGwR3dOlJSS+Oo6rot+jB/eeJnC\nklIc7Ozo5OTUYB4vN1cKS0rNrsUWM97zUz4jZj5KZVU1HTu0Z/2ieAJ9fQC495YwfL296ObuxveH\nj/DEinQO/XKMd59dAEBhSSle51zvy8vV1fTcwN4BjZZnixmbK/Pj/9DJqQMTrmt42ZmHJt1OcGAv\n3Dp1JPuHfcxLe43CkjJSHprR5Dhebi5s3XfwgmoRrcPsZlNdXY2jg73KWszm6GBPYVEher3+UpfS\nquztdGZlfMvVQ0y/9+vpx7C+gfhNiCBry1baNTN/fX09Go3G7FpsMeOrfH3YvTaN8j//5L3Pv2ba\n08l8mZbCVX4+/PO2MabpggL88O7ixqjYJzlyvBD/bt5NjndGc7nbYsbmytz4CVNuuQEH+4bjPHL3\nBNPv/Xr6YW9nR/SSVJ6LicTervHbmaODPVVV1RdUi2gdZjcbBwcHqqprVNZitqrqGry9vHl/w4ZL\nXUqrGh8e3qKMOzs7caXPFRw+epxRQwdTXVvL76dONdi6+bWsvNEn779jixnb2ekIuKIrAMGBvdm5\n7wDLst5n5dzYRtMO/++xr8NHj+PfzRvvLm7s2t/wE3RRWRlAs7nbYsbm2LZ7Dwd/OUbWv+afd9rh\nQYHU1tWRf6KI3j5XNHq+qroGx0t8nFmcZnazcXNzo7CkTGUtZisqLcfTy4vg4OBLXUqr8vL2blHG\nf/5VwU/HThDh7ob+ql7Y6XRs2bmbCdefPovn4M9H+bnoJCH9+pxnpP+RjMForG/2TTP3wE9oNBq6\ndnEDIKRfH55b8zbF5b+Zjtt88m0OnZ2d6Ovfo8kxJOOmvfbhJvSBvejX0++80+Ye/AmtRoNnMycM\nFJWW4+rq1uJaROsxu9kMGjyYXdu+UFiK+XIOHmbYdTdc6jJanbkZP576CuGhV+Pr7cmxkyUkvPo6\ndjodd990PZ2cnPhH+C3MeWk1rp2c6dihAw+/sJKRA/qadSbaGbaW8fxVmYwJGYKPpwd//FXBG5s/\n48vd37N56bPkHTvBm598zq0jhtKlUye+O5zHnGWruW5wf9Mb4s3Dg+nr34OIxGQWzfoHJ4pLiV+9\nlll3hDe5ewdsL+NTFZUcPnrcdCZa3rFCvjuUh1unjvh4eQCnz6b89+df8cLD9zea/5s9+/l27wHC\n9APo2KED2T/sY86y1dw3+kY6Ozs1mh6sN+O2yOxmo9frWbMmk8qq6kt6+nNFZRV78wqInm1d+7nB\n/IyPnSxmysLFlPz2Ox6unQkdEMT2V5fSpXMnAF58eCY6rZa7nvoXVTU1jB6uZ/ljD5pdhy1mXFRa\nxrSkFE4Ul9LZ2YkBvfzZvPRZbhgyiKO/nmTLzlxeyvqAUxWV+Hi5c+cN1zB/+j2m+bVaLR+mJBGz\nJJWRM2fj1K4d08beROKMqU3WYYsZ79p/kBsefAKNRoNGo+Gx1FcAiBgzitcWzAbgnU+3AnD3qOsa\njetob887n35BUvo6qmpq8O/mzex77+DRs47jnM2aM26LzL5czc6dOxk2bBhfpCVz7eD+qutq1pc5\n3xM2ay47duywui9qScbqScbqScaiKWZ/z0av1+Pv50f6hk0q6zmv9A83EeDvb3Vn8IBkfDFIxupJ\nxqIpZjcbrVZLdEwM72zZSnH5bypratbJsnKytmwjOibGKi+sJxmrJxmrJxmLplj0KkRGRqLRakl7\nb6Oqev5W2vqNaLRaIiPV3172UpGM1ZOM1ZOMxbksajbu7u7Exsby3Np32J//s6qamrQ//2cWrc0i\nNjbWqm+GJBmrJxmrJxmLc1l0p064tPcV/63GSO7u3VZ/X3HJWD3JWD3JWJzN4p2Z7du3JyMzkx17\nDxC3eq2KmhqJW72GXfsPkpGZaRMrj2SsnmSsnmQszqZLSEhIsHQmHx8fnJycWJjyIu0cHQgdGKSg\ntNMWv55FYvo6lixZwuTJk5Ut53IjGasnGasnGYszWtRsAEaMGIHRaCT++WVUVlcTFjygVc/6qK2t\nY/6qTBLT1xEXF8f8+ee/TpK1kYzVk4zVk4wFXECzAQgLC8PJyYnEF5axeYeBkQP64nHW/Txaan/+\nz4yfm8i7W7aSnJxs0yuPZKyeZKyeZCwsPkGgKdnZ2UROn05BQQFPRkwiZuI4s+6kd66TZeWkrd/I\norVZ+Pr6krlmDSEhIRdanlWQjNWTjNWTjG1XqzQbOH3mSXx8PKmpqdQbjUy68RqiwkczrG8g7c+6\nV3uj+Sqr2LHvAOkfbiJryzY0Wi2xsbEkJSXJAb5zSMbqScbqSca2qdWazRklJSVkZGSwMi2NvCNH\n0Ol0BAX4EnxlL7zcXE7fzKi6hqLScnIOHmZvXgF1dXUE+PsTHRNDZGSknBt/HpKxepKxepKxbWn1\nZnOG0WjEYDCYfnJzcvi1qIjCokK8vbzx9PJicHAwer3e9COXlbCMZKyeZKyeZGwblDWbpuTk5KDX\n6zEYDFZ3w6jLhWSsnmSsnmRsfeTjgRBCCOWk2QghhFBOmo0QQgjlpNkIIYRQTpqNEEII5aTZCCGE\nUE6ajRBCCOWk2QghhFBOmo0QQgjlpNkIIYRQTpqNEEII5aTZCCGEUE6ajRBCCOWk2QghhFBOmo0Q\nQgjlpNkIIYRQTpqNEEII5aTZCCGEUE6ajRBCCOWk2QghhFBOmo0QQgjlpNkIIYRQTpqNEEII5aTZ\nCCGEUE6ajRBCCOWk2QghhFBOmo0QQgjlpNkIIYRQTpqNEEII5aTZCCGEUE6ajRBCCOWk2QghhFBO\nmo0QQgjlpNkIIYRQTpqNEEII5aTZCCGEUE6ajRBCCOWk2QghhFBOmo0QQgjlpNkIIYRQTpqNEEII\n5aTZCCGEUE6ajRBCCOWk2QghhFBOmo0QQgjlpNkIIYRQTpqNEEII5aTZCCGEUE6ajRBCCOWk2Qgh\nhFBOmo0QQgjlNPX19fUqBjYajRgMBnbt2oXBYGB3bi5FhYUU/VqEl6cXXt7eDBo8GL1ez5AhQ9Dr\n9Wi10vssIRmrJxmrJxmr1VS+paWlVFdX4+DggJub20XJt9WbTXFxMRkZGaxMS+NIfj52djqCAvwY\n3Lsn3l1ccXSwp6q6hsKSMnIP/cTevHxqa+sI8PfngehoIiMjcXd3b82SrI5krJ5krJ5krNbllm+r\nNZuKigri4+NJTU2l3mhk8o3XEnXbaIb1DaSdo0Oz81VWVbNj3wHSN2zinS1b0Wi1xMbGkpSURPv2\n7VujNKshGasnGasnGat1uebbKs0mOzubyOnTKSgoYF7EZKInjsXD1cXicU6WlZO2fiOL1mbh6+tL\nRmYmI0aMuNDyrIJkrJ5krJ5krNblnO8F75hLTk4mNDQUV0cdOWuWEx81pUX/OAAPVxcWRt1Hzprl\nuDjoCA0NJSUl5UJLbPMkY/UkY/UkY7Uu93x1CQkJCS2dOS4ujri4OJ6MmMy6hXPxdHO9oGLO8HDp\nzPRbb6K6poaFKUsxGo2EhYW1ythtjWSsnmSsnmSsVlvIt8XNJjk5mbi4OBbNiiI+akqrn72g1WoZ\nNXQw7RwdiH9+Gc7Ozja3mSwZqycZqycZq9VW8m3RMZvs7GxCQ0N5Yuokno2OtHihlpqX9hpL1r3L\n119/TUhIiPLlXQ4kY/UkY/UkY7XaUr4WN5uKigoGDRyIq6OOr1Y9j06ns2iBLVFbW0foA3Mor65j\n93ffWf2ZJ5KxepKxepKxWm0tX4u3t+Lj4ykoKCBj/pyL8o8DsLPTkbFgNgUFBcTHx1+UZV5KkrF6\nkrF6krFabS1fi7ZsiouL6d69O/OmTiI+aorFhV6oxPR1LHr9XY4dO0aXLl0u+vIvBslYPclYPclY\nrbaYr0VbNhkZGVBfT8wd41pU4IWKmTiOeqPxdB1WSjJWTzJWTzJWqy3ma/aWjdFopFfPnoRe1ZM1\nCx9vcZEXKiJxCdkHjnDo8GGruz6SZKyeZKyeZKxWW83X7FfAYDBwJD+fqNtGW1RQYvo6dCPGNPgJ\numemRWOcLSp8NHlHjmAwGFo8xuWquYyfW/M2w//xEJ1vnIj3rXcz8YkkDv58tNlxbn10AboRY9iw\nbbvpsdLf/uDWRxfQPXwK7a8Lx/f2qcQ+n8Yfp/5qNL8tZDy075WMf3wh3cOnNMqqtraOJ1akM/C+\nB+h4w+10D5/C9KQUThSXNBrvo6+/JeSfj+B0/Xi63HwndzyZ1OD5X4pOMm5OHM5h4+k69h7mLn8V\no9FoExmfvR4bjUbiXl5Dzzum43T9eHrfGckzGW82mjd+9VquCL8Xp+vHc/ND8zj8y/EGz/tPiGjw\nXmI38laWrHu3yTqsNWNL3otXrf+IQVOjcRk1EZdRExk541E2bd9lej4s5vFGecYkLzerDkvztTNr\nKmDXrl3Y2ekY1jfQ3FlM+gX48mnqIs5sQ9ldwMGsYX0D0el0GAwGhg4d2uJxLkfNZfzVd3t58K7b\nGNLnSmpr63hqZQa3PPwU+956hfbtHBtM++Jb69FptWg0mgaPa7Uaxl8bwjMPTMPDxYXDR48zK3k5\nMX/8wesJTzSY1hYy7uHlycDePYkcdwt3PvVMg2n+qqrku0M/ER91HwN6+VP2+588/OJKbp+byLev\nvWSa7r3Pv+L+Rct4LuYf3KAfSE1tHXvy8k3PG41Gxs6Oo5uHG9tfWcrx4hIikpJxsLdj/rR7rD7j\ns9fjRWuzWP3Bx6yJe5y+/j3Y9eNBIp9+ARdnZx686zYAFr+exYp/byAz7jH8u3kTt3oNox+dz763\nVuNgbw+ARqPh6ZnTmDF+tOn9pGOHps+Istb12JL3Yh8vdxbFRNGrezcAMj/+hNufSCR37Qr6+PVA\no9EwY/wYnp4ZYcqzwznvKc2xNF+zm43BYCAowO9vL+TW7EJ0uhZfNuFc7ds5EhTga3WfVqD5jD96\n4ekGf2fEzcHr1rsxHDhE6MB+pse/O5THsqz32ZH+El3H3dNgHpeOztw/Yazpbx8vD6LvGMfzb77X\nqA5byPi2a0O47drT3xM4d09yJycnNi19tsFjqXNiuPqfj3D015N09/Sgrq6OR5euIuWhGUwfe7Np\nuqv8fEy/b/7WwI8Fv/DZisW4u3Smfy9/kmZEMG9lBglRU60+47PX42/27Oe2a0IYHTIEgB7enrz1\nyRfs3HfANM1LWe+zIPJewq+5GoA18Y/hfes9vP/ldiaNutY0nXOHdma9n1jremzJe/HYkcMb/P3M\n/dNZtf4jvtnzI338egCnm0tL3p8tzdfs3Wi7c3MZ3LunxQUBHDp6nO7hU+h1ZyRTExbzS9HJFo1z\nRvCVvcjNybmgMS5H5mZc/scpNBoNbp06mh6rqKxiysJFLJ8zC0+38684x0+W8H9ffM31gwc0+byt\nZ3yu8j/+RKMBF2dnAHIOHOZ4cSkA+mmzuCL8XsbOjmPfkQLTPN/s+ZH+Pf1wd+lseuyWq/X89ucp\n9h4psKmMQ/r34bNduzn0yzHg9Aejr7/fy5gRpz8RHzleSGFJGTcOHWSap5OTE8ODAtm+Z3+DsRa/\nnoXH6Enop80i5Y1/U1dX12wt1phxS9dho9HI2//5gr8qqxjRv4/p8Tc3f47nmMkMmPIAT63MoKKy\nyuwxLcnX7C2b0tJSvPv1NruIM64OuoqMBXMI7NGdEyWlJL66juuiH+OHN17GqX07i8cD8HJzYcvu\nveRY2UpUVFjITefJuL6+nkeXriJ0QBB9/X1Njz+67GVGDghiXOjwv5kbpsQv4oNt26moqua2a65m\n9byHm5zOljM+V1V1NfNWZnDvTWE4/3eXTd7xQurr60lKf4MXHr4fX29Pnn/zPa6PmcvBrHRcOjpT\nWFKK1znXqPJyPf336edsJ+MnIybz+6m/6HP3DHRaLcZ6I8/cP527b7oeOJ2HRqNpnJebK0Wlpaa/\nH5p0O8GBvXDr1JHsH/YxL+01CkvKSHloRpO1WGPGlq7De37KZ8TMR6msqqZjh/asXxRPoO/pLfB7\nbwnD19uLbu5ufH/4CE+sSOfQL8d499kFZo3t5ebC1n0HzZrW7GZTXV2No4O9uZOb3HL1ENPv/Xr6\nMaxvIH4TIsjaspXIcTf/zZzNc3Swp7CoEL1e36L5L1f2drrzZhyTvJx9+T/z1cvPmx7bsG07nxu+\nI3ftivMu48VHHmDhP+/jQMFR5q/K5NGlL7Pi8QcbTWfLGZ+ttraOSfP/hUZDg5yMRiMA86ffw+3X\nnb5O1GsLZuMz/j7e/WwbM8aP+dtxNRqNTWX8zqdf8tZ/vuCtpCfp69+D3YfyeOTFVXRzd2PqmFHN\njlVfX4/mrB0wj9w9wfR7v55+2NvZEb0klediIrG3a/x2Zo0ZW7oOX+Xrw+61aZT/+Sfvff41055O\n5su0FK7y8+Gft/1vPQ0K8MO7ixs3PTSPI8cL8e/mfd6xHR3sqaqqNqsOs5uNg4MDVdU15k7erM7O\nTlzpcwWHjx4//8TNqKquwdvLm/c3bLjgei4n48PD/zbjB1NW8P+272TryhS6uv/vi1SfG74n7/gJ\nXEbd0WD6O+Y9zbWD+rNl+WLTY55uLni6uXBlj+64derItdGPER81pdEnSlvN+GxnGs0vRcVsWb7I\ntFUD0NXdDcC03xvAwd6egG5d+bnwVwC8u7ixa3/DT31FZWXA6U/stpTxEyvSmRdxN3fdePrYS1CA\nH/knili0NoupY0bh3cWN+vp6ikrLGqyLv5aVM+jKXs0ua3hQILV1deSfKKK3zxWNnrfGjC1Zh+H0\nt/4DrugKQHBgb3buO8CyrPdZOTe20bTDgwKpr6/n8NHjZjWbquoaHM08jm92s3Fzc6OwpMzcyZv1\n518V/HTsBFO7uLV4jKLScjy9vAgODr7gei4nXt7ezWb8YMoKNmzbzhdpyfTw9mzw3LyIycwY3/A0\nyP5THmDpIw8wbmTzu9XqjEY0Gk2TK64tZny2M40m7/gJPlu+BNezjo8B6AN742hvz4GfjzJiQF8A\nampryT9RhG/X069PSL8+PLfmbYrLfzMdt/nk2xw6OzvR17+HTWX8V2UV55wgiVajMW0h+nfzxruL\nK1t27mZArwAAfj91im/3HiDmjvBml5V78Ce0Gg2ezRzgtsaMzV2Hm2M01jfbrHIP/IRGo6Grme/P\nRaXluLqaN63ZzWbQ4MHs2vaFuZObPJ76CuGhV+Pr7cmxkyUkvPo6djod99x8vcVjnZFz8DDDrruh\nxfNfrprLOCZ5OW//5ws+WJKAU/t2FJWeXtE6OznRztHBtLVyLh8vD3y7egHw/7bvpKi0jKF9rsS5\nfXv25OXzxIp0QgcENWpeYP0Zn6qo5PDR46Yz0fKOFfLdoTzcOnWkm7sbdz71NLsP5fFhciI1dbWm\nzN06dcTezo6OTh24f8JYEl59ne6e7vh6e7Jk3btoNHDXDac/vd88PJi+/j2ISExm0ax/cKK4lPjV\na5l1Rzj2dnZWn/HZwkOH8+yat/Hx8iDI35ecA4dZ+s7/ERX+vw9JD0+ewL8y36JX9274dfUi/pW1\ndPd0Z/x/zxr8Zs9+vt17gDD9ADp26ED2D/uYs2w1942+kc7OTk3WYo0ZW/JePH9VJmNChuDj6cEf\nf1XwxubP+HL392xe+ix5x07w5iefc+uIoXTp1InvDucxZ9lqrhvcn349/cwa35J8zW42er2eNWsy\nqayqtuj052Mni5mycDElv/2Oh2tnQgcEsf3VpXTp3MnsMc5WUVnF3rwComdbzz7YM5rL+OX/+wiN\nRkPYrLkNpn9t/mwibm16f/e537Np7+jAqx9sYs6y1VTV1ODj6cHEsFCemHpXo3ltIePs7/cx+tH5\naDQaNBoNj6W+AkDEmFEsjJrCh199i0ajYfC0WcB/jx1oNHy2fDHXDu4PQErsP7G30zEtKZmKqmqG\nBwWyZfli0xufVqvlw5QkYpakMnLmbJzatWPa2JtInDHVJjI+ez1OnTOLuNVreDBlBb+WldPNvQsP\nTBhHXOS9pvnm3ncXf1VW8sCSlyj/4xTXDAri4xeeMX3HxtHennc+/YKk9HVU1dTg382b2ffewaNn\nHcc5m7VmbMl7cVFpGdOSUjhRXEpnZycG9PJn89JnuWHIII7+epItO3N5KesDTlVU4uPlzp03XMP8\n6ff87ZhnWJqv2Zer2blzJ8OGDeOLtGTTf7ZL4cuc7wmbNZcdO3ZY1Re1QDK+GCRj9SRjtdpqvmZ/\nz0av1+Pv50f6hk0XVOCFSv9wEwH+/lZ1dskZkrF6krF6krFabTVfs5uNVqslOiaGd7Zspbj8txYX\neCFOlpWTtWUb0TExVnVhvTMkY/UkY/UkY7Xaar4WvQqRkZFotFrS3tvYogIvVNr6jWi0WiIj1d/+\n9FKRjNWTjNWTjNVqi/la1Gzc3d2JjY3lubXvsD//Z4sLvBD7839m0dosYmNjrfJmSGdIxupJxupJ\nxmq1xXwtulMnXNr7Xv9WYyR3926rvq84SMYXg2SsnmSsVlvL1+Kdme3btycjM5Mdew8Qt3qtpbO3\nSNzqNezaf5CMzEyrXnnOkIzVk4zVk4zVamv56hISEhIsXaCPjw9OTk4sTHmRdo4OhA4MsnQIsy1+\nPYvE9HUsWbKEyZMnK1vO5UYyVk8yVk8yVqst5duiZgMwYsQIjEYj8c8vo7K6mrDgAa161kdtbR3z\nV2WSmL6OuLg45s+f32pjtxWSsXqSsXqSsVptJd8WNxuAsLAwnJycSHxhGZt3GBg5oC8eZ927o6X2\n5//M+LkugWx4AAAP4UlEQVSJvLtlK8nJyTa38pxNMlZPMlZPMlarLeRr8QkCTcnOziZy+nQKCgp4\nMmISMRPHtejObyfLyklbv5FFa7Pw9fUlc80aQkJCLrQ8qyAZqycZqycZq3U559sqzQZOnxkRHx9P\namoq9UYjk268hqjw0QzrG0j7v7mndUVlFTv2HSD9w01kbdmGRqslNjaWpKQkqz/AZynJWD3JWD3J\nWK3LNd9WazZnlJSUkJGRwcq0NPKOHEGn0xEU4Evwlb3wcnM5fbOd6hqKSsvJOXiYvXkF1NXVEeDv\nT3RMDJGRkVZ7bnxrkYzVk4zVk4zVutzybfVmc4bRaMRgMJh+cnNy+LWoiMKiQry9vPH08mJwcDB6\nvd70Y22XlVBNMlZPMlZPMlarqXzLykqpqqrG0dEBV1e3i5KvsmbTlJycHPR6PQaDwapuZnQ5kYzV\nk4zVk4ytj3w8EEIIoZw0GyGEEMpJsxFCCKGcNBshhBDKSbMRQgihnDQbIYQQykmzEUIIoZw0GyGE\nEMpJsxFCCKGcNBshhBDKSbMRQgihnDQbIYQQykmzEUIIoZw0GyGEEMpJsxFCCKGcNBshhBDKSbMR\nQgihnDQbIYQQykmzEUIIoZw0GyGEEMpJsxFCCKGcNBshhBDKSbMRQgihnDQbIYQQykmzEUIIoZw0\nGyGEEMpJsxFCCKGcNBshhBDKSbMRQgihnDQbIYQQykmzEUIIoZw0GyGEEMpJsxFCCKGcNBshhBDK\nSbMRQgihnDQbIYQQykmzEUIIoZw0GyGEEMpJsxFCCKGcNBshhBDKSbMRQgihnDQbIYQQykmzEUII\noZw0GyGEEMpJsxFCCKGcNBshhBDKSbMRQgihnDQbIYQQykmzEUIIoZw0GyGEEMpJsxFCCKGcpr6+\nvl7FwEajEYPBwK5duzAYDOzOzaWosJCiX4vw8vTCy9ubQYMHo9frGTJkCHq9Hq1Wep8lJGP1JGP1\nJGPb0OrNpri4mIyMDFampXEkPx87Ox1BAX4M7t0T7y6uODrYU1VdQ2FJGbmHfmJvXj61tXUE+Pvz\nQHQ0kZGRuLu7t2ZJVkcyVk8yVk8yti2t1mwqKiqIj48nNTWVeqORyTdeS9RtoxnWN5B2jg7NzldZ\nVc2OfQdI37CJd7ZsRaPVEhsbS1JSEu3bt2+N0qyGZKyeZKyeZGybWqXZZGdnEzl9OgUFBcyLmEz0\nxLF4uLpYPM7JsnLS1m9k0dosfH19ycjMZMSIERdanlWQjNWTjNWTjG3XBe/4TE5OJjQ0FFdHHTlr\nlhMfNaVFKw+Ah6sLC6PuI2fNclwcdISGhpKSknKhJbZ5krF6krF6krFt0yUkJCS0dOa4uDji4uJ4\nMmIy6xbOxdPNtVWK8nDpzPRbb6K6poaFKUsxGo2EhYW1ythtjWSsnmSsnmQsWtxskpOTiYuLY9Gs\nKOKjprT62SFarZZRQwfTztGB+OeX4ezsbHObyZKxepKxepKxgBYes8nOziY0NJQnpk7i2ehIFXU1\nMC/tNZase5evv/6akJAQ5cu7HEjG6knG6knG4gyLm01FRQWDBg7E1VHHV6ueR6fTqarNpLa2jtAH\n5lBeXcfu776z+jNPJGP1JGP1JGNxNou3Z+Pj4ykoKCBj/pyLsvIA2NnpyFgwm4KCAuLj4y/KMi8l\nyVg9yVg9yViczaItm+LiYrp37868qZOIj5qisq4mJaavY9Hr73Ls2DG6dOly0Zd/MUjG6knG6knG\n4lwWbdlkZGRAfT0xd4xTVc/fipk4jnqj8XQdVkoyVk8yVk8yFucye8vGaDTSq2dPQq/qyZqFj6uu\nq1kRiUvIPnCEQ4cPW931kSRj9SRj9SRj0RSzXwGDwcCR/Hyibhutsp7zigofTd6RIxgMhktahwrm\nZpyYvg7diDENfoLumWl6vqq6mlnJy/EYPYlON07grqee4dfScrPrsMWMV63/iEFTo3EZNRGXURMZ\nOeNRNm3fZXo+LObxBnnbjbyVmOTlDcb4pegk4+bE4Rw2nq5j72Hu8lcxGo1N1mGLGW/bvYfxjy+k\ne/gUdCPGsGHb9gbPn8n13HX7+TffM03jPyGi0euwZN27TdZhzRm3RXbmTrhr1y7s7HQM6xuosp7z\nGtY3EJ1Oh8FgYOjQoZe0ltZmScb9Anz5NHURZ7ZL7c46APvI0pfZtH0n/352AZ2cOvBgygrufOpp\ntq563qw6bDFjHy93FsVE0at7NwAyP/6E259IJHftCvr49UCj0TBj/BienhlhyrxDO0fT/EajkbGz\n4+jm4cb2V5ZyvLiEiKRkHOzteOb+6Y3qsMWMT1VUMrB3TyLH3cKdTz3TaL4TG99q8PfH23cw47ml\n3BE20vSYRqPh6ZnTmDF+tOl16Nih6TPOrDnjtsjsZmMwGAgK8PvbC+VdDO3bORIU4GuVn1YsydhO\np2vyUh+/nzpFxsZPeCvpSa4LHgDAawtm0/eemezYe4BhQedvZLaY8diRwxv8/cz901m1/iO+2fMj\nffx6AKebS3OXV9n8rYEfC37hsxWLcXfpTP9e/iTNiGDeygwSoqZiZ9fwbCxbzHh0yBBGhwwBoKm9\n955uDbP9YOt2woIH4tfVu8Hjzh3amXWZG2vOuC0yezfa7txcBvfuqbIWswVf2YvcnJxLXUarsyTj\nQ0eP0z18Cr3ujGRqwmJ+KToJgOHHw9TW1XHj0EGmaQN9fejh5cH2PfvNrsWWMzYajbz9ny/4q7KK\nEf37mB5/c/PneI6ZzIApD/DUygwqKqtMz32z50f69/TD3aWz6bFbrtbz25+n2HukoMnl2HLG5/Nr\naTkfZ+9scpfy4tez8Bg9Cf20WaS88W/q6uqaHcdaM26LzN6yKS0txbtfb5W1mM3LzYUtu/eSY2Ur\nUVFhITeZkfHVQVeRsWAOgT26c6KklMRX13Fd9GP88MbLFJaU4mBnRycnpwbzeLm5UlhSanYttpjx\nnp/yGTHzUSqrqunYoT3rF8UT6OsDwL23hOHr7UU3dze+P3yEJ1akc+iXY7z77AIACktK8Trnel9e\nrq6m5wb2Dmi0PFvM2FyZH/+HTk4dmHBdw8vOPDTpdoIDe+HWqSPZP+xjXtprFJaUkfLQjCbH8XJz\nYeu+gxdUi2gdZjeb6upqHB3sVdZiNkcHewqLCtHr9Ze6lFZlb6czK+Nbrh5i+r1fTz+G9Q3Eb0IE\nWVu20q6Z+evr69FoNGbXYosZX+Xrw+61aZT/+Sfvff41055O5su0FK7y8+Gft40xTRcU4Id3FzdG\nxT7JkeOF+HfzbnK8M5rL3RYzNlfmxk+YcssNONg3HOeRuyeYfu/X0w97Ozuil6TyXEwk9naN384c\nHeypqqq+oFpE6zC72Tg4OFBVXaOyFrNVVdfg7eXN+xs2XOpSWtX48PAWZdzZ2Ykrfa7g8NHjjBo6\nmOraWn4/darB1s2vZeWNPnn/HVvM2M5OR8AVXQEIDuzNzn0HWJb1Pivnxjaadvh/j30dPnoc/27e\neHdxY9f+hp+gi8rKAJrN3RYzNse23Xs4+Msxsv41/7zTDg8KpLaujvwTRfT2uaLR81XVNThe4uPM\n4jSzm42bmxuFJWUqazFbUWk5nl5eBAcHX+pSWpWXt3eLMv7zrwp+OnaCCHc39Ff1wk6nY8vO3Uy4\n/vRZPAd/PsrPRScJ6dfnPCP9j2QMRmN9s2+auQd+QqPR0LWLGwAh/frw3Jq3KS7/zXTc5pNvc+js\n7ERf/x5NjiEZN+21DzehD+xFv55+55029+BPaDUaPJs5YaCotBxXV7cW1yJaj9nNZtDgweza9oXC\nUsyXc/Aww6674VKX0erMzfjx1FcID70aX29Pjp0sIeHV17HT6bj7puvp5OTEP8JvYc5Lq3Ht5EzH\nDh14+IWVjBzQ16wz0c6wtYznr8pkTMgQfDw9+OOvCt7Y/Blf7v6ezUufJe/YCd785HNuHTGULp06\n8d3hPOYsW811g/ub3hBvHh5MX/8eRCQms2jWPzhRXEr86rXMuiO8yd07YHsZn6qo5PDR46Yz0fKO\nFfLdoTzcOnXEx8sDOH025b8//4oXHr6/0fzf7NnPt3sPEKYfQMcOHcj+YR9zlq3mvtE30tnZqdH0\nYL0Zt0VmNxu9Xs+aNZlUVlVf0tOfKyqr2JtXQPRs69rPDeZnfOxkMVMWLqbkt9/xcO1M6IAgtr+6\nlC6dOwHw4sMz0Wm13PXUv6iqqWH0cD3LH3vQ7DpsMeOi0jKmJaVworiUzs5ODOjlz+alz3LDkEEc\n/fUkW3bm8lLWB5yqqMTHy507b7iG+dPvMc2v1Wr5MCWJmCWpjJw5G6d27Zg29iYSZ0xtsg5bzHjX\n/oPc8OATaDQaNBoNj6W+AkDEmFG8tmA2AO98uhWAu0dd12hcR3t73vn0C5LS11FVU4N/N29m33sH\nj551HOds1pxxW2T25Wp27tzJsGHD+CItmWsH91ddV7O+zPmesFlz2bFjh9V9UUsyVk8yVk8yFk0x\n+3s2er0efz8/0jdsUlnPeaV/uIkAf3+rO4MHJOOLQTJWTzIWTTG72Wi1WqJjYnhny1aKy39TWVOz\nTpaVk7VlG9ExMVZ5YT3JWD3JWD3JWDTFolchMjISjVZL2nsbVdXzt9LWb0Sj1RIZqf72speKZKye\nZKyeZCzOZVGzcXd3JzY2lufWvsP+/J9V1dSk/fk/s2htFrGxsVZ9MyTJWD3JWD3JWJzLojt1wqW9\nr/hvNUZyd++2+vuKS8bqScbqScbibBbvzGzfvj0ZmZns2HuAuNVrVdTUSNzqNezaf5CMzEybWHkk\nY/UkY/UkY3E2XUJCQoKlM/n4+ODk5MTClBdp5+hA6MAgBaWdtvj1LBLT17FkyRImT56sbDmXG8lY\nPclYPclYnNGiZgMwYsQIjEYj8c8vo7K6mrDgAa161kdtbR3zV2WSmL6OuLg45s8//3WSrI1krJ5k\nrJ5kLOACmg1AWFgYTk5OJL6wjM07DIwc0BePs+7n0VL7839m/NxE3t2yleTkZJteeSRj9SRj9SRj\nYfEJAk3Jzs4mcvp0CgoKeDJiEjETx5l1J71znSwrJ239RhatzcLX15fMNWsICQm50PKsgmSsnmSs\nnmRsu1ql2cDpM0/i4+NJTU2l3mhk0o3XEBU+mmF9A2l/1r3aG81XWcWOfQdI/3ATWVu2odFqiY2N\nJSkpSQ7wnUMyVk8yVk8ytk2t1mzOKCkpISMjg5VpaeQdOYJOpyMowJfgK3vh5eZy+mZG1TUUlZaT\nc/Awe/MKqKurI8Dfn+iYGCIjI+Xc+POQjNWTjNWTjG1LqzebM4xGIwaDwfSTm5NDWVkpVVXVODo6\n4OrqxuDgYPR6velHLithGclYPclYPcnYNihrNkIIIcQZ8vFACCGEctJshBBCKCfNRgghhHLSbIQQ\nQignzUYIIYRy0myEEEIoJ81GCCGEctJshBBCKPf/Ad4hJ59TfFD9AAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 32 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGbCAYAAAASmD34AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XtcVHX+P/DXzCBImMJwGTKRixoqpsKgLkhbeFkvpW5W\nuq1pEn1NSHLTyrwwou0aCt5Cwdx00Oym36w12m9WbKZJmzGArcp6ScHUQK5aBAww8/uDld+igGfg\nfLicXs/HYx6PHjNnznnT64yvuZyZo7JarVYQEREJpO7oAYiISPlYNkREJBzLhoiIhGPZEBGRcCwb\nIiISjmVDRETCsWyIiEg4lg0REQnHsiEiIuHsRK3YYrHAZDIhMzMTJpMJOdnZKC0thdlshr29PbRa\nLYYHBkKv1yM4OBh6vR5qNbuvs2OuysVsSSSV3D9XU1xcDKPRiJTkZFzIy4OdnQYBfj4IHNAPnq4u\ncLDvhmpzDQpKypB99nucPJ+H2to6+Pn6Yn5UFCIiIuDm5ibnSCQD5qpczJbag2xlU1lZCYPBgKSk\nJFgtFswc+1tETp2IkYP90d3Bvtn7VVWbcezUaew48AneSz8MlVqNmJgYrF69Go6OjnKMRm3AXJWL\n2VJ7kqVsMjIyEDF3LvLz87F0zkxETX8Q7i7ONq+nqKwcyfvTEL97L7y9vWFMTUVoaGhbx6NWYq7K\nxWypvbX5DdeEhASEhYXBxUGDrF1bYIic1aqdFgDcXZyxMvIJZO3aAmd7DcLCwpCYmNjWEakVmKty\nMVvqCJq4uLi41t45NjYWsbGxeHnOTOxZ+RI8tC6yDOXu3AtzJ4+HuaYGKxM3wWKxIDw8XJZ10+0x\nV+VittRRWl02CQkJiI2NRfyzkTBEzpL9qBS1Wo1xIwLR3cEehvWb0aNHD748bwfMVbmYLXWkVn1m\nk5GRgbCwMCyZPQNroiJEzNXI0uSdWLdnH44ePYqQkBDh2/u1Yq7KxWypo9lcNpWVlRg+bBhcHDT4\natt6aDQaUbM1qK2tQ9j8xSg31yHn+HEe8SIAc1UuZkudgc2vow0GA/Lz82FcvrhddloAsLPTwLhi\nEfLz82EwGNplm782zFW5mC11Bja9sikuLkafPn2wdPYMGCJniZyrSat27EH8m/tw+fJluLq6tvv2\nlYq5Khezpc7Cplc2RqMRsFoR/chDouZpUfT0h2C1WOrnINkwV+VittRZSH5lY7FY0L9fP4QN7Idd\nK18UPVez5qxah4zTF3D23Dn+LpMMbMl12/6Pse2DNOT9WAgACPD1RuxTszAxJBgAEB79Ig7nnGhY\nXqVSYd7vJyP5xQW3nYO5yk9qtn7Tn0R+wdVbro9+ZAqSFkej2mzGos3bsTf9MKprajBhlB5bX1gA\nD6207+YwWwJseGVjMplwIS8PkVMnipzntiKnTMT5CxdgMpk6dA6lsCVXL50b4qMjkWncgkzjFoQH\nD8Pvl6xCbt5FAPXl8j/TJqHg43fwY9o7uPLR21j3bKSkOZir/KRm+60xCT+mvdNw+XTzGqhUKswY\n+1sAwJ82vY6/ZxzD/65ZgS+TE3ClqASPLntF8hzMlgAbyiYzMxN2dhqMHOwvcp7bGjnYHxqNhjuu\nTGzJ9cHRozAxJBj9vXqjv1dv/PmZuejh2B3/PPHvhmXu6O4AdxdneGjrLz3ukHYUEnOVn9RsXXv1\nbMjLQ+uMj776Bv3uvgv3DR+C6xUVMKZ9ig0Ln8H9QUMR6N8fO1cswtHvTuHYydOS5mC2BNj4yibA\nz6fFH+hrD47dHRDg580dVyatzdViseDdzw7hl6pqhN47qOH6tw9+AY9JMzF01nwsSzGisqpa0vqY\nq/xak21NbS3e/vQLPDVlAgAgM/csauvqMHbE8IZl/L290Ffnjq9P5EpaJ7MlwIbz2eRkZyNwQD+R\ns0gWdE9/ZGdldfQYimBrrie+z0PovOdRVW3GnXc4Yn+8Af7eXgCAP04Ih7enDr3dtPju3AUs2boD\nZ3+4jH1rVkhaN3OVV2sesx8cysC1nyvw5ORxAIDC0jLY29mhp5NTo+V0WhcUlJRKXi+zJcllU1pa\nCs8hA0TOIplO64z0nJPI4s7bZoUFBRhvQ64Dvb2QszsZ5T//jPe/OIonX0nAl8mJGOjjhaenTmpY\nLsDPB56uWox/bikuXCmAb2/P266bucrL1mwBwJh2EJNCguHpqm1xOavVCpVKJXm9Oq0zDp86Y9Ms\npCySy8ZsNsPBvpvIWSRzsO+GgsIC6PX6jh6ly+tmp7EpVzs7DfzuvgsAEOQ/AN+eOo3Nez9Eyksx\ntyw7KsAfVqsV5y5dkVQ2zFVetmZ7seAqPs/MxgfxKxuu83TVwlxbi+sVFY1e3VwtK4fOhh/xdLDv\nhupqs+TlSXkkl429vT2qzTUiZ5Gs2lwDT50nPjxwoKNH6fKmTZnSplwtFmuz988+/T1UKhXuus2z\n5BuYq7xszXZn2kHoXFwwOXREw3X6gf1hp9Eg/dscPPzAaADAmYuXcLGwCCFDBjW3qltUm2vg0MGf\n91LHklw2Wq0WBSVlImeRrLC0HB46HYKCgjp6lC5P5+kpOdfl21IxKSQYXh7u+OmXSrx18B/4Muc7\nHNy0Bucv/4i3P/0Ck0NHwLVnTxw/dx6LN2/H/YH3Ykg/H0nrZ67ysiVbq9WKXR9/hicfHN/ouzA9\nnZzw1JQJWPzadrj07IE777gDCzekYPTQwRgZIP3I1MLScri4SHvSQcokuWyGBwYi88ghgaNIl3Xm\nHEbeP6ajx1AEW3ItLC3Dk6sT8WNxKXr1cMLQ/r44uGkNxgQPx6WrRUj/Nhuv7f0bKiqr4KVzw6Nj\n7sPyuY9LnoW5ysuWbD//Nhs/XC1GxIO/u+W2jQvnQaNW47Flf0F1TQ0mjtJjywu3/6Luf2O2JLls\n9Ho9du1KRVW1uUMPf66sqsbJ8/mIWsT39eVgS65vLHu+2dv6eLjji+SEVs/BXOVnS7bjRwah9ujf\nm7zNwd4eSYujkbQ4ulVzMFsCbPieTXBwMGpr63DslLQvcoly7NRp1NXV8UNkmTBX5WK21JlILhu9\nXg9fHx/sOPCJyHlua8dHn8DP15c7rkyYq3IxW+pMJJeNWq1GVHQ03ks/jOLyayJnalZRWTn2ph9B\nVHQ0f9BPJsxVuZgtdSY2pR8REQGVWo3k99NEzdOi5P1pUKnViIgQf1rbXxPmqlzMljoLm8rGzc0N\nMTExeHX3ew2/9NtecvMuIn73XsTExPAkTDJjrsrFbKmzsOlMnUDHns/8Wo0F2Tk5PJ+5AMxVuZgt\ndQY2v4nq6OgIY2oqjp08jdjtu0XMdIvY7buQmXsGxtRU7rSCMFflYrbUGWji4uLibL2Tl5cXnJyc\nsDJxI7o72CNsWICA0eqtfXMvVu3Yg3Xr1mHmzJnCtkPMVcmYLXW0VpUNAISGhsJiscCwfjOqzGaE\nBw2V9WiT2to6LN+WilU79iA2NhbLly+Xbd3UPOaqXMyWOlKrywYAwsPD4eTkhFUbNuPgMRNGDx0M\nd+debR4qN+8ipr20CvvSDyMhIYE7bTtjrsrFbKmj2HyAQFMyMjIQMXcu8vPz8fKcGYie/hDcXZxt\nXk9RWTmS96chfvdeeHt7I3XXLoSEhLR1PGol5qpczJbamyxlA9Qf8WIwGJCUlASrxYIZY+9D5JSJ\nGDnYH47dHZq/X1U1jp06jR0ffYK96UegUqsRExOD1atX84PFToC5KhezpfYkW9ncUFJSAqPRiJTk\nZJy/cAEajQYBft4Iuqc/dFrn+pMomWtQWFqOrDPncPJ8Purq6uDn64uo6GhERETwmPxOiLkqF7Ol\n9iB72dxgsVhgMpkaLtlZWbhaWIiCwgJ46jzhodMhMCgIer2+4cKfs+j8mKtyMVsSSVjZNCUrKwt6\nvR4mk4knyFIQ5qpczJbkwqclREQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCcey\nISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuG\niIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsi\nIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiI\nSDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi\n4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiE\nY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKO\nZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiW\nDRERCceyISIi4VRWq9UqYsUWiwUmkwmZmZkwmUzIyc5GYUEBCq8WQuehg87TE8MDA6HX6xEcHAy9\nXg+1mt3X2TFX5WK2ytRUrqWlpTCbzbC3t4dWq22XXGUvm+LiYhiNRqQkJ+NCXh7s7DQI8PNB4IB+\n8HR1gYN9N1Sba1BQUobss9/j5Pk81NbWwc/XF/OjohAREQE3Nzc5RyIZMFflYrbK1Nlyla1sKisr\nYTAYkJSUBKvFgpljf4vIqRMxcrA/ujvYN3u/qmozjp06jR0HPsF76YehUqsRExOD1atXw9HRUY7R\nqA2Yq3IxW2XqrLnKUjYZGRmImDsX+fn5WDpnJqKmPwh3F2eb11NUVo7k/WmI370X3t7eMKamIjQ0\ntK3jUSsxV+VitsrUmXNt8xtzCQkJCAsLg4uDBlm7tsAQOatVfxwAuLs4Y2XkE8jatQXO9hqEhYUh\nMTGxrSNSKzBX5WK2ytTZc9XExcXFtfbOsbGxiI2NxctzZmLPypfgoXVp0zA3uDv3wtzJ42GuqcHK\nxE2wWCwIDw+XZd10e8xVuZitMnWFXFtdNgkJCYiNjUX8s5EwRM6S/egFtVqNcSMC0d3BHob1m9Gj\nRw++PG8HzFW5mK0ydZVcW/WZTUZGBsLCwrBk9gysiYqweaO2Wpq8E+v27MPRo0cREhIifHu/VsxV\nuZitMnWlXG0um8rKSgwfNgwuDhp8tW09NBqNTRtsjdraOoTNX4xycx1yjh/nES8CMFflYrbK1NVy\ntfn1lsFgQH5+PozLF7fLHwcAdnYaGFcsQn5+PgwGQ7ts89eGuSoXs1WmrparTa9siouL0adPHyyd\nPQOGyFk2D9pWq3bsQfyb+3D58mW4urq2+/aVirkqF7NVpq6Yq02vbIxGI2C1IvqRh1o1YFtFT38I\nVoulfg6SDXNVLmarTF0xV8llY7FYkJKcjBlj7oObc69ml3t117sY9dRz6DV2Ojwn/wHTl6zGmYuX\nGi1TbTbj2YQtcJ84Az3HPozHlv0ZV0vLbzuDu4szZoy9DynJybBYLFJHpxY0l+uqHXugCZ3U6BLw\n+LyG223JsPTaT/Ca+gTsRk/G9YqKW25nrmK09Jj9+ZdK/GnjNvg+PAdOD0zDfc8sQmbumYbbKyqr\nsCBxK/pOewJOD0zDkD/Ow+sffNxoHVL2AWYrv5ZyPZJzAtNeXIk+U2ZBEzoJB4583ex6nonfDE3o\nJLy298NG15dd/wlPrFwL53HTof3do3h6zUZUVFY1WqY1uUouG5PJhAt5eYicOrHF5b46fhILHpuK\nf+7YhM9eexU1tbWYsHAZKquqG5b506bX8feMY/jfNSvwZXICrhSV4NFlr0iaI3LKRJy/cAEmk0nq\n6NSClnId4ueNgo/fwY9p9Zcj29Y33GZLhk+v2YjhA/xanIO5yq+lbJ9esxH/yMzBnrgl+Ndb2zBu\nZBDGP7cUPxaXAACe3/w6PjuWhbdWvYzcd/+KhTMfRsz6ZKR99U3DOqTuA8xWXi3lWlFZhWED+mHL\nC89CpVI1u44Pv8zAt6fO4G73W98Cm7VyLXLzLuLzpHikJa7GkZwTmL928y3L2Zqr5LLJzMyEnZ0G\nIwf7t7jcxxtewexJ4zDIpy/u7e8LY+xiXCwsgun0WQDA9YoKGNM+xYaFz+D+oKEI9O+PnSsW4eh3\np3Ds5OnbzjFysD80Gg13XJm0lKudRgN3F2d4aOsv2l53ArAtw5T9abhWUYFFf3ykxTmYq/yay7aq\n2oz9h45i3YKnMXpYAPzuvgsrI59A/z69kbK//tXLP/+VizmTx+G+4UPQ19MD/zNtEoYN8MOxU/X5\n2rIPMFt5tfSYnRgSjNXz5uD394eiuY/jL18txsKNKXhr9RLY3XRgwb/zfsDBb0x4Y9nzCB50D0KH\nDsZri6Lw7udfoqCktNGytuZq0yubAD+fFn/IrSnlP1VApVJB27P+HyrTv8+htq4OY0cMb1jG39sL\nfXXu+PpE7m3X59jdAQF+3txxZdJSrmcvXUGfKbPQ/9EIzI5bix8Ki+rvIzHDUxfy8RfjO9hteBHq\nFp5lAcxVhOayra2rQ53FAgf7bo2ud3Swx9HvTgIAQu4dhI+O/BNXiupf6XxhOo6zP1zGhFH6+nXb\n8DhmtvJq7b/FAGC1WvHk6kS8OOsxDPLpe8vtX5/IhcudPRDo37/hunEjAqGCCt/c9CTC1lztpA6Z\nk52NwAH9pC4OoP4Pe37TNoQNDcBgX28AQEFJKezt7NDTyanRsjqtyy3N2Zyge/ojOyvLplmoac3l\n+puAgTCuWAz/vn3wY0kpVr2xB/dHvYB/vfW6pAzNNTWYtXItEmKext0ebjh36cptZ2Gu8mou2x53\nOCJkyCD82fg2Bnr3gU7rgrc//QJfn8jFgD53AwCSFkfjmfjN8Jr2BOw0GmjUamxfuhCjhwUAsP1x\nzGzl05p/i2+I3/0e7LvZYcFjU5u8vaCkFB43/Z6aRqOBtuedbc5VctmUlpbCc8gAqYsDAKITtuBU\n3sVG7/U3x2q1tvge43/TaZ2RnnMSWdx526ywoADjm8h1wm+CG/57SD8fjBzsD5+H52Bv+mF0v+kZ\n8Q3/neHLyTsx2KcvHv9d/e8oWWH9zzLNz8Jc5dVctgDwZtxLiPzLBvSZWl8mQf798cfx4cg6cw4A\n8Nrev+Gbk6fxUeIq9NV54HDOv/Bswlb0dnPFmODhTa4TaP5xzGzl01KuLTH9+yyS9v0NWbu22nxf\nK5rP9fCpM03c41aSy8ZsNt/ysrslCxK34v++/haHUxLR+78+hPJ01cJcW4vrFRWNnhVdLSuHTuKP\nxznYd0NBYQH0er3keahp3ew0knLt1cMJ93jdjXOXrmDciMDbZnjI9B1OnM/Dvn8cAVC/s1qtVnhM\nmollc/+AlZFP3LIN5iqvlrL17e2Jf2xdh8qqalz/5RfotC54PPZV+N7liapqM1a8vgsfrl2JiSH1\nTzqG9PNB9pnvsf7t9zEmeLjNj2NmKx+pj9mbfXX8JIrKr6HvtNkN19VZLFj82nZsfu9DfP9+Kjxd\ntbha1viIwrq6OpRd/7nZXKurzZK2L7ls7O3tUW2ukbTsgsStOHDkaxxKTkBfT49Gt+kH9oedRoP0\nb3Pw8AOjAQBnLl7CxcIihAwZJGn91eYaeOo88eGBA1LHp2ZMmzJFUq4//1KJ7y//iDlu2hYzDL23\nPsP342NRWf3/j0A8duo0nl6zCUe2rYff3Z5NboO5yktKto7dHeDY3QFl13/CwW9MSFjwNGpqa1FT\nW4ubn8hq1OqGw1xtfRwzW/lIfczebM6ksRg/MrDRdRMWLsfsSWMR8dDvAAAhQwah/OcKZJ8+1/C5\nTXpmDqywYlTArQckVJtr4CDxsyPJZaPValFQUnbb5aITtuDdzw7hb+vi4OTYHYWl9ffp5eSE7g72\n6OnkhKemTMDi17bDpWcP3HnHHVi4IQWjhw7GyCb+mKYUlpbDQ6dDUFCQ1PGpGTpPzyZzfTHpr5gS\n9ht4e3rgclEJ4t54E3YaDf4w/oEWMxzxnyNkfHs3LpSismuwWq0Y6NPnlvf5b2Cu8mouWwD49BsT\nrFYr/L374OwPV7Bkyw4M8vbC3AfHQ6PR4P7Ae/HSljfQ3d4e3nd54FDWd3jz/9Kx8U/PAIDNj2Nm\nK5+Wcq2orMK5S1cajkQ7f7kAx8+eh7bnnfDSucPlPwdq3dDNTgNPVxcM8Kr/rG6gjxcmjNJjXvxm\nJL+4AOaaWjy3IRmPj38Anq7aW7ZXWFoOF5dbr2+K5LIZHhiIzCOHbrvc6x98DJVKhfBnX2p0/c7l\nizBn8jgAwMaF86BRq/HYsr+guqYGE0fpseWFBVJHQdaZcxh5/xjJy1Pzmsv1clExZq1ci5Jr1+Hu\n0gthQwPw9Rub4NqrJ4DWZXi7z+SYq7xaesxe+7kCy1KMuFxUAm3PO/HImDD8ed6TDb+x9e4ry7A0\nZSdmr1qH0us/wdtThzVREZj3+8kN67BlH2C28mkp18zcMxizYAlUKhVUKhVeSPorAGDOpHHYuWLR\nLcs39Zh8a9USxKzfivHPLYVarcYj4WHY/Pz8JrdnS66SfxstJSUFzz0Xg+uff9CqQ+7kUllVjZ7j\npmPLli2YP7/p/wEkHXNVLmarTF01V8nfswkODkZtbV3Dl7o6yrFTp1FXV8cPGmXCXJWL2SpTV81V\nctno9Xr4+vhgx4FPWj2cHHZ89An8fH2548qEuSoXs1Wmrpqr5LJRq9WIio7Ge+mHUVx+rdUDtkVR\nWTn2ph9BVHS07Kc+/bVirsrFbJWpq+ZqU/oRERFQqdVIfj+tVQO2VfL+NKjUakREiD/96a8Jc1Uu\nZqtMXTFXm8rGzc0NMTExeHX3e8jNu2jzgG2Rm3cR8bv3IiYmhidhkhlzVS5mq0xdMVebztQJdOx5\nr6/VWJCdk8PzmQvAXJWL2SpTV8vV5jdRHR0dYUxNxbGTpxG7fbetd2+V2O27kJl7BsbUVO60gjBX\n5WK2ytTVctXExcXF2bpBLy8vODk5YWXiRnR3sEfYf34JVoS1b+7Fqh17sG7dOsycOVPYdoi5Khmz\nVaaulGurygYAQkNDYbFYYFi/GVVmM8KDhsp6tEltbR2Wb0vFqh17EBsbi+XLl8u2bmoec1UuZqtM\nXSXXVpcNAISHh8PJyQmrNmzGwWMmjB46GO43nRO7NXLzLmLaS6uwL/0wEhISuNO2M+aqXMxWmbpC\nrjYfINCUjIwMRMydi/z8fLw8Zwaipz8E95tOwCNFUVk5kvenIX73Xnh7eyN11y6EhIS0dTxqJeaq\nXMxWmTpzrrKUDVB/ZITBYEBSUhKsFgtmjL0PkVMmYuRgfzh2d2j+flXVOHbqNHZ89An2ph+BSq1G\nTEwMVq9ezQ8WOwHmqlzMVpk6a66ylc0NJSUlMBqNSElOxvkLF6DRaBDg542ge/pDp3WuP9mOuQaF\npeXIOnMOJ8/no66uDn6+voiKjkZERASPye+EmKtyMVtl6my5yl42N1gsFphMpoZLdlYWrhYWoqCw\nAJ46T3jodAgMCoJer2+48OcsOj/mqlzMVpk6S67CyqYpWVlZ0Ov1MJlMPImSgjBX5WK2ytQRufJp\nCRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2\nREQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQ\nEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNE\nRMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRER\nCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQk\nHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFw\nLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKx\nbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCaey\nWq1WESu2WCwwmUzIzMyEyWRCTnY2CgsKUHi1EDoPHXSenhgeGAi9Xo/g4GDo9Xqo1ey+zo65Khez\nVabOkqvsZVNcXAyj0YiU5GRcyMuDnZ0GAX4+CBzQD56uLnCw74Zqcw0KSsqQffZ7nDyfh9raOvj5\n+mJ+VBQiIiLg5uYm50gkA+aqXMxWmTpbrrKVTWVlJQwGA5KSkmC1WDBz7G8ROXUiRg72R3cH+2bv\nV1VtxrFTp7HjwCd4L/0wVGo1YmJisHr1ajg6OsoxGrUBc1UuZqtMnTVXWcomIyMDEXPnIj8/H0vn\nzETU9Afh7uJs83qKysqRvD8N8bv3wtvbG8bUVISGhrZ1PGol5qpczFaZOnOubX5jLiEhAWFhYXBx\n0CBr1xYYIme16o8DAHcXZ6yMfAJZu7bA2V6DsLAwJCYmtnVEagXmqlzMVpk6e66auLi4uNbeOTY2\nFrGxsXh5zkzsWfkSPLQubRrmBnfnXpg7eTzMNTVYmbgJFosF4eHhsqybbo+5KhezVaaukGuryyYh\nIQGxsbGIfzYShshZsh+9oFarMW5EILo72MOwfjN69OjBl+ftgLkqF7NVpq6Sa6s+s8nIyEBYWBiW\nzJ6BNVERNm/UVkuTd2Ldnn04evQoQkJChG/v14q5KhezVaaulKvNZVNZWYnhw4bBxUGDr7ath0aj\nsWmDrVFbW4ew+YtRbq5DzvHjPOJFAOaqXMxWmbparja/3jIYDMjPz4dx+eJ2+eMAwM5OA+OKRcjP\nz4fBYGiXbf7aMFflYrbK1NVytemVTXFxMfr06YOls2fAEDnL5kHbatWOPYh/cx8uX74MV1fXdt++\nUjFX5WK0rFQVAAAYuElEQVS2ytQVc7XplY3RaASsVkQ/8lCrBmyr6OkPwWqx1M9BsmGuysVslakr\n5iq5bCwWC1KSkzFjzH1wc+7V7HKv7noXo556Dr3GTofn5D9g+pLVOHPxUqNlqs1mPJuwBe4TZ6Dn\n2Ifx2LI/42pp+W1ncHdxxoyx9yElORkWi0Xq6NSC5nJdtWMPNKGTGl0CHp/XcLstGZZe+wleU5+A\n3ejJuF5RccvtzFWMlh6zP/9SiT9t3Abfh+fA6YFpuO+ZRcjMPdNwe0VlFRYkbkXfaU/A6YFpGPLH\neXj9g48brUPKPsBs5ddSrkdyTmDaiyvRZ8osaEIn4cCRr5tdzzPxm6EJnYTX9n7Y6Pqy6z/hiZVr\n4TxuOrS/exRPr9mIisqqRsu0JlfJZWMymXAhLw+RUye2uNxXx09iwWNT8c8dm/DZa6+iprYWExYu\nQ2VVdcMyf9r0Ov6ecQz/u2YFvkxOwJWiEjy67BVJc0ROmYjzFy7AZDJJHZ1a0FKuQ/y8UfDxO/gx\nrf5yZNv6httsyfDpNRsxfIBfi3MwV/m1lO3TazbiH5k52BO3BP96axvGjQzC+OeW4sfiEgDA85tf\nx2fHsvDWqpeR++5fsXDmw4hZn4y0r75pWIfUfYDZyqulXCsqqzBsQD9seeFZqFSqZtfx4ZcZ+PbU\nGdztfutbYLNWrkVu3kV8nhSPtMTVOJJzAvPXbr5lOVtzlVw2mZmZsLPTYORg/xaX+3jDK5g9aRwG\n+fTFvf19YYxdjIuFRTCdPgsAuF5RAWPap9iw8BncHzQUgf79sXPFIhz97hSOnTx92zlGDvaHRqPh\njiuTlnK102jg7uIMD239RdvrTgC2ZZiyPw3XKiqw6I+PtDgHc5Vfc9lWVZux/9BRrFvwNEYPC4Df\n3XdhZeQT6N+nN1L21796+ee/cjFn8jjcN3wI+np64H+mTcKwAX44dqo+X1v2AWYrr5YesxNDgrF6\n3hz8/v5QNPdx/OWrxVi4MQVvrV4Cu5sOLPh33g84+I0Jbyx7HsGD7kHo0MF4bVEU3v38SxSUlDZa\n1tZcbXplE+Dn0+IPuTWl/KcKqFQqaHvW/0Nl+vc51NbVYeyI4Q3L+Ht7oa/OHV+fyL3t+hy7OyDA\nz5s7rkxayvXspSvoM2UW+j8agdlxa/FDYVH9fSRmeOpCPv5ifAe7DS9C3cKzLIC5itBctrV1daiz\nWOBg363R9Y4O9jj63UkAQMi9g/DRkX/iSlH9K50vTMdx9ofLmDBKX79uGx7HzFZerf23GACsViue\nXJ2IF2c9hkE+fW+5/esTuXC5swcC/fs3XDduRCBUUOGbm55E2JqrndQhc7KzETign9TFAdT/Yc9v\n2oawoQEY7OsNACgoKYW9nR16Ojk1WlandbmlOZsTdE9/ZGdl2TQLNa25XH8TMBDGFYvh37cPfiwp\nxao39uD+qBfwr7del5ShuaYGs1auRULM07jbww3nLl257SzMVV7NZdvjDkeEDBmEPxvfxkDvPtBp\nXfD2p1/g6xO5GNDnbgBA0uJoPBO/GV7TnoCdRgONWo3tSxdi9LAAALY/jpmtfFrzb/EN8bvfg303\nOyx4bGqTtxeUlMLjpt9T02g00Pa8s825Si6b0tJSeA4ZIHVxAEB0whacyrvY6L3+5lit1hbfY/xv\nOq0z0nNOIos7b5sVFhRgfBO5TvhNcMN/D+nng5GD/eHz8BzsTT+M7jc9I77hvzN8OXknBvv0xeO/\nq/8dJSus/1mm+VmYq7yayxYA3ox7CZF/2YA+U+vLJMi/P/44PhxZZ84BAF7b+zd8c/I0Pkpchb46\nDxzO+ReeTdiK3m6uGBM8vMl1As0/jpmtfFrKtSWmf59F0r6/IWvXVpvva0XzuR4+daaJe9xKctmY\nzeZbXna3ZEHiVvzf19/icEoiev/Xh1CerlqYa2txvaKi0bOiq2Xl0En88TgH+24oKCyAXq+XPA81\nrZudRlKuvXo44R6vu3Hu0hWMGxF42wwPmb7DifN52PePIwDqd1ar1QqPSTOxbO4fsDLyiVu2wVzl\n1VK2vr098Y+t61BZVY3rv/wCndYFj8e+Ct+7PFFVbcaK13fhw7UrMTGk/knHkH4+yD7zPda//T7G\nBA+3+XHMbOUj9TF7s6+On0RR+TX0nTa74bo6iwWLX9uOze99iO/fT4WnqxZXyxofUVhXV4ey6z83\nm2t1tVnS9iWXjb29ParNNZKWXZC4FQeOfI1DyQno6+nR6Db9wP6w02iQ/m0OHn5gNADgzMVLuFhY\nhJAhgyStv9pcA0+dJz48cEDq+NSMaVOmSMr1518q8f3lHzHHTdtihqH31mf4fnwsKqv//xGIx06d\nxtNrNuHItvXwu9uzyW0wV3lJydaxuwMcuzug7PpPOPiNCQkLnkZNbS1qamtx8xNZjVrdcJirrY9j\nZisfqY/Zm82ZNBbjRwY2um7CwuWYPWksIh76HQAgZMgglP9cgezT5xo+t0nPzIEVVowKuPWAhGpz\nDRwkfnYkuWy0Wi0KSspuu1x0wha8+9kh/G1dHJwcu6OwtP4+vZyc0N3BHj2dnPDUlAlY/Np2uPTs\ngTvvuAMLN6Rg9NDBGNnEH9OUwtJyeOh0CAoKkjo+NUPn6dlkri8m/RVTwn4Db08PXC4qQdwbb8JO\no8Efxj/QYoYj/nOEjG/vxoVSVHYNVqsVA3363PI+/w3MVV7NZQsAn35jgtVqhb93H5z94QqWbNmB\nQd5emPvgeGg0GtwfeC9e2vIGutvbw/suDxzK+g5v/l86Nv7pGQCw+XHMbOXTUq4VlVU4d+lKw5Fo\n5y8X4PjZ89D2vBNeOne4/OdArRu62Wng6eqCAV71n9UN9PHChFF6zIvfjOQXF8BcU4vnNiTj8fEP\nwNNVe8v2CkvL4eJy6/VNkVw2wwMDkXnk0G2Xe/2Dj6FSqRD+7EuNrt+5fBHmTB4HANi4cB40ajUe\nW/YXVNfUYOIoPba8sEDqKMg6cw4j7x8jeXlqXnO5Xi4qxqyVa1Fy7TrcXXohbGgAvn5jE1x79QTQ\nugxv95kcc5VXS4/Zaz9XYFmKEZeLSqDteSceGROGP897suE3tt59ZRmWpuzE7FXrUHr9J3h76rAm\nKgLzfj+5YR227APMVj4t5ZqZewZjFiyBSqWCSqXCC0l/BQDMmTQOO1csumX5ph6Tb61agpj1WzH+\nuaVQq9V4JDwMm5+f3+T2bMlV8m+jpaSk4LnnYnD98w9adcidXCqrqtFz3HRs2bIF8+c3/T+ApGOu\nysVslamr5ir5ezbBwcGora1r+FJXRzl26jTq6ur4QaNMmKtyMVtl6qq5Si4bvV4PXx8f7DjwSauH\nk8OOjz6Bn68vd1yZMFflYrbK1FVzlVw2arUaUdHReC/9MIrLr7V6wLYoKivH3vQjiIqOlv3Up79W\nzFW5mK0yddVcbUo/IiICKrUaye+ntWrAtkrenwaVWo2ICPGnP/01Ya7KxWyVqSvmalPZuLm5ISYm\nBq/ufg+5eRdtHrAtcvMuIn73XsTExPAkTDJjrsrFbJWpK+Zq05k6gY497/W1Gguyc3J4PnMBmKty\nMVtl6mq52vwmqqOjI4ypqTh28jRit++29e6tErt9FzJzz8CYmsqdVhDmqlzMVpm6Wq6auLi4OFs3\n6OXlBScnJ6xM3IjuDvYI+88vwYqw9s29WLVjD9atW4eZM2cK2w4xVyVjtsrUlXJtVdkAQGhoKCwW\nCwzrN6PKbEZ40FBZjzapra3D8m2pWLVjD2JjY7F8+XLZ1k3NY67KxWyVqavk2uqyAYDw8HA4OTlh\n1YbNOHjMhNFDB8P9pnNit0Zu3kVMe2kV9qUfRkJCAnfadsZclYvZKlNXyNXmAwSakpGRgYi5c5Gf\nn4+X58xA9PSH4H7TCXikKCorR/L+NMTv3gtvb2+k7tqFkJCQto5HrcRclYvZKlNnzlWWsgHqj4ww\nGAxISkqC1WLBjLH3IXLKRIwc7A/H7g7N36+qGsdOncaOjz7B3vQjUKnViImJwerVq/nBYifAXJWL\n2SpTZ81VtrK5oaSkBEajESnJyTh/4QI0Gg0C/LwRdE9/6LTO9SfbMdegsLQcWWfO4eT5fNTV1cHP\n1xdR0dGIiIjgMfmdEHNVLmarTJ0tV9nL5gaLxQKTydRwyc7KwtXCQhQUFsBT5wkPnQ6BQUHQ6/UN\nF/6cRefHXJWL2SpTU7mWlZWiutoMBwd7uLho2yVXYWXTlKysLOj1ephMJp5ESUGYq3IxW5ILn5YQ\nEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNE\nRMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRER\nCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQk\nHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFw\nLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKx\nbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCcey\nISIi4Vg2REQkHMuGiIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuG\niIiEY9kQEZFwLBsiIhKOZUNERMKxbIiISDiWDRERCceyISIi4Vg2REQkHMuGiIiEU1mtVquIFVss\nFphMJmRmZsJkMiEnOxuFBQUovFoInYcOOk9PDA8MhF6vR3BwMPR6PdRqdl9nx1yVi9mSSLKXTXFx\nMYxGI1KSk3EhLw92dhoE+PkgcEA/eLq6wMG+G6rNNSgoKUP22e9x8nweamvr4Ofri/lRUYiIiICb\nm5ucI5EMmKtyMVtqD7KVTWVlJQwGA5KSkmC1WDBz7G8ROXUiRg72R3cH+2bvV1VtxrFTp7HjwCd4\nL/0wVGo1YmJisHr1ajg6OsoxGrUBc1UuZkvtSZayycjIQMTcucjPz8fSOTMRNf1BuLs427yeorJy\nJO9PQ/zuvfD29oYxNRWhoaFtHY9aibkqF7Ol9tbmN1wTEhIQFhYGFwcNsnZtgSFyVqt2WgBwd3HG\nysgnkLVrC5ztNQgLC0NiYmJbR6RWYK7KxWypI2ji4uLiWnvn2NhYxMbG4uU5M7Fn5Uvw0LrIMpS7\ncy/MnTwe5poarEzcBIvFgvDwcFnWTbfHXJWL2VJHaXXZJCQkIDY2FvHPRsIQOUv2o1LUajXGjQhE\ndwd7GNZvRo8ePfjyvB0wV+VittSRWvWZTUZGBsLCwrBk9gysiYoQMVcjS5N3Yt2efTh69ChCQkKE\nb+/XirkqF7OljmZz2VRWVmL4sGFwcdDgq23rodFoRM3WoLa2DmHzF6PcXIec48d5xIsAzFW5mC11\nBja/jjYYDMjPz4dx+eJ22WkBwM5OA+OKRcjPz4fBYGiXbf7aMFflYrbUGdj0yqa4uBh9+vTB0tkz\nYIicJXKuJq3asQfxb+7D5cuX4erq2u7bVyrmqlzMljoLm17ZGI1GwGpF9CMPiZqnRdHTH4LVYqmf\ng2TDXJWL2VJnIfmVjcViQf9+/RA2sB92rXxR9FzNmrNqHTJOX8DZc+f4u0wysCXXbfs/xrYP0pD3\nYyEAIMDXG7FPzcLEkGAAQHj0izicc6JheZVKhXm/n4zkFxfcdg7mKj+p2fpNfxL5BVdvuT76kSlI\nWhyNarMZizZvx970w6iuqcGEUXpsfWEBPLTSvpvDbAmw4ZWNyWTChbw8RE6dKHKe24qcMhHnL1yA\nyWTq0DmUwpZcvXRuiI+ORKZxCzKNWxAePAy/X7IKuXkXAdSXy/9Mm4SCj9/Bj2nv4MpHb2Pds5GS\n5mCu8pOa7bfGJPyY9k7D5dPNa6BSqTBj7G8BAH/a9Dr+nnEM/7tmBb5MTsCVohI8uuwVyXMwWwJs\nKJvMzEzY2WkwcrC/yHlua+Rgf2g0Gu64MrEl1wdHj8LEkGD09+qN/l698edn5qKHY3f888S/G5a5\no7sD3F2c4aGtv/S4Q9pRSMxVflKzde3VsyEvD60zPvrqG/S7+y7cN3wIrldUwJj2KTYsfAb3Bw1F\noH9/7FyxCEe/O4VjJ09LmoPZEmDjK5sAP58Wf6CvPTh2d0CAnzd3XJm0NleLxYJ3PzuEX6qqEXrv\noIbr3z74BTwmzcTQWfOxLMWIyqpqSetjrvJrTbY1tbV4+9Mv8NSUCQCAzNyzqK2rw9gRwxuW8ff2\nQl+dO74+kStpncyWAMBO6oI52dkIHNBP5CySBd3TH9lZWR09hiLYmuuJ7/MQOu95VFWbcecdjtgf\nb4C/txcA4I8TwuHtqUNvNy2+O3cBS7buwNkfLmPfmhWS1s1c5dWax+wHhzJw7ecKPDl5HACgsLQM\n9nZ26Onk1Gg5ndYFBSWlktfLbEly2ZSWlsJzyACRs0im0zojPecksrjztllhQQHG25DrQG8v5OxO\nRvnPP+P9L47iyVcS8GVyIgb6eOHpqZMalgvw84Gnqxbjn1uKC1cK4Nvb87brZq7ysjVbADCmHcSk\nkGB4umpbXM5qtUKlUkler07rjMOnztg0CymL5LIxm81wsO8mchbJHOy7oaCwAHq9vqNH6fK62Wls\nytXOTgO/u+8CAAT5D8C3p05j894PkfJSzC3Ljgrwh9VqxblLVySVDXOVl63ZXiy4is8zs/FB/MqG\n6zxdtTDX1uJ6RUWjVzdXy8qhs+FHPB3su6G62ix5eVIeyWVjb2+PanONyFkkqzbXwFPniQ8PHOjo\nUbq8aVOmtClXi8Xa7P2zT38PlUqFu27zLPkG5iovW7PdmXYQOhcXTA4d0XCdfmB/2Gk0SP82Bw8/\nMBoAcObiJVwsLELIkEHNreoW1eYaOHTw573UsSSXjVarRUFJmchZJCssLYeHToegoKCOHqXL03l6\nSs51+bZUTAoJhpeHO376pRJvHfwHvsz5Dgc3rcH5yz/i7U+/wOTQEXDt2RPHz53H4s3bcX/gvRjS\nz0fS+pmrvGzJ1mq1YtfHn+HJB8c3+i5MTycnPDVlAha/th0uPXvgzjvuwMINKRg9dDBGBkg/MrWw\ntBwuLtKedJAySS6b4YGByDxySOAo0mWdOYeR94/p6DEUwZZcC0vL8OTqRPxYXIpePZwwtL8vDm5a\ngzHBw3HpahHSv83Ga3v/horKKnjp3PDomPuwfO7jkmdhrvKyJdvPv83GD1eLEfHg7265bePCedCo\n1Xhs2V9QXVODiaP02PLC7b+o+9+YLUkuG71ej127UlFVbe7Qw58rq6px8nw+ohbxfX052JLrG8ue\nb/a2Ph7u+CI5odVzMFf52ZLt+JFBqD369yZvc7C3R9LiaCQtjm7VHMyWABu+ZxMcHIza2jocOyXt\ni1yiHDt1GnV1dfwQWSbMVbmYLXUmkstGr9fD18cHOw58InKe29rx0Sfw8/XljisT5qpczJY6E8ll\no1arERUdjffSD6O4/JrImZpVVFaOvelHEBUdzR/0kwlzVS5mS52JTelHRERApVYj+f00UfO0KHl/\nGlRqNSIixJ/W9teEuSoXs6XOwqaycXNzQ0xMDF7d/V7DL/22l9y8i4jfvRcxMTE8CZPMmKtyMVvq\nLGw6UyfQseczv1ZjQXZODs9nLgBzVS5mS52BzW+iOjo6wpiaimMnTyN2+24RM90idvsuZOaegTE1\nlTutIMxVuZgtdQaauLi4OFvv5OXlBScnJ6xM3IjuDvYIGxYgYLR6a9/ci1U79mDdunWYOXOmsO0Q\nc1UyZksdrVVlAwChoaGwWCwwrN+MKrMZ4UFDZT3apLa2Dsu3pWLVjj2IjY3F8uXLZVs3NY+5Khez\npY7U6rIBgPDwcDg5OWHVhs04eMyE0UMHw925V5uHys27iGkvrcK+9MNISEjgTtvOmKtyMVvqKDYf\nINCUjIwMRMydi/z8fLw8Zwaipz8Edxdnm9dTVFaO5P1piN+9F97e3kjdtQshISFtHY9aibkqF7Ol\n9iZL2QD1R7wYDAYkJSXBarFgxtj7EDllIkYO9odjd4fm71dVjWOnTmPHR59gb/oRqNRqxMTEYPXq\n1fxgsRNgrsrFbKk9yVY2N5SUlMBoNCIlORnnL1yARqNBgJ83gu7pD53Wuf4kSuYaFJaWI+vMOZw8\nn4+6ujr4+foiKjoaERERPCa/E2KuysVsqT3IXjY3WCwWmEymhkt2VhbKykpRXW2Gg4M9XFy0CAwK\ngl6vb7jw5yw6P+aqXMyWRBJWNkRERDfwaQkREQnHsiEiIuFYNkREJBzLhoiIhGPZEBGRcCwbIiIS\njmVDRETCsWyIiEi4/wcewpIzN9FsHgAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 35 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUIAAAGbCAYAAACxnJl7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XtcVHX+P/DXzMAAoQbDZahVuai5iakwSAtShtqGJlm2\nyW8zyVm2EowuapoXRqG2DLAyEMsWB8xti7a2VdvcdvnWalIhA+imLkpcLA2UW+2ywAAzvz9YWYFR\nzsAckDmv5+PB41HDmc+8fTHz4nDOXGRms9kMIiIJkw/3AEREw41FSESSxyIkIsljERKR5LEIiUjy\nWIREJHksQiKSPBYhEUkei5CIJM9BrIVNJhMMBgOKiopgMBhQWlKChoYGGI1GKJVKqFQqzAgKgkaj\nQUhICDQaDeRy9rI1mDGRbchs/RK7uro66PV67MzKQmVVFRwcFAgM8EPQpAnw8XCHk9IRbcZ21NQ3\nouTMNzhRUYWOjk4E+PtjRXw8tFotPD09bTmS3WHGRLZlsyJsaWmBTqdDRkYGzCYTYubejrh7ohA6\nZTKcnZRXvF5rmxGFJ8uQve8g3s0/BJlcjsTERKSkpMDFxcUWo9kNZkwkDpsUYUFBAbTLl6O6uhrr\nY2MQv/hueLm7Wb3OxcYmZH1wAFv35MHX1xf6nByEh4cPdjy7wIyJxDPoA0ZpaWmIiIiAu5MCxbmZ\n0MUtHdADFAC83N2wOe4hFOdmwk2pQEREBNLT0wc74ojHjInEpdiyZcuWgV45KSkJSUlJeDY2Bns3\nr4W3yt0mQ3m5XY/lC+6Esb0dm9NfhclkQmRkpE3WHmmYMZH4BlyEaWlpSEpKwtaVcdDFLbX52Ui5\nXI55M4Pg7KSEbtt2jBo1SnJ/wjFjoqExoGOEBQUFiIiIwLplS/BCvFaMuXpYn7UbqXvfw5EjRxAW\nFib67V0LmDHR0LG6CFtaWjBj+nS4Oynw+evboFAoxJqtW0dHJyJWrEaTsROlx47Z/ZlOZkw0tKz+\nW0un06G6uhr6jauH5AEKAA4OCug3rUJ1dTV0Ot2Q3OZwYsZEQ8uqPcK6ujqMHTsW65ctgS5uqZhz\nWZScvRdb33oP586dg4eHx5Df/lBgxkRDz6o9Qr1eD5jNSLh/oVjzXFXC4oUwm0xdc9gpZkw09AQX\noclkws6sLCyZcxs83a4Xc6Yr8nJ3w5K5t2FnVhZMJtOwzCAmoRkfLv0ai57ZjLHRS6EIn499h7/o\ns41u1x78JPpBuN6xCD9/Yj3Kvz0vaAZ7z5jIEsFFaDAYUFlVhbh7osScp19x0VGoqKyEwWAY1jnE\nIDTj5pZWTJ80AZlrVkImk/X5/ktv5WHHH/bh9bVP4Kvs7XB1cUbU0xthbG8XNIc9Z0xkieAiLCoq\ngoODAqFTJos5T79Cp0yGQqGwywep0IyjwkKQ8mgs7p0dDkuHeF/L+xCbtA8i+rafYeoEP+Tq1uD8\nxXp8+Pe+e46W2HPGRJZYtUcYGOB31Rf3DwUXZycEBvja5YPUFhlXnq9BTX0j5s6c0X3ZGFdX3Bo4\nGV98fUrQGvacMZElgouwtKQEQZMmiDmLYME3TURJcfFwj2Fztsi4pr4BMpkM6l4vxVOr3FHb0CB4\nHXvNmMgSwW/M2tDQAJ+pk8ScRTC1yg35pSdQbGcP1NqaGtwpUsZmsxkyK54koFa54dDJ06LMQnSt\nEVyERqMRTkpHMWcRzEnpiJraGmg0muEexaYcHRSDztjHQwWz2YzahsYee4UXGpsw46aJgtdxUjqi\nrc04qFmIRgrBRahUKtFmFHbWUWxtxnb4qH3w4b59wz2KTS2Kjh50xv43+sDHwx35R0sxbWIAAODH\n5mZ8daIMCfdHC16nzdgOp2E+Hkw0VAQXoUqlQk19o5izCFbb0ARvtRrBwcHDPYpNqX18BGXc3NKK\n8u/Od58xrjhXg2NnKqAaMxrj1F54MuY+/Cbn95g49kb43aCG7s09GOvtiUW3C38zhdqGJri7qwb8\nbyEaSQQX4YygIBQd/kzEUYQrPl2O0NlzhnsMmxOacdGp05jz+DrIZDLIZDKsyXgTABA7fx52b1qF\ntQ89gP+0tmJF6mto+lczbpsRiD+//DyUjsL/7LbXjIksEVyEGo0Gubk5aG0zDutTaFpa23Ciohrx\nq+zr+CAgPOPZwdPQWfDxVdfa8utl2PLrZQOaw54zJrJE8GnEkJAQdHR0ovBkmZjz9KvwZBk6Ozvt\n7kQJwIyJhovgItRoNPD380P2voNiztOv7P0HEeDvb5cPUmZMNDwEF6FcLkd8QgLezT+EuqYfxJzp\nii42NiEv/zDiExLs8oPKmTHR8LDqnq7VaiGTy5H1/gGx5rmqrA8OQCaXQ6sV/63rhwszJhp6VhWh\np6cnEhMT8eKed3Gq6qxYM1l0quostu7JQ2Jiol2/YSgzJhp6I+ozS35oN6GktNTuP0+DGRMNLasP\nArm4uECfk4PCE2VI2rVHjJn6SNqVi6JTp6HPyZHEA5QZEw2tAX2u8bhx4+Dq6orN6a/A2UmJiOmB\nIozW5aW38pCcvRepqamIiYkR7XauNcyYaOgM+APew8PDYTKZoNu2Ha1GIyKDp9n0LGNHRyc2vp6D\n5Oy9SEpKwsaNG2229kjBjImGxoA+4P1yaWlpWLduHUIDJ2P3xlW42W/8oIc6VXUW2udfxtGTZUhN\nTcWaNWsGveZIxoyJxDXoIgSAgoICaJcvR3V1NZ6NXYKExQvh5e5m9ToXG5uQ9cEBbN2TB19fX+Tk\n5iIsTPgbBdgzZkwkHpsUIdB1plOn0yEjIwNmkwlL5t6GuOgohE6ZDBdnpytfr7UNhSfLkL3/IPLy\nD0MmlyMxMREpKSk8aN8LMyYSh82K8JL6+nro9XrszMpCRWUlFAoFAgN8EXzTRKhVbl1v+GlsR21D\nE4pPl+NERTU6OzsR4O+P+IQEaLVaPoetH8yYyLZsXoSXmEwmGAyG7q+S4mJcqK1FTW0NfNQ+8Far\nERQcDI1G0/3Fl3RZhxkT2YZoRWhJcXExNBoNDAaD3b2p6rWCGRNZj7sHRCR5LEIikjwWIRFJHouQ\niCSPRUhEksciJCLJYxESkeSxCIlI8liERCR5LEIikjwWIRFJHouQiCSPRUhEksciJCLJYxESkeSx\nCIlI8liERCR5LEIikjwWIRFJHouQiCSPRUhEksciJCLJYxESkeSxCIlI8liERCR5LEIikjwWIRFJ\nHouQiCSPRUhEksciJCLJYxESkeSxCIlI8liERCR5LEIikjwWIRFJHouQiCSPRUhEksciJCLJYxES\nkeSxCIlI8liERCR5LEIikjwWIRFJHouQiCSPRUhEksciJCLJYxESkeSxCIlI8liERCR5LEIikjyZ\n2Ww2i7GwyWSCwWBAUVERDAYDSktKUFtTg9oLtVB7q6H28cGMoCBoNBqEhIRAo9FALmcvW4MZi89S\nxg0NDTAajVAqlVCpVMzYDti8COvq6qDX67EzKwuVVVVwcFAgMMAPQZMmwMfDHU5KR7QZ21FT34iS\nM9/gREUVOjo6EeDvjxXx8dBqtfD09LTlSHaHGYuPGUuLzYqwpaUFOp0OGRkZMJtMiJl7O+LuiULo\nlMlwdlJe8XqtbUYUnixD9r6DeDf/EGRyORITE5GSkgIXFxdbjGY3mLH4mLE02aQICwoKoF2+HNXV\n1VgfG4P4xXfDy93N6nUuNjYh64MD2LonD76+vtDn5CA8PHyw49kFZiw+Zixdgz6YkZaWhoiICLg7\nKVCcmwld3NIB3XkAwMvdDZvjHkJxbibclApEREQgPT19sCOOeMxYfMxY2hRbtmzZMtArJyUlISkp\nCc/GxmDv5rXwVrnbZCgvt+uxfMGdMLa3Y3P6qzCZTIiMjLTJ2iMNMxYfM6YBF2FaWhqSkpKwdWUc\ndHFLbX6mTC6XY97MIDg7KaHbth2jRo2S3J8XzFh8zJiAAR4jLCgoQEREBNYtW4IX4rVizNXD+qzd\nSN37Ho4cOYKwsDDRb+9awIzFx4zpEquLsKWlBTOmT4e7kwKfv74NCoVCrNm6dXR0ImLFajQZO1F6\n7Jjdn4VjxuJjxnQ5q/8O0Ol0qK6uhn7j6iG58wCAg4MC+k2rUF1dDZ1ONyS3OZyYsfiYMV3Oqj3C\nuro6jB07FuuXLYEubqmYc1mUnL0XW996D+fOnYOHh8eQ3/5QYMbiY8bUm1V7hHq9HjCbkXD/QrHm\nuaqExQthNpm65rBTzFh8zJh6E7xHaDKZMHHCBET8dAJyNz8j9lxXFJucioKySpwpL7e713QyY/Ex\nY7JE8E/AYDCgsqoKcfdEWXUDL+a+A0X4fKza/kb3ZZEJz0ARPr/7y2HWAiSkZQpaLy46ChWVlTAY\nDFbNMRIIydhSnm/+6WPMWbkWbvMWQxE+Hz82N1/x+sb2dgTFJkARPh/HyyssbiPFjA+Xfo1Fz2zG\n2OilUITPx77DX/T4fnNLKx5P34Hxix6C6x2LMPXBR/HGHz/qsU2b0YiVaZnwilqCMXPvwwMbnseF\nhiaLc9hzxiOR4CIsKiqCg4MCoVMmC1786Mky/HbfQUyfGNDjcplMhkcWzUfNR7/H9wd+j/P730bq\nyjhBa4ZOmQyFQmGXd6D+Mr5Sni1tbYgKm4kNy38JmUx21dtYm5mNsV6eV91Oihk3t7Ri+qQJyFyz\n0mI2T29/A38tLMbvkp/FqXfexJMx9yFxWxYOfP5V9zZPvfoG/lxQiD+8sAl/z0rD+Yv1+MWG5yzO\nYc8Zj0RW7REGBvhd9YXnl/v3f1qwLDkVb65/Cm6jXft8/zpnJ3i5u8Fb1fU16jphTyVwcXZCYICv\nXd6Brpbx1fJ8Ysm9WPvQA7i1n19SH39xFH87Woy0xEdwtSMiUsw4KiwEKY/G4t7Z4Raz+fIfpxC7\nYB5umzEV43288cii+Zg+KQCFJ8sAAD82N0N/4BO8/ORjmB08DUGTJ2L3plU4cvwkCk+U9VnPnjMe\niQQXYWlJCYImTRC88OPpO7Bw1s8wJ2SGxe+//ZdP4T0/BtOWrsCGnXq0tLYJXjv4pokoKS4WvP1I\ncbWM+8uzP7UNjXhs63a8tXktXAT8MpNixlcTdsvN2H/4S5y/WA8A+NRwDGe+PYe7btUAAAz/LEdH\nZyfmzvzfz2ey7ziMV3vhi69PWVzTXjMeiRyEbtjQ0ACfqZMEbfvOXz9DyelyFOVYPu734F2R8PVR\n40ZPFY6XV2Ldjmyc+fYc3nthk6D11So35JeeQLGd3Ylqa2pwp4WM+8tTiF89/zLiFy9E0OSJqP6+\ntt/tpZZxfzJWJ+CxrdsxbtFDcFAooJDLsWv9k5g1PRAAUFPfAKWDA8a49txbV6vcUVPfYHFNtcoN\nh06etv4fQTYnuAiNRiOclI79bvfdhYt4+tU38Mn2F+DoYHn5X98zv/u/AwP84OOhwp1PrEfl+Rr4\n3+jT7204KR1RU1sDjUYjdPwRwdFB0SdjIXn257W8D/Gv//wH65YtAQCY0f8TBaSUsRCv5f0JX50o\nw/70ZIxXe+NQ6T+wMm0HbvT0uOpeutlsvuLxWCelI9rajFbPQrYn+JGlVCrRZmzvdzvDP8txsekH\nhGgTu4+1dJpMOFT6NXb8YT9aD+3vc8e4NXAyzGYzyr87L6gI24zt8FH74MN9+4SOPyIsio7uk/FA\n8uztM8NxfPn1P+F8e3SPy2dqn8DSuyKxe9PqPteRUsb9aW0zYtMbufjwpc2ICgsBAEyd4IeS099g\n29vvY07IDPh4qGDs6MCPzc099govNDZBfYV3s2kztsNJ4DF3EpfgIlSpVKipb+x3u3kzg3B8784e\nl2mf24ab/cZjXewSiw/akrJvIJPJcIOHStAstQ1N8FarERwcLGz4EULt49Mn44Hk2dtrq+Px/IqH\nu////MV6RD29Ce8+v+GKZ6illHF/2js60N7Rgd5RK+RymEwmAIDmpxPhoFAg/2gp7rtjFgDg9Nnv\ncLb2IsKm3mxx3dqGJri7C7vPk7gEF+GMoCAUHf6s3+1cXZwxxd+3z2Wq60fjZr/xqDj3Pd7+5FMs\nCJ8JjzFjcKy8Aqu378LsoFswdYKfoFmKT5cjdPYcoaOPGJYy7i9PoOtESE19I858dw5msxnHyysx\n+rrrMF7tBfcxozHW26vn9Z2dYTabEfATH9zoZfklXlLKGOh6+kz5d+e797orztXg2JkKqMaMxji1\nF2YH3YK1mb+Fs1IJ3xu88Vnxcbz1cT5eeeoxAMAYV1f8KvourH5tF9zHjMLo667Dky/vxKxpUxAa\naPmXjb1mPBIJLkKNRoPc3By0thkFP4Xmksv3WpSODsg/WoLX8v6E5pZWjFN74hdzbsPG5b8UtFZL\naxtOVFQjfpV9HbsChGfcey/w9T9+hJTs30Emk0Emk+GOhLUAgN0bVyF2wTxBa1xOihkXnTqNOY+v\n685wTcabAIDY+fOwe9MqvPPcBqzfuRvLklPR8OO/4OujxgvxWjx674LuNV558lEo5HI8sOE3aGtv\nR9StGmSuedziHPac8Ugk+CV2R48eRWhoKD7LSsPtQbeIPdcV/b34OCJXrkVhYSFmzpw5bHOIgRmL\njxmTJYKfR6jRaODv54fsfQfFnKdf2fsPIsDf3+7OZgLMeCgwY7JEcBHK5XLEJyTg3fxDqGv6QcyZ\nruhiYxPy8g8jPiHBLl+ozozFx4zJEqt+ClqtFjK5HFnvHxBrnqvK+uAAZHI5tFrx31Z9uDBj8TFj\n6s2qIvT09ERiYiJe3PMuTlWdFWsmi05VncXWPXlITEy06zezZMbiY8bU24j6zJIf2k0oKS21+896\nYMbiY8Z0OasPULi4uECfk4PCE2VI2rVHjJn6SNqVi6JTp6HPyZHEnYcZi48Z0+UG9LnG48aNg6ur\nKzanvwJnJyUi/vvCczG89FYekrP3IjU1FTExMaLdzrWGGYuPGdMlA/6A9/DwcJhMJui2bUer0YjI\n4Gk2PQPW0dGJja/nIDl7L5KSkrBx40abrT1SMGPxMWMCBlGEABAZGQlXV1ckv7wdfyk0YNa0KfBy\nu37QQ52qOotFa5PxXv4hpKWlSfrOw4zFx4zJ6pMllhQUFEC7fDmqq6vxbOwSJCxeCC93N6vXudjY\nhKwPDmDrnjz4+voiJzcXYWFhgx3PLjBj8TFj6bJJEQJdZ+F0Oh0yMjJgNpmwZO5tiIuOQuiUyXBx\ndrry9VrbUHiyDNn7DyIv/zBkcjkSExORkpLCA8q9MGPxMWNpslkRXlJfXw+9Xo+dWVmoqKyEQqFA\nYIAvgm+aCLXKrevNKI3tqG1oQvHpcpyoqEZnZycC/P0Rn5AArVbL51f1gxmLjxlLi82L8BKTyQSD\nwdD9VVJcjAu1taiprYGP2gfeajWCgoOh0Wi6v/hyI+swY/ExY2kQrQgtKS4uhkajgcFgsLs3/LxW\nMGPxMWP7w19dRCR5LEIikjwWIRFJHouQiCSPRUhEksciJCLJYxESkeSxCIlI8liERCR5LEIikjwW\nIRFJHouQiCSPRUhEksciJCLJYxESkeSxCIlI8liERCR5LEIikjwWIRFJHouQiCSPRUhEksciJCLJ\nYxESkeSxCIlI8liERCR5LEIikjwWIRFJHouQiCSPRUhEksciJCLJYxESkeSxCIlI8liERCR5LEIi\nkjwWIRFJHouQiCSPRUhEksciJCLJYxESkeSxCIlI8liERCR5LEIikjwWIRFJHouQiCSPRUhEksci\nJCLJYxESkeSxCIlI8liERCR5LEIikjwWIRFJnsxsNpvFWNhkMsFgMKCoqAgGgwGlJSWoralB7YVa\nqL3VUPv4YEZQEDQaDUJCQqDRaCCXs5etwYzFx4zFZynjhoYGGI1GKJVKqFQq0TO2eRHW1dVBr9dj\nZ1YWKquq4OCgQGCAH4ImTYCPhzuclI5oM7ajpr4RJWe+wYmKKnR0dCLA3x8r4uOh1Wrh6elpy5Hs\nDjMWHzMW37WUsc2KsKWlBTqdDhkZGTCbTIiZezvi7olC6JTJcHZSXvF6rW1GFJ4sQ/a+g3g3/xBk\ncjkSExORkpICFxcXW4xmN5ix+Jix+K7FjG1ShAUFBdAuX47q6mqsj41B/OK74eXuZvU6FxubkPXB\nAWzdkwdfX1/oc3IQHh4+2PHsAjMWHzMW37Wa8aD/0E5LS0NERATcnRQozs2ELm7pgP5hAODl7obN\ncQ+hODcTbkoFIiIikJ6ePtgRRzxmLD5mLL5rOWPFli1btgz0yklJSUhKSsKzsTHYu3ktvFXuAx7k\ncl5u12P5gjthbG/H5vRXYTKZEBkZaZO1RxpmLD5mLL5rPeMBF2FaWhqSkpKwdWUcdHFLbX4WRy6X\nY97MIDg7KaHbth2jRo2S3J8XzFh8zFh8IyHjAR0jLCgoQEREBNYtW4IX4rXWXt1q67N2I3Xvezhy\n5AjCwsJEv71rATMWHzMW30jJ2OoibGlpwYzp0+HupMDnr2+DQqGwelhrdXR0ImLFajQZO1F67Jjd\nn4VjxuJjxuIbSRlbvY+q0+lQXV0N/cbVQ/IPAwAHBwX0m1ahuroaOp1uSG5zODFj8TFj8Y2kjK3a\nI6yrq8PYsWOxftkS6OKWDmjQwUjO3outb72Hc+fOwcPDY8hvfygwY/ExY/GNtIyt2iPU6/WA2YyE\n+xcOeMDBSFi8EGaTqWsOO8WMxceMxTfSMha8R2gymTBxwgRE/HQCcjc/M6ghByM2ORUFZZU4U15u\nd6/pZMbiY8biG4kZC/4JGAwGVFZVIe6eqB6XHy79Goue2Yyx0UuhCJ+PfYe/6PH95pZWPJ6+A+MX\nPQTXOxZh6oOP4o0/ftRjmzajESvTMuEVtQRj5t6HBzY8jwsNTRbniIuOQkVlJQwGg9DRR4xLGc+c\nctMVM+3o6MS6HdmY/tAKjJ5zL8ZGL8XylHR8X1ffZ72PjnyFsF8/Bdc7FsHj57/A/c+m9Pj+t7UX\nsXB1EkZFLsINd/8SazN/C5PJJImMe9+PAxY/DEX4/D5fiduy+qyx4OlNFu/rV8rTEilm3NuLue/g\n1l89gevnLobPgv+HxetScPrsdz22saYberMmY8FFWFRUBAcHBUKnTO5xeXNLK6ZPmoDMNSshk8n6\nXO/p7W/gr4XF+F3yszj1zpt4MuY+JG7LwoHPv+re5qlX38CfCwrxhxc24e9ZaTh/sR6/2PCcxTlC\np0yGQqGwyzvQpYzHq72vmOl/2lpx7Mw30MU9hOLcHfhgqw5lZ7/DvWuTe2z3/qef4+GUdPwq+i4c\n37sTR3a9gl/+/H9PNDWZTLh7VRI6OjvxxZuvIidpNXL//Ffo3twjiYx734+P6jPw/YHfd399sv0F\nyGQyLJl7e4/tXvn9B1DI5X1+LlfL0xIpZtzb58dO4PEH7sGX2a/ir6+9iPaODtz15Aa0tLZ1b2NN\nN/RmTcYOglZEV8sHBvj1eVF0VFgIosJCAACW/sr+8h+nELtgHm6bMRUA8Mii+dj14Z9ReLIMCyNu\nxY/NzdAf+AS/T3kWs4OnAQB2b1qFKb98FIUnyhAa2DNMF2cnBAb42uUd6FLG99wehntu73oOVO9M\nx7i64uCrL/S4LGN1An7266fw3YWLGOvthc7OTjz96utIf+IRLL/7593b/dRvXPd//+UrA/5Z/S3+\nb8dL8HS7HrdM9EfKI7FYv1OPLXHL7D7j3vdjj+vH9Pj//blfYcJPbui+3wLAsTMV2J73IQqzX8MN\nC3/ZY/v+8nRw6HnWVAr346u9gQIAfPRyz0LTJ62GesH/g6HsDCKmT7W6G3qzJmPBe4SlJSUImjRB\n6Obdwm65GfsPf4nzF7v+dPvUcAxnvj2Hu27VAAAM/yxHR2cn5s6c0X2dyb7jMF7thS++PmVxzeCb\nJqKkuNjqWa51A8246V//hkwGuI0aBQAoLivH+boGAIDm4ZX4SfSDuHtVEk5WVndf58uv/4lbJvjB\n0+367svu+pkGP/y7GScqqyWdcXtHB97+5FP8Kvqu7staWtuwdPNWZK5eCW9V39fH9penJVLO2JKm\nfzVDJpNBNWY0gIF1Q29CMxa8R9jQ0ACfqZOEbt4tY3UCHtu6HeMWPQQHhQIKuRy71j+JWdMDAQA1\n9Q1QOjhgjKtrj+upVe6oqW+wuKZa5Yb80hMotrM7UW1NDe60MuM2oxHrd+rx4J2RGHVd15NHK87X\nwGw2IyX7d3j5ycfg6+ONbW+/jzsS1uJ0XjbcRo9CTX0D1L1e76l27/r/ru9JN+M/flaAH/7djIcX\nzOu+7Ontb2DWtEAsjLjV4nX6y3P6pIA+15Fyxr2ZzWY8/erriJgWiCn+vgAG1g29qVVuOHTydL/b\nCS5Co9EIJ6Wj0M27vZb3J3x1ogz705MxXu2NQ6X/wMq0HbjR0wNzQmZc8Xpms9niMUcAcFI6oqa2\nBhqNxup5rmWODgqrMu7o6MSSjb+BTAbseObx7ssvHaDfuPyXuHd212sud29ahXGLHsJ7/3cYjyya\nf9V1ZTKZpDPWH/gL5oeFwMdDBQDYd/gLfGo4hpI9OwZ0m7wf9y8hLRMnq87i8Ovb+t32at3Qm5PS\nEW1txn63E1yESqUSbcZ2oZsD6HojxU1v5OLDlzZ3H0ecOsEPJae/wba338eckBnw8VDB2NGBH5ub\nezT/hcamPr9hL2kztsNH7YMP9+2zap5r3aLoaMEZXyrBb2vrkJ+5tXtvEABu8Ox6AN/sN777MqWj\nIwJuvAFnay4AAHw8VCg61fM3ZW1jI4Cu37hSzfhszQX8ragEf9y6ufuyTw3HUXH+e7jNu7/Htvev\nfw63z7gF+Zkv9ZunJVLNuLfH03fg4y+O4tDOdNzo9b8nPw+kG3prM7bDqZ9jlYAVRahSqVBT3yh0\ncwBdx1raOzrQu7wVcnn3XovmpxPhoFAg/2gp7rtjFgDg9NnvcLb2IsKm3mxx3dqGJnir1QgODrZq\nnmud2sdHUMaXSrDi/Pf4v8xUuP/3mMolmsmT4OToiLKz3yF82hQAXT+Lqu9r4XuDNwAgbOrNeDH3\nHdQ1/dB9XOuTr4px/ShXTPEfL9mMdx/4C9Tu7lgQPrP7svWxMXhkUc+ngtyydAVefWoFFs7q+lO5\nvzwtkWoOaB9EAAAaz0lEQVTGl3s8fQf2Hf4Cn2WlYbyPd4/vDaQbeqttaIK7u6rf7QQX4YygIBQd\n/qzP5c0trSj/7nz32c2KczU4dqYCqjGjMU7thdlBt2Bt5m/hrFTC9wZvfFZ8HG99nI9XnnoMQNdZ\n0F9F34XVr+2C+5hRGH3ddXjy5Z2YNW3KFc8KFZ8uR+jsOUJHHzEuZXy1TG/0VOEXG55D6ZkK7E9L\nRntnB2obuu50qjGj4ejggNGu1+Gx++7Glt++hbHenvD18Ubq3vcgkwEPzOl6OsjPbw3GFP/xiE1O\nw9aVv8L3dQ3Q7dqDlfdHw9HBwe4ztsRsNiP3o7/i4bvv7PEEXG+Vm8UTJOPUXvC9QQ2g/zwtkWLG\nl0tIy8Q7f/0Mf0rdAlcX5+778fWurnB2Ug6oG3oTmrHgItRoNMjNzUFrm7HHafGiU6cx5/F1kMlk\nkMlkWJPxJgAgdv487N60Cu88twHrd+7GsuRUNPz4L/j6qPFCvBaP3ruge41XnnwUCrkcD2z4Ddra\n2xF1qwaZax7vMwPQdfbuREU14lfZ13EV4H8ZFxw/iainN1rMdHPcUuz//CvIZDIEPbwSwP+Omfxf\n5ku4PegWAEB64q/h6KDAwylpaGkz4tbAycjPfAnXj+r6E0Mul2N/egoSUjMw69FVcHV2xsN334nk\nR5ZJIuPe92MA+NvREnx7oQ7ay55ydCW9j1FdLU9LpJrx5d7440eQyWSIXLm2x+W7N65C7H9PVFnT\nDb1Zk7Hgl9gdPXoUoaGh+CwrrfvBNhz+XnwckSvXorCwEDNnzuz/CiMIMxYfMxbfSMxY8PMINRoN\n/P38kL3v4KAHHIzs/QcR4O9vd2faAGY8FJix+EZixoKLUC6XIz4hAe/mH0Jd0w+DGnCgLjY2IS//\nMOITEuzuheoAMx4KzFh8IzFjq34KWq0WMrkcWe8fGPCAg5H1wQHI5HJoteK/5fdwYcbiY8biG2kZ\nW1WEnp6eSExMxIt73sWpqrMDGnCgTlWdxdY9eUhMTLTbN7MEmPFQYMbiG2kZj6jPLPmh3YSS0lJ+\n1oMImDEztrWRlLHVByhcXFygz8lB4YkyJO2y/BZDtpa0KxdFp05Dn5Nj93cegBkPBWYsvpGU8YA+\n13jcuHFwdXXF5vRX4OykRMR/30BBDC+9lYfk7L1ITU1FTEyMaLdzrWHG4mPG4hspGQ/4A97Dw8Nh\nMpmg27YdrUYjIoOn2fQMWEdHJza+noPk7L1ISkrCxo0bbbb2SMGMxceMxTcSMh5wEQJAZGQkXF1d\nkfzydvyl0IBZ06bA67L3YxuoU1VnsWhtMt7LP4S0tDRJ3nkuYcbiY8biu9YztvpkiSUFBQXQLl+O\n6upqPBu7BAmLF8LLve9rM/tzsbEJWR8cwNY9efD19UVObq5Vn1Zvz5ix+Jix+K7VjG1ShEDXGSKd\nToeMjAyYTSYsmXsb4qKjEDplMlycna58vdY2FJ4sQ/b+g8jLPwyZXI7ExESkpKRI4oCyNZix+Jix\n+K7FjG1WhJfU19dDr9djZ1YWKioroVAoEBjgi+CbJkKtcut6o0RjO2obmlB8uhwnKqrR2dmJAH9/\nxCckQKvV2vXzq2yBGYuPGYvvWsrY5kV4iclkgsFg6P4qKS7Ghdpa1NTWwEftA2+1GkHBwdBoNN1f\n9vhyIzExY/ExY/FZyrixsQFtbUY4OSnh7q4SPWPRitCS4uJiaDQaGAwGu3szymsFMxYfM7Y//NVF\nRJLHIiQiyWMREpHksQiJSPJYhEQkeSxCIpI8FiERSR6LkIgkj0VIRJLHIiQiyWMREpHksQiJSPJY\nhEQkeSxCIpI8FiERSR6LkIgkj0VIRJLHIiQiyWMREpHksQiJSPJYhEQkeSxCIpI8FiERSR6LkIgk\nj0VIRJLHIiQiyWMREpHksQiJSPJYhEQkeSxCIpI8FiERSR6LkIgkj0VIRJLHIiQiyWMREpHksQiJ\nSPJYhEQkeSxCIpI8FiERSR6LkIgkj0VIRJLHIiQiyWMREpHksQiJSPJYhEQkeSxCIpI8FiERSR6L\nkIgkj0VIRJLHIiQiyWMREpHkycxms1mMhU0mEwwGA4qKimAwGFBaUoLamhrUXqiF2lsNtY8PZgQF\nQaPRICQkBBqNBnI5e9kazFh8zFgabF6EdXV10Ov12JmVhcqqKjg4KBAY4IegSRPg4+EOJ6Uj2ozt\nqKlvRMmZb3CiogodHZ0I8PfHivh4aLVaeHp62nIku8OMxceMpcVmRdjS0gKdToeMjAyYTSbEzL0d\ncfdEIXTKZDg7Ka94vdY2IwpPliF730G8m38IMrkciYmJSElJgYuLiy1GsxvMWHzMWJpsUoQFBQXQ\nLl+O6upqrI+NQfziu+Hl7mb1Ohcbm5D1wQFs3ZMHX19f6HNyEB4ePtjx7AIzFh8zlq5BH8xIS0tD\nREQE3J0UKM7NhC5u6YDuPADg5e6GzXEPoTg3E25KBSIiIpCenj7YEUc8Ziw+Zixtii1btmwZ6JWT\nkpKQlJSEZ2NjsHfzWnir3G0ylJfb9Vi+4E4Y29uxOf1VmEwmREZG2mTtkYYZi48Z04CLMC0tDUlJ\nSdi6Mg66uKU2P1Mml8sxb2YQnJ2U0G3bjlGjRknuzwtmLD5mTMAAjxEWFBQgIiIC65YtwQvxWjHm\n6mF91m6k7n0PR44cQVhYmOi3dy1gxuJjxnSJ1UXY0tKCGdOnw91Jgc9f3waFQiHWbN06OjoRsWI1\nmoydKD12zO7PwjFj8TFjupzVfwfodDpUV1dDv3H1kNx5AMDBQQH9plWorq6GTqcbktscTsxYfMyY\nLmfVHmFdXR3Gjh2L9cuWQBe3VMy5LErO3outb72Hc+fOwcPDY8hvfygwY/ExY+rNqj1CvV4PmM1I\nuH+hWPNcVcLihTCbTF1z2ClmLD5mTL0J3iM0mUyYOGECIn46AbmbnxF7riuKTU5FQVklzpSX291r\nOpmx+JgxWSL4J2AwGFBZVYW4e6KsuoEXc9+BInw+Vm1/o/uyyIRnoAif3/3lMGsBEtIyBa0XFx2F\nispKGAwGq+YYCYRkbCnPN//0MeasXAu3eYuhCJ+PH5ubr3h9Y3s7gmIToAifj+PlFRa3kWLGh0u/\nxqJnNmNs9FIowudj3+Eveny/uaUVj6fvwPhFD8H1jkWY+uCjeOOPH/XYps1oxMq0THhFLcGYuffh\ngQ3P40JDk8U57DnjkUhwERYVFcHBQYHQKZMFL370ZBl+u+8gpk8M6HG5TCbDI4vmo+aj3+P7A7/H\n+f1vI3VlnKA1Q6dMhkKhsMs7UH8ZXynPlrY2RIXNxIblv4RMJrvqbazNzMZYL8+rbifFjJtbWjF9\n0gRkrllpMZunt7+BvxYW43fJz+LUO2/iyZj7kLgtCwc+/6p7m6defQN/LijEH17YhL9npeH8xXr8\nYsNzFuew54xHIqv2CAMD/K76wvPL/fs/LViWnIo31z8Ft9Gufb5/nbMTvNzd4K3q+hp1nbCnErg4\nOyEwwNcu70BXy/hqeT6x5F6sfegB3NrPL6mPvziKvx0tRlriI7jaEREpZhwVFoKUR2Nx7+xwi9l8\n+Y9TiF0wD7fNmIrxPt54ZNF8TJ8UgMKTZQCAH5uboT/wCV5+8jHMDp6GoMkTsXvTKhw5fhKFJ8r6\nrGfPGY9EgouwtKQEQZMmCF748fQdWDjrZ5gTMsPi99/+y6fwnh+DaUtXYMNOPVpa2wSvHXzTRJQU\nFwvefqS4Wsb95dmf2oZGPLZ1O97avBYuAn6ZSTHjqwm75WbsP/wlzl+sBwB8ajiGM9+ew123agAA\nhn+Wo6OzE3Nn/u/nM9l3HMarvfDF16csrmmvGY9EDkI3bGhogM/USYK2feevn6HkdDmKciwf93vw\nrkj4+qhxo6cKx8srsW5HNs58ew7vvbBJ0PpqlRvyS0+g2M7uRLU1NbjTQsb95SnEr55/GfGLFyJo\n8kRUf1/b7/ZSy7g/GasT8NjW7Ri36CE4KBRQyOXYtf5JzJoeCACoqW+A0sEBY1x77q2rVe6oqW+w\nuKZa5YZDJ09b/48gmxNchEajEU5Kx363++7CRTz96hv4ZPsLcHSwvPyv75nf/d+BAX7w8VDhzifW\no/J8Dfxv9On3NpyUjqiprYFGoxE6/ojg6KDok7GQPPvzWt6H+Nd//oN1y5YAAMzo/4kCUspYiNfy\n/oSvTpRhf3oyxqu9caj0H1iZtgM3enpcdS/dbDZf8Xisk9IRbW1Gq2ch2xP8yFIqlWgztve7neGf\n5bjY9ANCtIndx1o6TSYcKv0aO/6wH62H9ve5Y9waOBlmsxnl350XVIRtxnb4qH3w4b59QscfERZF\nR/fJeCB59vaZ4Ti+/PqfcL49usflM7VPYOldkdi9aXWf60gp4/60thmx6Y1cfPjSZkSFhQAApk7w\nQ8npb7Dt7fcxJ2QGfDxUMHZ04Mfm5h57hRcam6C+wrvZtBnb4STwmDuJS3ARqlQq1NQ39rvdvJlB\nOL53Z4/LtM9tw81+47EudonFB21J2TeQyWS4wUMlaJbahiZ4q9UIDg4WNvwIofbx6ZPxQPLs7bXV\n8Xh+xcPd/3/+Yj2int6Ed5/fcMUz1FLKuD/tHR1o7+hA76gVcjlMJhMAQPPTiXBQKJB/tBT33TEL\nAHD67Hc4W3sRYVNvtrhubUMT3N2F3edJXIKLcEZQEIoOf9bvdq4uzpji79vnMtX1o3Gz33hUnPse\nb3/yKRaEz4THmDE4Vl6B1dt3YXbQLZg6wU/QLMWnyxE6e47Q0UcMSxn3lyfQdSKkpr4RZ747B7PZ\njOPllRh93XUYr/aC+5jRGOvt1fP6zs4wm80I+IkPbvSy/BIvKWUMdD19pvy789173RXnanDsTAVU\nY0ZjnNoLs4NuwdrM38JZqYTvDd74rPg43vo4H6889RgAYIyrK34VfRdWv7YL7mNGYfR11+HJl3di\n1rQpCA20/MvGXjMeiQQXoUajQW5uDlrbjIKfQnPJ5XstSkcH5B8twWt5f0JzSyvGqT3xizm3YePy\nXwpaq6W1DScqqhG/yr6OXQHCM+69F/j6Hz9CSvbvIJPJIJPJcEfCWgDA7o2rELtgnqA1LifFjItO\nncacx9d1Z7gm400AQOz8edi9aRXeeW4D1u/cjWXJqWj48V/w9VHjhXgtHr13Qfcarzz5KBRyOR7Y\n8Bu0tbcj6lYNMtc8bnEOe854JBL8ErujR48iNDQUn2Wl4fagW8Se64r+XnwckSvXorCwEDNnzhy2\nOcTAjMXHjMkSwc8j1Gg08PfzQ/a+g2LO06/s/QcR4O9vd2czAWY8FJgxWSK4COVyOeITEvBu/iHU\nNf0g5kxXdLGxCXn5hxGfkGCXL1RnxuJjxmSJVT8FrVYLmVyOrPcPiDXPVWV9cAAyuRxarfhvqz5c\nmLH4mDH1ZlURenp6IjExES/ueRenqs6KNZNFp6rOYuuePCQmJtr1m1kyY/ExY+ptRH1myQ/tJpSU\nltr9Zz0wY/ExY7qc1QcoXFxcoM/JQeGJMiTt2iPGTH0k7cpF0anT0OfkSOLOw4zFx4zpcgP6XONx\n48bB1dUVm9NfgbOTEhH/feG5GF56Kw/J2XuRmpqKmJgY0W7nWsOMxceM6ZIBf8B7eHg4TCYTdNu2\no9VoRGTwNJueAevo6MTG13OQnL0XSUlJ2Lhxo83WHimYsfiYMQGDKEIAiIyMhKurK5Jf3o6/FBow\na9oUeLldP+ihTlWdxaK1yXgv/xDS0tIkfedhxuJjxmT1yRJLCgoKoF2+HNXV1Xg2dgkSFi+El7ub\n1etcbGxC1gcHsHVPHnx9fZGTm4uwsLDBjmcXmLH4mLF02aQIga6zcDqdDhkZGTCbTFgy9zbERUch\ndMpkuDg7Xfl6rW0oPFmG7P0HkZd/GDK5HImJiUhJSeEB5V6YsfiYsTTZrAgvqa+vh16vx86sLFRU\nVkKhUCAwwBfBN02EWuXW9WaUxnbUNjSh+HQ5TlRUo7OzEwH+/ohPSIBWq+Xzq/rBjMXHjKXF5kV4\niclkgsFg6P4qKS7Ghdpa1NTWwEftA2+1GkHBwdBoNN1ffLmRdZix+Cxl3NjYgLY2I5yclHB3VzFj\nOyBaEVpSXFwMjUYDg8Fgd2/4ea1gxkTW468uIpI8FiERSR6LkIgkj0VIRJLHIiQiyWMREpHksQiJ\nSPJYhEQkeSxCIpI8FiERSR6LkIgkj0VIRJLHIiQiyWMREpHksQiJSPJYhEQkeSxCIpI8FiERSR6L\nkIgkj0VIRJLHIiQiyWMREpHksQiJSPJYhEQkeSxCIpI8FiERSR6LkIgkj0VIRJLHIiQiyWMREpHk\nsQiJSPJYhEQkeSxCIpI8FiERSR6LkIgkj0VIRJLHIiQiyWMREpHksQiJSPJYhEQkeSxCIpI8FiER\nSR6LkIgkj0VIRJLHIiQiyWMREpHksQiJSPJYhEQkeSxCIpI8FiERSR6LkIgkT2Y2m81iLGwymWAw\nGFBUVASDwYDSkhLU1tSg9kIt1N5qqH18MCMoCBqNBiEhIdBoNJDL2cvWYMZEtmHzIqyrq4Ner8fO\nrCxUVlXBwUGBwAA/BE2aAB8PdzgpHdFmbEdNfSNKznyDExVV6OjoRIC/P1bEx0Or1cLT09OWI9kd\nZkxkWzYrwpaWFuh0OmRkZMBsMiFm7u2IuycKoVMmw9lJecXrtbYZUXiyDNn7DuLd/EOQyeVITExE\nSkoKXFxcbDGa3WDGROKwSREWFBRAu3w5qqursT42BvGL74aXu5vV61xsbELWBwewdU8efH19oc/J\nQXh4+GDHswvMmEg8gz5glJaWhoiICLg7KVCcmwld3NIBPUABwMvdDZvjHkJxbibclApEREQgPT19\nsCOOeMyYSFyKLVu2bBnolZOSkpCUlIRnY2Owd/NaeKvcbTKUl9v1WL7gThjb27E5/VWYTCZERkba\nZO2RhhkTiW/ARZiWloakpCRsXRkHXdxSm5+NlMvlmDczCM5OSui2bceoUaMk9yccMyYaGgM6RlhQ\nUICIiAisW7YEL8RrxZirh/VZu5G69z0cOXIEYWFhot/etYAZEw0dq4uwpaUFM6ZPh7uTAp+/vg0K\nhUKs2bp1dHQiYsVqNBk7UXrsmN2f6WTGREPL6r+1dDodqqurod+4ekgeoADg4KCAftMqVFdXQ6fT\nDcltDidmTDS0rNojrKurw9ixY7F+2RLo4paKOZdFydl7sfWt93Du3Dl4eHgM+e0PBWZMNPSs2iPU\n6/WA2YyE+xeKNc9VJSxeCLPJ1DWHnWLGRENPcBGaTCbszMrCkjm3wdPtejFnuiIvdzcsmXsbdmZl\nwWQyDcsMYhKa8eHSr7Homc0YG70UivD52Hf4iz7b6HbtwU+iH4TrHYvw8yfWo/zb84JmsPeMiSwR\nXIQGgwGVVVWIuydKzHn6FRcdhYrKShgMhmGdQwxCM25uacX0SROQuWYlZDJZn++/9FYedvxhH15f\n+wS+yt4OVxdnRD29Ecb2dkFz2HPGRJYILsKioiI4OCgQOmWymPP0K3TKZCgUCrt8kArNOCosBCmP\nxuLe2eGwdIj3tbwPsUn7IKJv+xmmTvBDrm4Nzl+sx4d/77vnaIk9Z0xkiVV7hIEBfld9cf9QcHF2\nQmCAr10+SG2RceX5GtTUN2LuzBndl41xdcWtgZPxxdenBK1hzxkTWSK4CEtLShA0aYKYswgWfNNE\nlBQXD/cYNmeLjGvqGyCTyaDu9VI8tcodtQ0Ngtex14yJLHEQumFDQwN8pk4ScxbB1Co35JeeQLGd\nPVBra2pwp0gZm81myKx4koBa5YZDJ0+LMgvRtUZwERqNRjgpHcWcRTAnpSNqamug0WiGexSbcnRQ\nDDpjHw8VzGYzahsae+wVXmhswoybJgpex0npiLY246BmIRopBBehUqlEm1HYWUextRnb4aP2wYf7\n9g33KDa1KDp60Bn73+gDHw935B8txbSJAQCAH5ub8dWJMiTcHy14nTZjO5yG+Xgw0VARXIQqlQo1\n9Y1iziJYbUMTvNVqBAcHD/coNqX28RGUcXNLK8q/O999xrjiXA2OnamAasxojFN74cmY+/CbnN9j\n4tgb4XeDGro392CstycW3S78zRRqG5rg7q4a8L+FaCQRXIQzgoJQdPgzEUcRrvh0OUJnzxnuMWxO\naMZFp05jzuPrIJPJIJPJsCbjTQBA7Px52L1pFdY+9AD+09qKFamvoelfzbhtRiD+/PLzUDoK/7Pb\nXjMmskRwEWo0GuTm5qC1zTisT6FpaW3DiYpqxK+yr+ODgPCMZwdPQ2fBx1dda8uvl2HLr5cNaA57\nzpjIEsGnEUNCQtDR0YnCk2ViztOvwpNl6OzstLsTJQAzJhougotQo9HA388P2fsOijlPv7L3H0SA\nv79dPkiZMdHwEFyEcrkc8QkJeDf/EOqafhBzpiu62NiEvPzDiE9IsMsPKmfGRMPDqnu6VquFTC5H\n1vsHxJrnqrI+OACZXA6tVvy3rh8uzJho6FlVhJ6enkhMTMSLe97FqaqzYs1k0amqs9i6Jw+JiYl2\n/YahzJho6I2ozyz5od2EktJSu/88DWZMNLSsPgjk4uICfU4OCk+UIWnXHjFm6iNpVy6KTp2GPidH\nEg9QZkw0tAb0ucbjxo2Dq6srNqe/AmcnJSKmB4owWpeX3spDcvZepKamIiYmRrTbudYwY6KhM+AP\neA8PD4fJZIJu23a0Go2IDJ5m07OMHR2d2Ph6DpKz9yIpKQkbN2602dojBTMmGhoD+oD3y6WlpWHd\nunUIDZyM3RtX4Wa/8YMe6lTVWWiffxlHT5YhNTUVa9asGfSaIxkzJhLXoIsQAAoKCqBdvhzV1dV4\nNnYJEhYvhJe7m9XrXGxsQtYHB7B1Tx58fX2Rk5uLsDDhbxRgz5gxkXhsUoRA15lOnU6HjIwMmE0m\nLJl7G+KioxA6ZTJcnJ2ufL3WNhSeLEP2/oPIyz8MmVyOxMREpKSk8KB9L8yYSBw2K8JL6uvrodfr\nsTMrCxWVlVAoFAgM8EXwTROhVrl1veGnsR21DU0oPl2OExXV6OzsRIC/P+ITEqDVavkctn4wYyLb\nsnkRXmIymWAwGLq/SoqL0djYgLY2I5yclHB3VyEoOBgajab7iy/psg4zJrIN0YqQiGik4O4BEUke\ni5CIJI9FSESSxyIkIsljERKR5LEIiUjyWIREJHksQiKSvP8PPbgUiPLNu9YAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 34 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMUAAAGbCAYAAAB0y1TDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XlUU3feP/B3ckMC4gJhSbRQNpUqPioEnYrpdKz6VK3a\n1k5h6kKb4rRCi23VilsQl3EBtDpFsU4xoEw7Yqczo53nOJ2h9afVPrUEsFOgIGVRUVA2V0gg4fcH\njxm5ELmBXEjw8zon53hyk5sP7/gmNyHJV9DW1tYGQoiJsL8HIMTWUCkIYaFSEMJCpSCEhUpBCAuV\nghAWKgUhLFQKQlioFISwiPjasdFohFarRU5ODrRaLfLz8lBfXw+9Xg+xWAypVIqJwcFQKBQIDQ2F\nQqGAUEgdJf1PYO23edTW1kKj0SB1/36UV1RAJGIQ5O+L4FEBkLu5QiJ2gE7fguq6BuRd/BkFZRVo\nbTXA388Py6KjoVKp4O7ubs2RCLGI1UrR1NSE+Ph4fPjhh2gzGhEx/ZeImj8Lk8cGwlEiNnu9Zp0e\n5wuLkXb8JI5mn4ZAKERsbCw2b94MJycna4xGiEWsUopz585B9dprqKysxNrICEQveA4eri4W7+dG\nQyP2f/4FdhzOgo+PDzTp6QgLC+vteIRYpNcH8UlJSVAqlXCVMMjNSEF81KIeFQIAPFxdsDFqMXIz\nUuAiZqBUKpGcnNzbEQmxSK8eKdRqNbZu3Yo1kRHY8kYkGIax2mCtrQaoD2Zg55EsqNVqbN682Wr7\nJuRhevzqU1JSErZu3Yodb0Vh9eKXrTkTAEAkYrA95nW4DBmMtVu2YOjQoVi1apXVb4cQth49Upw7\ndw5KpRJxS8KxLVrFx1wdrN1/CImZx3D27FlMmTKF99sjjzaLS9HU1ISJEybAVcLgmwO7rHrIZE5r\nqwHKZSvRqDcg/8IFelWK8MriJ9rx8fGorKyEZv3KPikE0H4opdmwApWVlYiPj++T2ySPLoseKWpr\na+Hl5YW1S8IRH7WIz7m6tCktEzuOHENVVRXc3Nz6/PbJo8GiRwqNRgO0tSHmpbl8zfNQMQvmos1o\nbJ+DEJ5wfqQwGo0YGRAA5RMByNj4Pt9zmRW5KRHnistxsbSU3itFeMH5f5VWq0V5RQWi5s/ic55u\nRc2bhbLycmi12n6dgwxcnEuRk5MDkYjB5LGBfM7TrcljA8EwDJWC8MaiR4ogf9+HvrmvLzg5ShDk\n70OlILzhXIr8vDwEjwrgcxbOQkaPRF5ubn+PQQYozqWor6+H3M2Vz1k4k0ld0NBQ399jkAGKcyn0\nej0kYgc+Z+FMInaATqfv7zHIAMW5FGKxGDp9C5+zcKbTt0DSz89tyMDFuRRSqRTVdQ18zsJZTX0j\nXF2l/T0GGaA4l2JicDDyLv7M5yyc5ZaUIjgkpL/HIAMU51IoFAoUlFWguZ+P5ZuadSgoq4RCoejX\nOcjAxbkUoaGhaG014HxhMZ/zdOt8YTEMBgOVgvDGokcKP19fpB0/yec83Uo7cRL+fn5UCsIbzqUQ\nCoWIjonB0ezTqG28yedMZt1oaERW9hlEx8TQmwEJbyz6n6VSqSAQCrH/z1/wNc9D7f/8CwiEQqhU\n/H8Eljy6LCqFu7s7YmNjsf3wURRVXOJrpi4VVVzCjsNZiI2NpQ8YEV7Z1We0b7YYkZefT5/RJryy\n+MDcyckJmvR0nC8ohvrgYT5m6kR9MAM5RSXQpKdTIQjvevRsNSwsDImJidhx+Ch2Hsmy9kwd7DyS\n1X7auZO+3ob0iR5/GdqqVatw69YtrN2yBY2372Drm6/y+g2B9EVopK/0+guWk5KSEBcXh8lBgTi0\nfgXG+D7e66GKKi5BtXU3vi8sRmJiIhWC9Cmrf+v4mshwxCyYa5VvHU/PyKBDJtLneFufInz6U4ia\n174+hZOjxPz1mnXt61OcOIms7DO0PgXpd1Zfyaiurs60klFZeTkYhkGQvw9CRo+ETOpiWsmopr4R\nuSWlKCirhMHQvpJRdEwMVCoV/R2C9Curl+K++2ve3T/l5ebiek0NqmuqIZfJ4SmTITgkBAqFwnSi\nt24QW8BbKbqSm5sLhUIBrVaLEPo8BLFR9KuZEBYqBSEsVApCWKgUhLBQKQhhoVIQwkKlIISFSkEI\nC5WCEBYqBSEsVApCWKgUhLBQKQhhoVIQwkKlIISFSkEIC5WCEBYqBSEsVApCWKgUhLBQKQhhoVIQ\nwkKlIISFSkEIC5WCEBYqBSEsVApCWKgUhLBQKQhhoVIQwkKlIISFSkEIC5WCEBbel/fKycmBVqtF\nfl4eaqqrUXO9BjJPGWRyOSYGB0OhUCA0NPSRWt6rq2zq6+uh1+shFoshlUof2WxsgdVLUVtba1oI\nsryiAiIRgyB/XwSPCoDczdW0EGR1XQPyLv6MgrIKtLa2LwS5LDoaKpUK7u7u1hzJZlA29oG3JYMj\npv8SUfPblwx2lIjNXq9Zp29fMvj4SRzNPj0glwymbOyL1ReXXxsZgegFz1llcXlNejrCwsJ6O16/\nomzsT68PVJOSkqBUKuEqYZCbkYL4qEU9utMBwMPVBRujFiM3IwUuYgZKpRLJycm9HbHfUDb2iUlI\nSEjo6ZXVajXUajXWREYgc+NqeEpdrTKUh8swvDZnJvQtLdiYvAdGoxHTpk2zyr77CmVjv3pciqSk\nJKjVaux4KwrxUYus/uqIUCjEjEnBcJSIEb9rLwYPHmw3hwuUjX3r0XOKc+fOQalUIm5JOLZFq/iY\nq4O1+w8hMfMYzp49iylTpvB+e71B2dg/i0vR1NSEiRMmwFXC4JsDu8AwDF+zmbS2GqBcthKNegPy\nL1yw2VdeKJuBweLH9fj4eFRWVkKzfmWf3OkAIBIx0GxYgcrKSsTHx/fJbfYEZTMwWPRIUVtbCy8v\nL6xdEo74qEV8ztWlTWmZ2HHkGKqqquDm5tbnt/8wlM3AYdEjhUajAdraEPPSXL7meaiYBXPRZjS2\nz2FjKJuBg/MjhdFoxMiAACifCEDGxvfNXm5TWiY2p/2xw3lP+Hij4NODAIBpMe/jdP6P/xlAIMAb\nL8zB/vff5jRw5KZEnCsux8XSUpt5PxDXbADgzr0mbPgoA387fQ7XG24iJDAAH7y7DKFjRgMArtc3\nIm7fx/jn+Tw03rmDp4PHY+970RjpPaLbOWwxG3sk4npBrVaL8ooKaFa/1e1lx/n74F8f7sD9uoke\nOL4WCAT47fOzseWNSNP2QY4SzgNHzZuFzJOrodVqMWnSJM7X45Ml2Szd9gEKyy8hMyEOw92lOHIy\nGzOXr0Xhpwcx3N0NL8QlQOLggOPJCRgyaBB2ffJnzFy+BoWf/gFO3eRki9nYI86/TnJyciASMZg8\nNrDby4oYBh6uLvCUtp+kw4Z02D7IUdJh++BB3F8xmTw2EAzDQKvVcr4O37hm06zT4/NTZ5H49lJM\nnRAE/8eGY2PUYoz0GoHUz/+Oi5er8F1BMVJXL0dI4CiM8n4Mqatj0aTT49N/nup2DlvMxh5xLoVW\nq0WQv+9D38B238UrV+E1bxFG/lqFJQk7cbnmRoftn/zja3jOjsD4RcuwLlWDpmYd54GdHCUI8vex\nqTueazatBgMMRiMkYocO5ztJxDj7QwF0+hYA6LBdIBBAInbANxcKup3DFrOxR5wPn/Lz8hA8KqDb\nyz0Z9AQ0G1Yi8HEvXKurx6aPM/HLZSvx4ycH4ezkiIXPToOPXIYR7lL8UFqOuH1puHi5Cse2beA8\ndMjokcjLzeV8eb5xzWbwICdMGTcGWzWf4AkfL8ikrvjky6/x7Y9FGOX1GMb4esNH7ol1qRqkro7F\nIEcJPvjTX3Dlei2q6+o5zWJr2dgjzqWor6+HfNyobi/37JOhpn+PC/DF5LGB8H0xElnZp6Ga+99Y\nOn+2aXuQvy/kblLMXL4W5Ver4TdCzmkWmdQF2fkFyLWRO7+muhozOWQDAEcSViPqd7vhNX8xRAyD\nkMCRWDhzGnJLSsEwDD7bvgG/3bYHbs++DBHDYMakYMyZwv35gUzqgtOFJT39UQgsKIVer+/0sM/F\nsMHOGO39GEqvXO1y+y+CAtHW1obSK1c5l0IidkB1TTUUCoXF8/DBQcRwzsZvhBxf7UtEU7MOt+7d\ng0zqilfU2+E3vP1nDwkcBW3GPty+ew/61la4DRuKKUvfNb061R2J2AE6nb7HPwuxoBRisdh0zGuJ\nO/ea8HPVNSxxk3a5Pa/4ZwgEAgw3s70rOn0L5DI5/nr8uMXz8OH5efMszsbJUQInRwkabt3GP77T\nIuntpR22D3EeBAC4eLkKOT+VYOubr3Lar07fAgmH533EPM6lkEqlqK5r6PZy73/4B8xTPgkfuSeq\nbtQh4eMjEDEMXvnvX6Gs6ho++fJrzAmbBLehQ3GhtAwr9x7E08H/hXEBvpyHrqlvhKdMhpCQEM7X\n4ZNMLueUDQB8+Z0WbW1tCPTxwsXLVxGXkoYxPt547bmZAIDPvjoDD5dheFzuiR9Ky/HengNY8PRU\nTJ8UzGn/NfWNcHXl/guGdMa5FBODg5Fz5lS3l6u6UYtFG3ei7uYteLgOg3J8EL79eA/chg1Fk06H\n7O/z8Pusv+FuUzO8Ze749TNPYf1rr1g0dG5JKSY//YxF1+ET12wA4Oadu1iXqkHVjTpIhw7BS88o\nsfWNV03vlbpWV4+Vvz+I6w2NGO4mReScGdjw2kLOs9haNvaI81+0U1NTsXx5LG796y+cXpblS1Oz\nDkNnLEBKSgqWLVvWb3M8iLIZWDj/nSI0NBStrQacLyzmc55unS8shsFgsJkn2QBlM9BwLoVCoYCf\nry/Sjp/kc55upZ04CX8/P5u64ymbgYVzKYRCIaJjYnA0+zRqG2/yOZNZNxoakZV9BtExMTb1hjfK\nZmCxKD2VSgWBUIj9f/6Cr3keav/nX0AgFEKl4v9jnpaibAYOi0rh7u6O2NhYbD98FEUVl/iaqUtF\nFZew43AWYmNjbfJDNJTNwGFXn9G+2WJEXn6+zX4OmbIZGCw++HRycoImPR3nC4qhPniYj5k6UR/M\nQE5RCTTp6TZ9p1M2A0OPvvfJ29sbzs7O2Jj8ARwlYignBPEwWrudR7KwKS0TiYmJiIiI4O12rIWy\nsX89/jK0sLAwGI1GxO/ai2a9HtNCxlv1VY/WVgPWH0jHprRMqNVqrF+/3mr75htlY996/QXLSUlJ\niIuLw+SgQBxavwJjfB/v9VBFFZeg2rob3xcWIzExEatWrer1PvsDZWOfrP6t42siwxGzYK5Vvlk7\nPSPD7r/1jrKxP7ytTxE+/SlEzWtfg+FhH7hvata1r8Fw4iSyss8MyDUYKBv7YvWVjOrq6kyr9ZSV\nl4NhGAT5+yBk9EjIpC6m1Xpq6huRW1KKgrJKGAztq/VEx8RApVIN2NfaKRv7wPuad/dPebm5uF5T\ng+qaashlcnjKZAgOCYFCoTCdHpW3J1A2to23UnQlNzcXCoUCWq3WZj4gZCsoG9tBv34IYaFSEMJC\npSCEhUpBCAuVghAWKgUhLFQKQlioFISwUCkIYaFSEMJCpSCEhUpBCAuVghAWKgUhLFQKQlioFISw\nUCkIYaFSEMJCpSCEhUpBCAuVghAWKgUhLFQKQlioFISwUCkIYaFSEMJCpSCEhUpBCAuVghAWKgUh\nLFQKQlioFISwUCkIYeF9ea+cnBxotVrk5+WhproaNddrIPOUQSaXY2JwMBQKBUJDQx+pJawoG/O6\nyqa+vh56vR5isRhSqZT3bKxeitraWtNih+UVFRCJGAT5+yJ4VADkbq6mxQ6r6xqQd/FnFJRVoLW1\nfbHDZdHRUKlUcHd3t+ZINoOyMc+WsuFtyeCI6b9E1Pz2ZXEdJWKz12vW6duXxT1+EkezTw/IZXEp\nG/NsMRurLy6/NjIC0Ques8oC6pr0dISFhfV2vH5F2Zhnq9n0+mAsKSkJSqUSrhIGuRkpiI9a1KMf\nDAA8XF2wMWoxcjNS4CJmoFQqkZyc3NsR+w1lY54tZ8MkJCQk9PTKarUaarUaayIjkLlxNTylrj0e\n5EEeLsPw2pyZ0Le0YGPyHhiNRkybNs0q++4rlI15tp5Nj0uRlJQEtVqNHW9FIT5qkdVfARAKhZgx\nKRiOEjHid+3F4MGD7eZwgbIxzx6y6dFzinPnzkGpVCJuSTi2RassvbrF1u4/hMTMYzh79iymTJnC\n++31BmVjnr1kY3EpmpqaMHHCBLhKGHxzYBcYhrF4WEu1thqgXLYSjXoD8i9csNlXXigb8+wpG4sf\nu+Lj41FZWQnN+pV98oMBgEjEQLNhBSorKxEfH98nt9kTlI159pSNRY8UtbW18PLywtol4YiPWtSj\nQXtjU1omdhw5hqqqKri5ufX57T8MZWOevWVj0SOFRqMB2toQ89LcHg/YGzEL5qLNaGyfw8ZQNubZ\nWzacS2E0GpG6fz/Cn3kK7i7DurzM9ow/gQmbjRV7PzKdV1Z1DS+t2QzZnAi4zFiAV9Tbcb2+scP1\n/F6MBBM223QSTZ2DxMxjnfbv4eqC8OlPIXX/fhiNRq6j885cNnfuNeHdDw7A78VIOP/qeTz15grk\nFJWYtl+vb4RqSzK85i3C4GnP47kVapRevtph3zq9Hm8lpcBjVjiGTn8RL6/b2ik/wP6yOZP/I55/\nfyO85i0CEzYbx8982+F6fzl1FrPfXQ/P2RFgwmbjh9KyTvvmKxvOpdBqtSivqEDU/Fldbv++sBgf\nHz+JCSP9Tefda27Gs++sg1AoxNf7EnH24G7o9C2Y//7GDtcVCATY8sarqP77p7j2xae4euITxP56\nfpe3EzVvFsrKy6HVarmOzjtz2Szd9gG+yslHZkIc/v3HA5gxOQQzl6/Ftdo6AMALcQmouFaD48kJ\nyDu8H94yD8xcvgZNzTrTPt7d8xH+59x5fLZtA/7f/iRcvVGHX6/b0uUc9pTN3aZmTBgVgJRVb0Eg\nEHS63t3mZkydEIQdMa93uR3gLxvOpcjJyYFIxGDy2MBO2+7ca8KSTYn4w9p34TLE2XT+NxcKUFl9\nHenqVRjr54Mgf1+kx69Ezk8X8VVOfod9DB7kCA9XF3hK209OjpIu55g8NhAMw9jUHd9VNs06PT4/\ndRaJby/F1AlB8H9sODZGLcZIrxFI/fzvuHi5Ct8VFCN19XKEBI7CKO/HkLo6Fk06PT795ykAwK27\nd6H54kvsfudNPB0yHsGBI3Fowwqc/aEQ5wuKO81hL9kAwKwpodj8RiReeDoMXT2tXTxrOjaoFmJ6\n6MQut/OZjUWPFEH+vl2+Sevt5H2YO/VJPBM6scP5+pZWCAQCiB1EpvMkDg4QCgT45kJBh8vuPJIF\nj1nhULz6FpL/+BkMBkOXczg5ShDk72NTd3xX2bQaDDAYjZCIHTpc1kkixtkfCqDTtwBAh+0CgQAS\nsYMpm5yii2g1GDB90n9yDfTxxuMyD3z7Y1GnOewlG6vs96dS3rLhXIr8vDwEjwrodP6f/nkKeSWl\n2B7T+Y8xT457As5OjlidkoamZh3uNjVj1Ycfw9jWhmt19abLLQ9/AZ9uXouv9yXizRefw/aMPyFu\n3yGzs4SMHom83Fyuo/Ouq2wGD3LClHFjsFXzCa7V1sFoNCLzZDa+/bEI12rrMcbXGz5yT6xL1aDx\n9h3oW1qw80gWrlyvRfX/ZVNT3wCxSIShzs4d9i2Tupouw2YP2VhDdV09b9mIur3E/6mvr4d83KgO\n5125fgPv7fkIX+7dBgdR5125uwxD1tZ1iElKwYfH/gZGKMQrM3+F4NEBYB748/67v3nR9O9xAb5w\nEIkQnfghtseoutyvTOqC7PwC5NrInV9TXY2ZrGwA4EjCakT9bje85i+GiGEQEjgSC2dOQ25JKRiG\nwWfbN+C32/bA7dmXIWIYzJgUjDlTJnV7e21tbWaPs+0lG750l83pwpIutz2Icyn0en2nQwHtT6W4\n0XgToapY03GfwWjE6fwfse+zE2g+fQIzJoeg5Ngh1N+8DZFIiKHOzhgx9xX4jZCbva1fBAWi1WBA\nxbUajPJ+rNN2idgB1TXVUCgUXMfnlYOI6ZQNAPiNkOOrfYloatbh1r17kEld8Yp6O/yGt//sIYGj\noM3Yh9t370Hf2gq3YUMxZem7CB0zGgAgd5NC39qKW3fvdviNeL2hETIzb6Kzl2x6q6fZ6HT6bvfN\nuRRisdh0HHzfjEnB+CEztcN5qi27MMb3ccRFhndorHTYEADAVzn5uNF4E/OfetLsbeWV/AyhQABP\nM28l1ulbIJfJ8dfjx7mOz6vn583rlM2DnBwlcHKUoOHWbfzjOy2S3l7aYfsQ50EAgIuXq5DzUwm2\nvvkqAEDxxEiIGAbZ3+fjxV9NBQCUXLqCSzU3MGXcmC5vy96y4aKr3/w9zUbC4bkN51JIpVJU1zV0\nOM/ZyRFj/Xw6nScdNgRjfB8HAKT//UuM8X0cHi7DcO7fhXhvz0d47zcLTI8A//tjEb4rKMY0xXgM\nGTQI5/5diJV7D2LxrOkYNrjj8eJ9NfWN8JTJEBISwnV8Xsnk8k7ZAMCX32nR1taGQB8vXLx8FXEp\naRjj443XnpsJAPjsqzPwcBmGx+We+KG0HO/tOYAFT0/F9EnBAIChzs54fd6zWPn7g3AdOhhDBg3C\nO7tTMXX8WEwO6vwqIGA/2dxtakbplaumI4yyqmpcuFgG6dAh8JZ5oOHWbVyquYGqG7Voa2vDTxVX\n0NYGyN1cIZO69jgbV1dptzNzLsXE4GDknDnV7eXYrS6uvIJ1qRo03L4DX7kMG1QL8U7EC6btEgcH\nHP3XKWxOy4SupQV+I+RYsfAlvPfA8wy23JJSTH76Ga6j885cNjfv3MW6VA2qbtRBOnQIXnpGia1v\nvGp678+1unqs/P1BXG9oxHA3KSLnzMCG1xZ22McH77wBRijEy+t+B11LC2b9QoGUVW+bncVesskp\nKsEzb8dBIBBAIBBg1Yd/AABEzp6BQxtW4PiZ/8Xrv9tt2r5w4w4AQPzri0xvFeErG87vfUpNTcXy\n5bG49a+/WP3lNUs0NeswdMYCpKSkYNmyZf02x4MoG/PsMRvOL8mGhoaitdWA84Wd/zDSl84XFsNg\nMNjME0mAsnkYe8yGcykUCgX8fH2Rdvxkr4brrbQTJ+Hv52dTdzxlY549ZsO5FEKhENExMTiafRq1\njTd7NWBP3WhoRFb2GUTHxNjUl4NRNubZYzYWpadSqSAQCrH/z1/0eMDe2P/5FxAIhVCp+P8oo6Uo\nG/PsLRuLSuHu7o7Y2FhsP3wURRWXejRgTxVVXMKOw1mIjY21uQ/RAJTNw9hbNnb1Ge2bLUbk5efT\n55AfQNmY19NsLD74dHJygiY9HecLiqE+eNjiQXtCfTADOUUl0KSn2+ydDlA2D2NP2fToe5+8vb3h\n7OyMjckfwFEihnJCkKW74GznkSxsSstEYmIiIiIieLsda6FszLOXbHr8ZWhhYWEwGo2I37UXzXo9\npoWMt+qrHq2tBqw/kI5NaZlQq9VYv3691fbNN8rGPHvIpldfmzlt2jQ4Oztj0+69+Md5LaaOHwsP\nM5/ftkRRxSU8v3oTjmWfRlJSkl3d6fdRNubZejZW/9bxNZHhiFkw1yrfHp2ekWHz33rXHcrGPFvN\nhrf1KcKnP4Woee3rDJj7vDXQ/p6U84XFSDtxElnZZx6JNRgom/+wxWysvpJRXV2daUWasvJyMAyD\nIH8fhIweCZnUxbQiTU19I3JLSlFQVgmDoX1FmuiYGKhUKpt8rd0aKBvzbCkb3te8u3/Ky83F9Zoa\nVNdUQy6Tw1MmQ3BICBQKhelkS29P4BNlY55NZNPWh7RabRuANq1W25c3axcoG/P6OptH49cPIRag\nUhDCQqUghIVKQQgLlYIQFioFISxUCkJYqBSEsFApCGGhUhDCQqUghIVKQQgLlYIQFioFISxUCkJY\nqBSEsFApCGGhUhDCQqUghIVKQQgLlYIQFioFISxUCkJYqBSEsFApCGGhUhDCQqUghIVKQQgLlYIQ\nFioFISxUCkJYqBSEsFApCGHhfXmvnJwcaLVa5Ofloaa6GjXXayDzlEEml2NicDAUCgVCQ0MfySWs\nKJvObCEbq5eitrbWtKBfeUUFRCIGQf6+CB4VALmbq2lBv+q6BuRd/BkFZRVobW1f0G9ZdDRUKhXc\n3d2tOZLNoGzMs6VseFsyOGL6LxE1v33pV0eJ2Oz1mnX69qVfj5/E0ezTj8SyuJTNf9hiNlZfXH5t\nZASiFzxnlUXCNenpCAsL6+14/YqyMc9Ws+n1wVhSUhKUSiVcJQxyM1IQH7WoRz8YAHi4umBj1GLk\nZqTARcxAqVQiOTm5tyP2G8rGPFvOhklISEjo6ZXVajXUajXWREYgc+NqeEpdezzIgzxchuG1OTOh\nb2nBxuQ9MBqNmDZtmlX23VcoG/NsPZselyIpKQlqtRo73opCfNQiq78CIBQKMWNSMBwlYsTv2ovB\ngwfbzeECZWOePWTTo+cU586dg1KpRNyScGyLVll6dYut3X8IiZnHcPbsWUyZMoX32+sNysY8e8nG\n4lI0NTVh4oQJcJUw+ObALjAMY/GwlmptNUC5bCUa9QbkX7hgs6+8UDbm2VM2Fj92xcfHo7KyEpr1\nK/vkBwMAkYiBZsMKVFZWIj4+vk9usycoG/PsKRuLHilqa2vh5eWFtUvCER+1qEeD9samtEzsOHIM\nVVVVcHNz6/PbfxjKxjx7y8aiRwqNRgO0tSHmpbk9HrA3YhbMRZvR2D6HjaFszLO3bDiXwmg0InX/\nfoQ/8xTcXYZ1eZntGX8CEzYbK/Z+ZDqvrOoaXlqzGbI5EXCZsQCvqLfjen1jh+v5vRgJJmy26SSa\nOgeJmcc67d/D1QXh059C6v79MBqNXEfnnbls7txrwrsfHIDfi5Fw/tXzeOrNFcgpKjFtv17fCNWW\nZHjNW4TB057HcyvUKL18tcO+dXo93kpKgcescAyd/iJeXre1U36A/WVzJv9HPP/+RnjNWwQmbDaO\nn/m2w/X+cuosZr+7Hp6zI8CEzcYPpWWd9s1XNpxLodVqUV5Rgaj5s7rc/n1hMT4+fhITRvqbzrvX\n3Ixn31lFTa1/AAAYdUlEQVQHoVCIr/cl4uzB3dDpWzD//Y0drisQCLDljVdR/fdPce2LT3H1xCeI\n/fX8Lm8nat4slJWXQ6vVch2dd+ayWbrtA3yVk4/MhDj8+48HMGNyCGYuX4trtXUAgBfiElBxrQbH\nkxOQd3g/vGUemLl8DZqadaZ9vLvnI/zPufP4bNsG/L/9Sbh6ow6/XrelyznsKZu7Tc2YMCoAKave\ngkAg6HS9u83NmDohCDtiXu9yO8BfNpxLkZOTA5GIweSxgZ223bnXhCWbEvGHte/CZYiz6fxvLhSg\nsvo60tWrMNbPB0H+vkiPX4mcny7iq5z8DvsYPMgRHq4u8JS2n5wcJV3OMXlsIBiGsak7vqtsmnV6\nfH7qLBLfXoqpE4Lg/9hwbIxajJFeI5D6+d9x8XIVvisoRurq5QgJHIVR3o8hdXUsmnR6fPrPUwCA\nW3fvQvPFl9j9zpt4OmQ8ggNH4tCGFTj7QyHOFxR3msNesgGAWVNCsfmNSLzwdBi6elq7eNZ0bFAt\nxPTQiV1u5zMbix4pgvx9u3yT1tvJ+zB36pN4JnRih/P1La0QCAQQO4hM50kcHCAUCPDNhYIOl915\nJAses8KhePUtJP/xMxgMhi7ncHKUIMjfx6bu+K6yaTUYYDAaIRE7dLisk0SMsz8UQKdvAYAO2wUC\nASRiB1M2OUUX0WowYPqk/+Qa6OONx2Ue+PbHok5z2Es2VtnvT6W8ZcO5FPl5eQgeFdDp/D/98xTy\nSkqxPabzH2OeHPcEnJ0csTolDU3NOtxtasaqDz+Gsa0N1+rqTZdbHv4CPt28Fl/vS8SbLz6H7Rl/\nQty+Q2ZnCRk9Enm5uVxH511X2Qwe5IQp48Zgq+YTXKutg9FoRObJbHz7YxGu1dZjjK83fOSeWJeq\nQePtO9C3tGDnkSxcuV6L6v/Lpqa+AWKRCEOdnTvsWyZ1NV2GzR6ysYbqunreshF1e4n/U19fD/m4\nUR3Ou3L9Bt7b8xG+3LsNDqLOu3J3GYasresQk5SCD4/9DYxQiFdm/grBowPAPPDn/Xd/86Lp3+MC\nfOEgEiE68UNsj1F1uV+Z1AXZ+QXItZE7v6a6GjNZ2QDAkYTViPrdbnjNXwwRwyAkcCQWzpyG3JJS\nMAyDz7ZvwG+37YHbsy9DxDCYMSkYc6ZM6vb22trazB5n20s2fOkum9OFJV1uexDnUuj1+k6HAtqf\nSnGj8SZCVbGm4z6D0YjT+T9i32cn0Hz6BGZMDkHJsUOov3kbIpEQQ52dMWLuK/AbITd7W78ICkSr\nwYCKazUY5f1Yp+0SsQOqa6qhUCi4js8rBxHTKRsA8Bshx1f7EtHUrMOte/cgk7riFfV2+A1v/9lD\nAkdBm7EPt+/eg761FW7DhmLK0ncROmY0AEDuJoW+tRW37t7t8BvxekMjZGbeRGcv2fRWT7PR6fTd\n7ptzKcRisek4+L4Zk4LxQ2Zqh/NUW3ZhjO/jiIsM79BY6bAhAICvcvJxo/Em5j/1pNnbyiv5GUKB\nAJ5m3kqs07dALpPjr8ePcx2fV8/Pm9cpmwc5OUrg5ChBw63b+Md3WiS9vbTD9iHOgwAAFy9XIeen\nEmx981UAgOKJkRAxDLK/z8eLv5oKACi5dAWXam5gyrgxXd6WvWXDRVe/+XuajYTDcxvOpZBKpaiu\na+hwnrOTI8b6+XQ6TzpsCMb4Pg4ASP/7lxjj+zg8XIbh3L8L8d6ej/DebxaYHgH+98cifFdQjGmK\n8RgyaBDO/bsQK/cexOJZ0zFscMfjxftq6hvhKZMhJCSE6/i8ksnlnbIBgC+/06KtrQ2BPl64ePkq\n4lLSMMbHG689NxMA8NlXZ+DhMgyPyz3xQ2k53ttzAAuenorpk4IBAEOdnfH6vGex8vcH4Tp0MIYM\nGoR3dqdi6vixmBzU+VVAwH6yudvUjNIrV01HGGVV1bhwsQzSoUPgLfNAw63buFRzA1U3atHW1oaf\nKq6grQ2Qu7lCJnXtcTaurtJuZ+ZcionBwcg5c6rby7FbXVx5BetSNWi4fQe+chk2qBbinYgXTNsl\nDg44+q9T2JyWCV1LC/xGyLFi4Ut474HnGWy5JaWY/PQzXEfnnblsbt65i3WpGlTdqIN06BC89IwS\nW9941fTen2t19Vj5+4O43tCI4W5SRM6ZgQ2vLeywjw/eeQOMUIiX1/0OupYWzPqFAimr3jY7i71k\nk1NUgmfejoNAIIBAIMCqD/8AAIicPQOHNqzA8TP/i9d/t9u0feHGHQCA+NcXmd4qwlc2nN/7lJqa\niuXLY3HrX3+x+strlmhq1mHojAVISUnBsmXL+m2OB1E25tljNpxfkg0NDUVrqwHnCzv/YaQvnS8s\nhsFgsJknkgBl8zD2mA3nUigUCvj5+iLt+MleDddbaSdOwt/Pz6bueMrGPHvMhnMphEIhomNicDT7\nNGobb/ZqwJ660dCIrOwziI6JsakvB6NszLPHbCxKT6VSQSAUYv+fv+jxgL2x//MvIBAKoVLx/1FG\nS1E25tlbNhaVwt3dHbGxsdh++CiKKi71aMCeKqq4hB2HsxAbG2tzH6IBKJuHsbds7Ooz2jdbjMjL\nz6fPIT+AsjGvp9lYfPDp5OQETXo6zhcUQ33wsMWD9oT6YAZyikqgSU+32TsdoGwexp6y6dH3Pnl7\ne8PZ2Rkbkz+Ao0QM5YQgS3fB2c4jWdiUlonExERERETwdjvWQtmYZy/Z9PjL0MLCwmA0GhG/ay+a\n9XpMCxlv1Vc9WlsNWH8gHZvSMqFWq7F+/Xqr7ZtvlI159pBNr742c9q0aXB2dsam3Xvxj/NaTB0/\nFh5mPr9tiaKKS3h+9SYcyz6NpKQku7rT76NszLP1bKz+reNrIsMRs2CuVb49Oj0jw+a/9a47lI15\ntpoNb+tThE9/ClHz2tcZMPd5a6D9PSnnC4uRduIksrLPPBJrMFA2/2GL2Vh9JaO6ujrTijRl5eVg\nGAZB/j4IGT0SMqmLaUWamvpG5JaUoqCsEgZD+4o00TExUKlUNvlauzVQNubZUja8r3l3/5SXm4vr\nNTWorqmGXCaHp0yG4JAQKBQK08mW3p7AJ8rGvK6yaWioh06nh0QihqurlPdseCtFV3Jzc6FQKKDV\nam3mQzC2grKxHY/Grx9CLEClIISFSkEIC5WCEBYqBSEsVApCWKgUhLBQKQhhoVIQwkKlIISFSkEI\nC5WCEBYqBSEsVApCWKgUhLBQKQhhoVIQwkKlIISFSkEIC5WCEBYqBSEsVApCWKgUhLBQKQhhoVIQ\nwkKlIISFSkEIC5WCEBYqBSEsVApCWKgUhLBQKQhhoVIQwsL78l45OTnQarXIz8tDTXU1aq7XQOYp\ng0wux8TgYCgUCoSGhj6SS1hRNrbJ6qWora01LehXXlEBkYhBkL8vgkcFQO7malrQr7quAXkXf0ZB\nWQVaW9sX9FsWHQ2VSgV3d3drjmQzKBv7wNuSwRHTf4mo+e1LvzpKxGav16zTty/9evwkjmaffiSW\nxaVsbJvVF5dfGxmB6AXPWWWRcE16OsLCwno7Xr+ibOxPrw9Uk5KSoFQq4SphkJuRgvioRT260wHA\nw9UFG6MWIzcjBS5iBkqlEsnJyb0dsd9QNvaJSUhISOjpldVqNdRqNdZERiBz42p4Sl2tMpSHyzC8\nNmcm9C0t2Ji8B0ajEdOmTbPKvvsKZWO/elyKpKQkqNVq7HgrCvFRi6z+6ohQKMSMScFwlIgRv2sv\nBg8ebDeHC5SNfevRc4pz585BqVQibkk4tkWr+Jirg7X7DyEx8xjOnj2LKVOm8H57vUHZ2D+LS9HU\n1ISJEybAVcLgmwO7wDAMX7OZtLYaoFy2Eo16A/IvXLDZV14om4HB4sf1+Ph4VFZWQrN+ZZ/c6QAg\nEjHQbFiByspKxMfH98lt9gRlMzBY9EhRW1sLLy8vrF0SjvioRXzO1aVNaZnYceQYqqqq4Obm1ue3\n/zCUzcBh0SOFRqMB2toQ89JcvuZ5qJgFc9FmNLbPYWMom4GD8yOF0WjEyIAAKJ8IQMbG981eblNa\nJjan/bHDeU/4eKPg04MAgGkx7+N0/o//GUAgwBsvzMH+99/mNHDkpkScKy7HxdJSm3k/ENdsAODO\nvSZs+CgDfzt9DtcbbiIkMAAfvLsMoWNGAwCu1zcibt/H+Of5PDTeuYOng8dj73vRGOk9ots5bDEb\neyTiekGtVovyigpoVr/V7WXH+fvgXx/uwP26iR44vhYIBPjt87Ox5Y1I0/ZBjhLOA0fNm4XMk6uh\n1WoxadIkztfjkyXZLN32AQrLLyEzIQ7D3aU4cjIbM5evReGnBzHc3Q0vxCVA4uCA48kJGDJoEHZ9\n8mfMXL4GhZ/+AU7d5GSL2dgjzr9OcnJyIBIxmDw2sNvLihgGHq4u8JS2n6TDhnTYPshR0mH74EHc\nXzGZPDYQDMNAq9Vyvg7fuGbTrNPj81Nnkfj2UkydEAT/x4ZjY9RijPQagdTP/46Ll6vwXUExUlcv\nR0jgKIzyfgypq2PRpNPj03+e6nYOW8zGHnEuhVarRZC/70PfwHbfxStX4TVvEUb+WoUlCTtxueZG\nh+2f/ONreM6OwPhFy7AuVYOmZh3ngZ0cJQjy97GpO55rNq0GAwxGIyRihw7nO0nEOPtDAXT6FgDo\nsF0gEEAidsA3Fwq6ncMWs7FHnA+f8vPyEDwqoNvLPRn0BDQbViLwcS9cq6vHpo8z8ctlK/HjJwfh\n7OSIhc9Og49chhHuUvxQWo64fWm4eLkKx7Zt4Dx0yOiRyMvN5Xx5vnHNZvAgJ0wZNwZbNZ/gCR8v\nyKSu+OTLr/Htj0UY5fUYxvh6w0fuiXWpGqSujsUgRwk++NNfcOV6Larr6jnNYmvZ2CPOpaivr4d8\n3KhuL/fsk6Gmf48L8MXksYHwfTESWdmnoZr731g6f7Zpe5C/L+RuUsxcvhblV6vhN0LOaRaZ1AXZ\n+QXItZE7v6a6GjM5ZAMARxJWI+p3u+E1fzFEDIOQwJFYOHMacktKwTAMPtu+Ab/dtgduz74MEcNg\nxqRgzJnC/fmBTOqC04UlPf1RCCwohV6v7/Swz8Wwwc4Y7f0YSq9c7XL7L4IC0dbWhtIrVzmXQiJ2\nQHVNNRQKhcXz8MFBxHDOxm+EHF/tS0RTsw637t2DTOqKV9Tb4Te8/WcPCRwFbcY+3L57D/rWVrgN\nG4opS981vTrVHYnYATqdvsc/C7GgFGKx2HTMa4k795rwc9U1LHGTdrk9r/hnCAQCDDezvSs6fQvk\nMjn+evy4xfPw4fl58yzOxslRAidHCRpu3cY/vtMi6e2lHbYPcR4EALh4uQo5P5Vg65uvctqvTt8C\nCYfnfcQ8zqWQSqWormvo9nLvf/gHzFM+CR+5J6pu1CHh4yMQMQxe+e9foazqGj758mvMCZsEt6FD\ncaG0DCv3HsTTwf+FcQG+nIeuqW+Ep0yGkJAQztfhk0wu55QNAHz5nRZtbW0I9PHCxctXEZeShjE+\n3njtuZkAgM++OgMPl2F4XO6JH0rL8d6eA1jw9FRMnxTMaf819Y1wdeX+C4Z0xrkUE4ODkXPmVLeX\nq7pRi0Ubd6Lu5i14uA6DcnwQvv14D9yGDUWTTofs7/Pw+6y/4W5TM7xl7vj1M09h/WuvWDR0bkkp\nJj/9jEXX4RPXbADg5p27WJeqQdWNOkiHDsFLzyix9Y1XTe+VulZXj5W/P4jrDY0Y7iZF5JwZ2PDa\nQs6z2Fo29ojzX7RTU1OxfHksbv3rL5xeluVLU7MOQ2csQEpKCpYtW9ZvczyIshlYOP+dIjQ0FK2t\nBpwvLOZznm6dLyyGwWCwmSfZAGUz0HAuhUKhgJ+vL9KOn+Rznm6lnTgJfz8/m7rjKZuBhXMphEIh\nomNicDT7NGobb/I5k1k3GhqRlX0G0TExNvWGN8pmYLEoPZVKBYFQiP1//oKveR5q/+dfQCAUQqXi\n/2OelqJsBg6LSuHu7o7Y2FhsP3wURRWX+JqpS0UVl7DjcBZiY2Nt8kM0lM3AYVef0b7ZYkRefr7N\nfg6ZshkYLD74dHJygiY9HecLiqE+eJiPmTpRH8xATlEJNOnpNn2nUzYDQ4++98nb2xvOzs7YmPwB\nHCViKCcE8TBau51HsrApLROJiYmIiIjg7XashbKxfz3+MrSwsDAYjUbE79qLZr0e00LGW/VVj9ZW\nA9YfSMemtEyo1WqsX7/eavvmG2Vj33r9BctJSUmIi4vD5KBAHFq/AmN8H+/1UEUVl6DauhvfFxYj\nMTERq1at6vU++wNlY5+s/q3jayLDEbNgrlW+WTs9I8Puv/WOsrE/vK1PET79KUTNa1+D4WEfuG9q\n1rWvwXDiJLKyzwzINRgoG/ti9ZWM6urqTKv1lJWXg2EYBPn7IGT0SMikLqbVemrqG5FbUoqCskoY\nDO2r9UTHxEClUg3Y19opG/vA+5p39095ubm4XlOD6ppqyGVyeMpkCA4JgUKhMJ0elbcndJVNQ0M9\ndDo9JBIxXF2lj2w2toC3UnQlNzcXCoUCWq3WZj4gRAgb/fohhIVKQQgLlYIQFioFISxUCkJYqBSE\nsFApCGGhUhDCQqUghIVKQQgLlYIQFioFISxUCkJYqBSEsFApCGGhUhDCQqUghIVKQQgLlYIQFioF\nISxUCkJYqBSEsFApCGGhUhDCQqUghIVKQQgLlYIQFioFISxUCkJYqBSEsFApCGGhUhDCQqUghIX3\n5b1ycnKg1WqRn5eHmupq1FyvgcxTBplcjonBwVAoFAgNDaUlrIjNsHopamtrTYsdlldUQCRiEOTv\ni+BRAZC7uZoWO6yua0DexZ9RUFaB1tb2xQ6XRUdDpVLB3d3dmiMRYhHelgyOmP5LRM1vXxbXUSI2\ne71mnb59WdzjJ3E0+zQti0v6ndUXl18bGYHoBc9ZZQF1TXo6wsLCejseIRbp9UF8UlISlEolXCUM\ncjNSEB+1qEeFAAAPVxdsjFqM3IwUuIgZKJVKJCcn93ZEQizSq0cKtVqNrVu3Yk1kBLa8EQmGYaw2\nWGurAeqDGdh5JAtqtRqbN2+22r4JeRhRT6+YlJSErVu3YsdbUVi9+GVrzgQAEIkYbI95HS5DBmPt\nli0YOnQoVq1aZfXbIYStR48U586dg1KpRNyScGyLVvExVwdr9x9CYuYxnD17FlOmTOH99sijzeJS\nNDU1YeKECXCVMPjmwC6rHjKZ09pqgHLZSjTqDci/cIFelSK8sviJdnx8PCorK6FZv7JPCgG0H0pp\nNqxAZWUl4uPj++Q2yaPLokeK2tpaeHl5Ye2ScMRHLeJzri5tSsvEjiPHUFVVBTc3tz6/ffJosOiR\nQqPRAG1tiHlpLl/zPFTMgrloMxrb5yCEJ5wfKYxGI0YGBED5RAAyNr7P91xmRW5KxLniclwsLaX3\nShFecP5fpdVqUV5Rgaj5s/icp1tR82ahrLwcWq22X+cgAxfnUuTk5EAkYjB5bCCf83Rr8thAMAxD\npSC8seiRIsjf96Fv7usLTo4SBPn7UCkIbziXIj8vD8GjAvichbOQ0SORl5vb32OQAYpzKerr6yF3\nc+VzFs5kUhc0NNT39xhkgOJcCr1eD4nYgc9ZOJOIHaDT6ft7DDJAcS6FWCyGTt/C5yyc6fQtkPTz\ncxsycHEuhVQqRXVdA5+zcFZT3whXV2l/j0EGKM6lmBgcjLyLP/M5C2e5JaUIDgnp7zHIAMW5FAqF\nAgVlFWju52P5pmYdCsoqoVAo+nUOMnBxLkVoaChaWw04X1jM5zzdOl9YDIPBQKUgvLHokcLP1xdp\nx0/yOU+30k6chL+fH5WC8IZzKYRCIaJjYnA0+zRqG2/yOZNZNxoakZV9BtExMfRmQMIbi/5nqVQq\nCIRC7P/zF3zN81D7P/8CAqEQKhX/H4Eljy6LSuHu7o7Y2FhsP3wURRWX+JqpS0UVl7DjcBZiY2Pp\nA0aEV3b1Ge2bLUbk5efTZ7QJryw+MHdycoImPR3nC4qhPniYj5k6UR/MQE5RCTTp6VQIwrsePVsN\nCwtDYmIidhw+ip1Hsqw9Uwc7j2S1n3bupK+3IX2ix1+GtmrVKty6dQtrt2xB4+072Prmq7x+QyB9\nERrpK73+guWkpCTExcVhclAgDq1fgTG+j/d6qKKKS1Bt3Y3vC4uRmJhIhSB9yurfOr4mMhwxC+Za\n5VvH0zMy6JCJ9Dne1qcIn/4Uoua1r0/h5Cgxf71mXfv6FCdOIiv7DK1PQfqd1VcyqqurM61kVFZe\nDoZhEOTvg5DRIyGTuphWMqqpb0RuSSkKyiphMLSvZBQdEwOVSkV/hyD9ivc17+6f8nJz0dBQD51O\nD4lEDFdXKYJDQqBQKEwneusGsQW8lYIQe0W/mglhoVIQwkKlIISFSkEIC5WCEBYqBSEsVApCWKgU\nhLD8f3NW/Yvr6SqbAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 28 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p.show_distancePartitions(vertex_size = 650)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "The Krein parameters are also nonnegative. Many Krein parameters are zero - in particular, the graph would be $Q$-polynomial for the natural ordering of the eigenvalues." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "0: [ 1 0 0 0 0 0]\n", " [ 0 132 0 0 0 0]\n", " [ 0 0 1617 0 0 0]\n", " [ 0 0 0 1617 0 0]\n", " [ 0 0 0 0 132 0]\n", " [ 0 0 0 0 0 1]\n", "\n", "1: [ 0 1 0 0 0 0]\n", " [ 1 50/3 343/3 0 0 0]\n", " [ 0 343/3 2450/3 686 0 0]\n", " [ 0 0 686 2450/3 343/3 0]\n", " [ 0 0 0 343/3 50/3 1]\n", " [ 0 0 0 0 1 0]\n", "\n", "2: [ 0 0 1 0 0 0]\n", " [ 0 28/3 200/3 56 0 0]\n", " [ 1 200/3 2380/3 700 56 0]\n", " [ 0 56 700 2380/3 200/3 1]\n", " [ 0 0 56 200/3 28/3 0]\n", " [ 0 0 0 1 0 0]\n", "\n", "3: [ 0 0 0 1 0 0]\n", " [ 0 0 56 200/3 28/3 0]\n", " [ 0 56 700 2380/3 200/3 1]\n", " [ 1 200/3 2380/3 700 56 0]\n", " [ 0 28/3 200/3 56 0 0]\n", " [ 0 0 1 0 0 0]\n", "\n", "4: [ 0 0 0 0 1 0]\n", " [ 0 0 0 343/3 50/3 1]\n", " [ 0 0 686 2450/3 343/3 0]\n", " [ 0 343/3 2450/3 686 0 0]\n", " [ 1 50/3 343/3 0 0 0]\n", " [ 0 1 0 0 0 0]\n", "\n", "5: [ 0 0 0 0 0 1]\n", " [ 0 0 0 0 132 0]\n", " [ 0 0 0 1617 0 0]\n", " [ 0 0 1617 0 0 0]\n", " [ 0 132 0 0 0 0]\n", " [ 1 0 0 0 0 0]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.kreinParameters()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "We check the remaining known feasibility conditions. We skip the sporadic nonexistence check since the intersection array is already included." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "p.check_feasible(skip = [\"sporadic\"])" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "We now compute the triple intersection numbers with respect to three vertices $u, v, w$ at mutual distances $2$. Note that we have $p^2_{22} = 5$, so such triples must exist. The parameter $a$ will denote the number of vertices adjacent to all of $u, v, w$." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "0: [0 0 0 0 0 0]\n", " [0 0 0 0 0 0]\n", " [0 0 1 0 0 0]\n", " [0 0 0 0 0 0]\n", " [0 0 0 0 0 0]\n", " [0 0 0 0 0 0]\n", "\n", "1: [ 0 0 0 0 0 0]\n", " [ 0 a 0 -a + 5 0 0]\n", " [ 0 0 0 0 0 0]\n", " [ 0 -a + 5 0 a + 45 0 0]\n", " [ 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0]\n", "\n", "2: [ 0 0 1 0 0 0]\n", " [ 0 0 0 0 0 0]\n", " [ 1 0 20*a + 92 0 -20*a + 150 0]\n", " [ 0 0 0 0 0 0]\n", " [ 0 0 -20*a + 150 0 20*a + 200 0]\n", " [ 0 0 0 0 0 0]\n", "\n", "3: [ 0 0 0 0 0 0]\n", " [ 0 -a + 5 0 a + 45 0 0]\n", " [ 0 0 0 0 0 0]\n", " [ 0 a + 45 0 11*a + 1055 0 -12*a + 160]\n", " [ 0 0 0 0 0 0]\n", " [ 0 0 0 -12*a + 160 0 12*a + 15]\n", "\n", "4: [ 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0]\n", " [ 0 0 -20*a + 150 0 20*a + 200 0]\n", " [ 0 0 0 0 0 0]\n", " [ 0 0 20*a + 200 0 -20*a + 605 0]\n", " [ 0 0 0 0 0 0]\n", "\n", "5: [ 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0]\n", " [ 0 0 0 -12*a + 160 0 12*a + 15]\n", " [ 0 0 0 0 0 0]\n", " [ 0 0 0 12*a + 15 0 -12*a + 20]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "S222 = p.tripleEquations(2, 2, 2, params = {\"a\": (1, 1, 1)})\n", "S222" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "The number of vertices at distance $5$ from all of $u, v, w$ is a nonnegative integer, implying that the parameter $a$ is either $0$ or $1$." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a\n", "-12*a + 20\n" ] } ], "source": [ "print(S222[1, 1, 1])\n", "print(S222[5, 5, 5])" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Let us now consider the set $A$ of common neighbours of $u$ and $v$, and the set $B$ of vertices at distance $2$ from both $u$ and $v$. Their sizes are given by the intersection numbers $p^2_{11}$ and $p^2_{22}$." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5\n", "243\n" ] } ], "source": [ "print(p.p[2, 1, 1])\n", "print(p.p[2, 2, 2])" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "By the above, each vertex in $B$ has at most one neighbour in $A$, so there are at most $243$ edges between $A$ and $B$. However, each vertex in $A$ is adjacent to both $u$ and $v$, and the other $k - 2 = 53$ neighbours are in $B$, amounting to a total of $5 \\cdot 53 = 265$ edges. We have arrived to a contradiction, and we must conclude that a graph with intersection array $\\{55, 54, 50, 35, 10; 1, 5, 20, 45, 55\\}$ **does not exist**." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 7.6", "language": "", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }