{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Nonexistence of a distance-regular graph with intersection array $\\{(2r+1)(4r+1)(4t-1), 8r(4rt-r+2t), (r+t)(4r+1); 1, (r+t)(4r+1), 4r(2r+1)(4t-1)\\}$\n", "\n", "We will show that a distance-regular graph with intersection array $\\{(2r+1)(4r+1)(4t-1), 8r(4rt-r+2t), (r+t)(4r+1); 1, (r+t)(4r+1), 4r(2r+1)(4t-1)\\}$, where $r, t \\ge 1$, does not exist. The intersection array arises for graphs of diameter $3$ with $b_2 = c_2$ and $p^3_{33}$ even which are $Q$-polynomial with respect to the natural ordering of eigenvalues and contain a maximal $1$-code that is both locally regular and last subconstituent perfect. See [Extremal $1$-codes in distance-regular graphs of diameter $3$](http://link.springer.com/article/10.1007/s10623-012-9651-0) by A. Jurišić and J. Vidali, where the theory for dealing with such intersection arrays has been developed." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%display latex\n", "import drg" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This family is not entirely feasible, however, we will find two infinite feasible subfamilies." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "8*(16*r^2*t - 4*r^2 + 12*r*t - 2*r + t)*(2*r + 1)*t/(r + t)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "r, t = var(\"r t\")\n", "p = drg.DRGParameters([(2*r+1)*(4*r+1)*(4*t-1), 8*r*(4*r*t-r+2*t), (r+t)*(4*r+1)],\n", " [1, (r+t)*(4*r+1), 4*r*(2*r+1)*(4*t-1)])\n", "p.order(expand=True, factor=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The two feasible subfamilies can be obtained by setting $t = 4r^2$ and $t = 2r(2r+1)$, respectively." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "Parameters of a distance-regular graph with intersection array {(4*r + 1)^2*(4*r - 1)*(2*r + 1), 8*(16*r^2 + 8*r - 1)*r^2, (4*r + 1)^2*r; 1, (4*r + 1)^2*r, 4*(4*r + 1)*(4*r - 1)*(2*r + 1)*r}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "64*(8*r^2 + 4*r - 1)*(2*r + 1)*r^2" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pA = p.subs(t == 4*r^2)\n", "pA.intersectionArray(expand=True, factor=True)\n", "show(pA)\n", "show(pA.order(expand=True, factor=True))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "Parameters of a distance-regular graph with intersection array {(16*r^2 + 8*r - 1)*(4*r + 1)*(2*r + 1), 8*(4*r + 3)*(4*r + 1)*r^2, (4*r + 3)*(4*r + 1)*r; 1, (4*r + 3)*(4*r + 1)*r, 4*(16*r^2 + 8*r - 1)*(2*r + 1)*r}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "128*(2*r + 1)^3*r^2" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pB = p.subs(t == 2*r*(2*r+1))\n", "pB.intersectionArray(expand=True, factor=True)\n", "show(pB)\n", "show(pB.order(expand=True, factor=True))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us check that the first members of each family are indeed feasible. We skip the family nonexistence check since the intersection array of the entire family is already included." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "Parameters of a distance-regular graph with intersection array {225, 184, 25; 1, 25, 180}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "2112" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pA1 = pA.subs(r == 1)\n", "show(pA1)\n", "show(pA1.order())\n", "pA1.check_feasible(skip=[\"family\"])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "Parameters of a distance-regular graph with intersection array {345, 280, 35; 1, 35, 276}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "3456" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pB1 = pB.subs(r == 1)\n", "show(pB1)\n", "show(pB1.order())\n", "pB1.check_feasible(skip=[\"family\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now compute the Krein parameters. We have $q^1_{13} = q^1_{31} = q^3_{11} = 0$, so the graph would be $Q$-polynomial with respect to the natural ordering of the eigenvalues." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "[0, 0, 0]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.set_vars([t, r])\n", "[p.q[1, 1, 3], p.q[1, 3, 1], p.q[3, 1, 1]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now compute the triple intersection numbers with respect to three vertices $u, v, w$ at mutual distances $3$. Let us first check that $p^3_{33}$ is positive." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "4*r" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.p[3, 3, 3].factor().simplify_full()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The parameter $\\alpha$ will denote the number of vertices at distance $3$ from all of $u, v, w$. Let us count the number of vertices at distance $1$ or $2$ from one of $u, v, w$ and $3$ from the other two vertices." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "[(alpha - 4*r + 1)*(4*r + 1)/(4*r - 1),\n", " (alpha - 4*r + 1)*(4*r + 1)/(4*r - 1),\n", " (alpha - 4*r + 1)*(4*r + 1)/(4*r - 1),\n", " -8*(alpha - 4*r + 1)*r/(4*r - 1),\n", " -8*(alpha - 4*r + 1)*r/(4*r - 1),\n", " -8*(alpha - 4*r + 1)*r/(4*r - 1)]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "alpha = var(\"alpha\")\n", "S333 = p.tripleEquations(3, 3, 3, params={alpha: (3, 3, 3)})\n", "[S333[s].expand().factor() for s in [(1, 3, 3), (3, 1, 3), (3, 3, 1), (2, 3, 3), (3, 2, 3), (3, 3, 2)]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that for the above expressions to be nonnegative, we must have $a = 4r - 1$, and then they are all equal to zero. Consequently, all of the $a_3$ vertices adjacent to one of $u, v, w$ which are at distance $3$ from another of these vertices are at distance $2$ from the remaining vertex in the triple." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "(2*r + 1)*(4*t - 1)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "[(2*r + 1)*(4*t - 1),\n", " (2*r + 1)*(4*t - 1),\n", " (2*r + 1)*(4*t - 1),\n", " (2*r + 1)*(4*t - 1),\n", " (2*r + 1)*(4*t - 1),\n", " (2*r + 1)*(4*t - 1)]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "S333a = S333.subs(alpha == 4*r - 1)\n", "show(p.a[3].expand().factor())\n", "[S333a[s].expand().factor() for s in [(1, 2, 3), (3, 1, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (1, 3, 2)]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above results mean that any two vertices $v, w$ at distance $3$ uniquely define a set $C$ of $4r + 2$ vertices mutually at distance $3$ containing $v, w$ - i.e., a $1$-code in the graph. Furthermore, since $a_3$ is nonzero, for each $u$ in $C \\setminus \\{v, w\\}$, there are vertices at distances $3, 1, 2$ from $u, v, w$. We now check that $c_3 = a_3 p^3_{33}$." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "4*(2*r + 1)*r*(4*t - 1)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "4*(2*r + 1)*r*(4*t - 1)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show(p.c[3].expand().factor())\n", "show((p.a[3] * p.p[3, 3, 3]).expand().factor())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let $u'$ be a neighbour of $v$. Since $u'$ is not in $C$, it may be at distance $3$ from at most one vertex of $C$. As there are $c_3$ and $a_3$ neighbours of $v$ that are at distances $2$ and $3$ from $w$, respectively, the above equality implies that each neighbour of $v$ is at distance $3$ from precisely one vertex of $C$.\n", "\n", "Suppose now that $u'$ is at distance 2 from $w$. Let us count the number of vertices at distances $1, 1, 3$ from $u', v, w$." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "2*t - 1/2" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "beta = var(\"beta\")\n", "S123 = p.tripleEquations(1, 2, 3, params={beta: (3, 3, 3)}).subs(beta == 1)\n", "S123[1, 1, 3]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As this value is nonintegral, we conclude that a graph with intersection array $\\{(2r+1)(4r+1)(4t-1), 8r(4rt-r+2t), (r+t)(4r+1); 1, (r+t)(4r+1), 4r(2r+1)(4t-1)\\}$ and $r, t \\ge 1$ **does not exist**." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 8.9.beta2", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.15" } }, "nbformat": 4, "nbformat_minor": 2 }