{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Nonexistence of a $Q$-polynomial association scheme with Krein array $\\{24, 20, 36/11; 1, 30/11, 24\\}$\n", "\n", "We will show that a $Q$-polynomial association scheme with Krein array $\\{24, 20, 36/11; 1, 30/11, 24\\}$ does not exist." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%display latex\n", "import drg" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Such a scheme would have $225$ vertices." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "225" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p = drg.QPolyParameters([24, 20, 36/11], [1, 30/11, 24])\n", "p.order()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The scheme has two $Q$-polynomial orderings $(0, 1, 2, 3)$ and $(0, 3, 2, 1)$, so we have $q^3_{11} = q^1_{13} = q^1_{31} = q^1_{33} = q^3_{13} = q^3_{31} = 0$." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "0: [ 1 0 0 0]\n", " [ 0 24 0 0]\n", " [ 0 0 176 0]\n", " [ 0 0 0 24]\n", "\n", "1: [ 0 1 0 0]\n", " [ 1 3 20 0]\n", " [ 0 20 132 24]\n", " [ 0 0 24 0]\n", "\n", "2: [ 0 0 1 0]\n", " [ 0 30/11 18 36/11]\n", " [ 1 18 139 18]\n", " [ 0 36/11 18 30/11]\n", "\n", "3: [ 0 0 0 1]\n", " [ 0 0 24 0]\n", " [ 0 24 132 20]\n", " [ 1 0 20 3]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.kreinParameters()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The intersection numbers are integral and nonnegative." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "0: [ 1 0 0 0]\n", " [ 0 88 0 0]\n", " [ 0 0 88 0]\n", " [ 0 0 0 48]\n", "\n", "1: [ 0 1 0 0]\n", " [ 1 43 32 12]\n", " [ 0 32 32 24]\n", " [ 0 12 24 12]\n", "\n", "2: [ 0 0 1 0]\n", " [ 0 32 32 24]\n", " [ 1 32 43 12]\n", " [ 0 24 12 12]\n", "\n", "3: [ 0 0 0 1]\n", " [ 0 22 44 22]\n", " [ 0 44 22 22]\n", " [ 1 22 22 3]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.pTable()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The parameters do not exceed the absolute bound." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "{}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.check_absoluteBound()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let $w, x, y, z$ be vertices such that $z$ is in relation $1$ with $x$ and $y$, and $w, x, y$ are mutually in relation $3$. Note that we have $p^3_{11} = 22$ and $p^3_{33} = 3$, so such vertices must exist. We first compute the triple intersection numbers with respect to $x, y, z$. The parameters $\\alpha$ and $\\beta$ will denote the numbers of vertices in relations $(2, 1, 1)$ and $(2, 2, 1)$, respectively, to $x, y, z$." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "0: [0 0 0 0]\n", " [0 0 0 0]\n", " [0 0 0 0]\n", " [0 1 0 0]\n", "\n", "1: [ 0 0 0 0]\n", " [ 1 -7/2*alpha - beta + 97 alpha - 16 5/2*alpha + beta - 60]\n", " [ 0 alpha beta + 8 -alpha - beta + 36]\n", " [ 0 5/2*alpha + beta - 54 -alpha - beta + 40 -3/2*alpha + 36]\n", "\n", "2: [ 0 0 0 0]\n", " [ 0 alpha beta + 8 -alpha - beta + 36]\n", " [ 0 beta -alpha - 7/2*beta + 52 alpha + 5/2*beta - 30]\n", " [ 0 -alpha - beta + 32 alpha + 5/2*beta - 28 -3/2*beta + 18]\n", "\n", "3: [ 0 1 0 0]\n", " [ 0 5/2*alpha + beta - 54 -alpha - beta + 40 -3/2*alpha + 36]\n", " [ 0 -alpha - beta + 32 alpha + 5/2*beta - 28 -3/2*beta + 18]\n", " [ 0 -3/2*alpha + 33 -3/2*beta + 12 3/2*alpha + 3/2*beta - 42]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.tripleEquations(3, 1, 1, params={\"alpha\": (2, 1, 1), \"beta\": (2, 2, 1)})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From $[1\\ 1\\ 3] \\ge 0$ and $[3\\ 3\\ 2] \\ge 0$, it follows that $60 - 5\\alpha/2 \\le \\beta \\le 8$. Using this and $[3\\ 3\\ 1] \\ge 0$, we obtain $20.8 \\le a \\le 22$, but since $\\alpha$ and $\\beta$ must clearly be even integers, it follows that there are two solutions with $\\alpha = 22$ and $\\beta \\in \\{6, 8\\}$. In both cases we have $[3\\ 3\\ 1] = 0$, implying that $w$ cannot be in relation $1$ with $z$ for any choice of $w, x, y, z$ as above.\n", "\n", "We now compute the triple intersection numbers with respect to $w, x, y$. The parameters $\\gamma$ and $\\delta$ will denote the numbers of vertices in relations $(1, 1, 2)$ and $(1, 2, 2)$, respectively, to $w, x, y$." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "0: [0 0 0 0]\n", " [0 0 0 0]\n", " [0 0 0 0]\n", " [0 0 0 1]\n", "\n", "1: [ 0 0 0 0]\n", " [ 0 -delta - 7/2*gamma + 66 gamma delta + 5/2*gamma - 44]\n", " [ 0 gamma delta -delta - gamma + 44]\n", " [ 0 delta + 5/2*gamma - 44 -delta - gamma + 44 -3/2*gamma + 22]\n", "\n", "2: [ 0 0 0 0]\n", " [ 0 gamma delta -delta - gamma + 44]\n", " [ 0 delta -7/2*delta - gamma + 66 5/2*delta + gamma - 44]\n", " [ 0 -delta - gamma + 44 5/2*delta + gamma - 44 -3/2*delta + 22]\n", "\n", "3: [ 0 0 0 1]\n", " [ 0 delta + 5/2*gamma - 44 -delta - gamma + 44 -3/2*gamma + 22]\n", " [ 0 -delta - gamma + 44 5/2*delta + gamma - 44 -3/2*delta + 22]\n", " [ 1 -3/2*gamma + 22 -3/2*delta + 22 3/2*delta + 3/2*gamma - 42]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.tripleEquations(3, 3, 3, params={\"gamma\": (1, 1, 2), \"delta\": (1, 2, 2)})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From $[1\\ 3\\ 3] \\ge 0$ and $[2\\ 3\\ 3] \\ge 0$, it follows that $\\gamma, \\delta \\le 44/3$, while $[3\\ 3\\ 3] \\ge 0$ implies $\\gamma + \\delta \\ge 28$. Since $\\gamma$ and $\\delta$ must clearly be even integers, it follows that there is only one solution with $\\gamma = \\delta = 14$ and therefore $[1\\ 1\\ 1] = 3$. This would imply the existence of a vertex $z$ as above that is in relation $1$ with $w$ - a contradiction! We thus conclude that a $Q$-polynomial association scheme with Krein array $\\{24, 20, 36/11; 1, 30/11, 24\\}$ **does not exist**." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 8.9.beta2", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.15" } }, "nbformat": 4, "nbformat_minor": 2 }