{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Nonexistence of a $Q$-polynomial association scheme with Krein array $\\{2r^2-1, 2r^2-2, r^2+1; 1, 2, r^2-1\\}$ and $r$ odd\n",
"\n",
"We will show that a $Q$-polynomial association scheme with Krein array $\\{2r^2-1, 2r^2-2, r^2+1; 1, 2, r^2-1\\}$ and $r$ odd does not exist. This Krein array is feasible for all $r \\ge 2$. For $r = 2^j$, this Krein array is realized by the duals of Kasami codes with minimum distance $5$."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%display latex\n",
"import drg"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Such a scheme would have $4r^4$ vertices."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"4*r^4"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"r = var(\"r\")\n",
"p = drg.QPolyParameters([2*r^2-1, 2*r^2-2, r^2+1], [1, 2, r^2-1])\n",
"p.order(expand=True, factor=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Since the scheme is $Q$-polynomial, we have $q^1_{13} = q^1_{31} = q^3_{11} = 0$. Additionally, we have $q^1_{11} = 0$."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[0, 0, 0, 0]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"[p.q[1, 1, 1], p.q[1, 1, 3], p.q[1, 3, 1], p.q[3, 1, 1]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The intersection numbers can be checked to be nonnegative and integral for both even and odd values of $r \\ge 2$."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"0: [ 1 0 0 0]\n",
" [ 0 1/2*(2*r^2 - 1)*(r + 1)*r 0 0]\n",
" [ 0 0 (2*r^2 - 1)*(r^2 + 1) 0]\n",
" [ 0 0 0 1/2*(2*r^2 - 1)*(r - 1)*r]\n",
"\n",
"1: [ 0 1 0 0]\n",
" [ 1 1/4*(r + 3)*(r + 2)*(r - 1)*r 1/2*(r^2 + 1)*(r + 2)*(r - 1) 1/4*(r + 1)*(r - 1)*(r - 2)*r]\n",
" [ 0 1/2*(r^2 + 1)*(r + 2)*(r - 1) (r^2 + 1)*r^2 1/2*(r^2 + 1)*(r - 1)*r]\n",
" [ 0 1/4*(r + 1)*(r - 1)*(r - 2)*r 1/2*(r^2 + 1)*(r - 1)*r 1/4*(r + 2)*(r - 1)^2*r]\n",
"\n",
"2: [ 0 0 1 0]\n",
" [ 0 1/4*(r + 2)*(r + 1)*(r - 1)*r 1/2*(r + 1)*r^3 1/4*(r + 1)*(r - 1)*r^2]\n",
" [ 1 1/2*(r + 1)*r^3 (r^2 + 2)*(r + 1)*(r - 1) 1/2*(r - 1)*r^3]\n",
" [ 0 1/4*(r + 1)*(r - 1)*r^2 1/2*(r - 1)*r^3 1/4*(r + 1)*(r - 1)*(r - 2)*r]\n",
"\n",
"3: [ 0 0 0 1]\n",
" [ 0 1/4*(r + 1)^2*(r - 2)*r 1/2*(r^2 + 1)*(r + 1)*r 1/4*(r + 2)*(r + 1)*(r - 1)*r]\n",
" [ 0 1/2*(r^2 + 1)*(r + 1)*r (r^2 + 1)*r^2 1/2*(r^2 + 1)*(r + 1)*(r - 2)]\n",
" [ 1 1/4*(r + 2)*(r + 1)*(r - 1)*r 1/2*(r^2 + 1)*(r + 1)*(r - 2) 1/4*(r + 1)*(r - 2)*(r - 3)*r]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p.pTable(factor=True, simplify=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us check that the case $r = 3$ satisfies the known feasibility conditions. We skip the family nonexistence check since the Krein array of the members of family with $r$ odd is already included."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"p.subs(r == 3).check_feasible(skip=[\"family\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now compute the triple intersection numbers with respect to three vertices $x, y, z$ such that $x$ is in relation $1$ with $y$ and $z$, and $y$ is in relation $2$ with $z$. Note that we have $p^2_{11} = r(r+2)(r^2-1)/4 > 0$ for all $r \\ge 2$, so such triples must exist. The parameters $\\alpha, \\beta, \\gamma, \\delta$ will denote the number of vertices in relations $(1, 3, 1), (2, 3, 3), (3, 1, 1), (3, 3, 3)$, respectively, to $x, y, z$."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-1/2*r^4 + 2*r^2 + alpha + 3*beta + 4*delta - gamma"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"S112 = p.tripleEquations(1, 1, 2, params={'alpha': (1, 3, 1), 'beta': (2, 3, 3), 'gamma': (3, 1, 1), 'delta': (3, 3, 3)})\n",
"S112[1, 2, 3]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We see that the above triple intersection number can only be integral when $r$ is even. We thus conclude that a $Q$-polynomial association scheme with Krein array $\\{2r^2-1, 2r^2-2, r^2+1; 1, 2, r^2-1\\}$ and $r$ odd **does not exist**."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 8.9.beta2",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.15"
}
},
"nbformat": 4,
"nbformat_minor": 2
}