
Introduction to Numerical Computing

Numerically Stable Collision Detection

Giacomo Bergami

2/10/2017

1/33

Numerical Computing

Objectives

Understand the di�erence between continuous and discrete

representation.

Represent a decimal integer in binary format and vice versa.

Recognizing float’s sign, exponent and mantissa via bit fields.

Understand how discrete representation generates errors via

approximations.

Determine which numeric function has the least total error.

2/33

Introduction: Modelling

Modern methodologies for examining real world phenomena, for

supporting production activities, mechanical design (CAD) to video

games, includes the following approximation steps:

Real World to Mathematical Model (modelling)

Everything is in “continuous” representation (e.g., ∀n. Rn
).

Mathematical Model to Computational Representation

(numerical computing)

The mathematical model is converted into a discrete representation

(finite number of digits).

3/33

Introduction: Towards Approximation

Given that the computer is a discrete machine, it can represent

exactly models based on discrete sets of symbols.

Discretization implies a reduction in precision.

The solution obtained is calculated from a finite set of numbers

through a finite number of machine operations and a finite set

of possible numbers.

Figure 1: Analogue vs. Digital Soundwaves

4/33

Basis Representation

The representation of a real number α 6= 0 under a base β ≥ 2,

consists of an unique exponent p ∈N and some integers

{αi}i∈N\{0} such that α1 6= 0 and 0 ≤ αi < β such that:

α = ±
(

8

∑
i=0

αiβ
−i

)
βp

where ∑ 8

i=0 αiβ
−i

is called mantissa.

5/33

From Decimal To Binary and Viceversa

8910 = 10110012

44 · 2 + 1 = 89

22 · 2 + 0 = 44

11 · 2 + 0 = 22

5 · 2 + 1 = 11

2 · 2 + 1 = 5

1 · 2 + 0 = 2

0 · 2 + 1 = 1

10110012 = 1 · 26 + 1 · 24 + 1 · 23 + 1 = 8910 6/33

Finite Numbers

The finite number system F(β,t,λ,ω) The set of all the possible

numbers representable in a basis β ≥ 2 with t significant cyphers

and a interval bound over the exponent p ∈ [λ, ω]:

F(β,t,λ,ω) = {0} ∪
{

α ∈ R

∣∣∣∣∣ α = ±
(

t

∑
i=0

αiβ
−i

)
βp, λ ≤ p ≤ ω

}
This is also called normalized representation.

The machine epsilon ε ≥ 1
2 β1−t

is the distance between a

number and the next value representable by a floating number.

2ε and ε will be respectively the truncating and rounding units.

When p /∈ [λ, ω], then we have representation errors:

underflow: p < λ

overflow: p > ω

7/33

IEEE Floating Point (1)

Floating point represent real numbers using n = 32 bits. The bit

representation determine the basis β = 2: then, such bits are

distributed among the t mantissa digits and the exponent p that

can have ω− λ + 1 possible values. For binary representation,

we assume that α1 is used to store the sign.

Every operation ⊕ of floating point arithmetic approximating

the exact + operation is exact up to a relative error of size at

most ε: x⊕ y = (x + y)(1 + ε)

8/33

IEEE Floating Point (2)

See the printing_float_representation() within the source code

for more concrete examples.

Figure 2: IEEE Single Precision Float Representation

9/33

Error Propagation

Numeric operation over finite numbers propagate errors, so that

at each computation step, the final output will deteriorate.

Given u an architecture-specific rounding unit, we can prove

that:

Multiplications and divisions are numerical stable: each operation

provides an error of at most 3u.

Sums and subtractions x± y undergo catastrophic cancellation when

x± y→ 0.

Given two functions computing the same mathematical function,

we prefer the one performing less mathematical operations.

10/33

Error Propagation: Example

Let us suppose that we want to implement the pow operator, i.e.: xy
:

An iterative approach multiplying x y− 1 times might seem a

good idea (iterative power),

but xy = eloge(x)·y
is more numerically stable.

Please use the default mathematical operations provided in the

standard C/C++ library.

A possible implementation for double precision:

http://www.netlib.org/fdlibm/e_pow.c

11/33

http://www.netlib.org/fdlibm/e_pow.c

Total Error

The total error is given by the discrepancy between the expected

value returned by the perfect function and the one returned by the

numeric function:

Given a numeric function f̃ approximating a mathematical

function f , then the total error of f̃ is defined as

∣∣∣ f̃ (ñ)− f (n)
f (n)

∣∣∣,
where ñ is the numeric representation of n.

12/33

Total Error: Example

Let us recall the definition of the Binet’s Formula from the last

tutorial: F(n) =
√

5
5

((√
5+1
2

)n
−
(

1−
√

5
2

)n)
Implement a binet_formula_error using the iterative power
function.

Evaluate the total error between binet_formula_error and the

value returned by the previously defined function.

We might observe from total_error_plot() that:

we start to see a non-zero error from n ≥ 32

the error increases with n

4.59 · 10−7
for n = 32

1.07 · 10−6
for n = 89

13/33

Go�schalk’s Algorithm for OBB
Overlap Tests

Objectives

Using the Separating Axis Theorem (SAT) for OBBs.

Understand how to make specific operations more robust by

implementing enhanced use-case specific functions.

Understand how to make algorithms more robust by both

reducing the number of operations and by removing (when

possible) non-robust computations (e.g., cross products).

14/33

Overlap Tests

Linear Programming: test if at least one box corner is inside a

box a�er representing each box via plane equations.

Requires to implement a too powerful framework for solution of linear

programming problems.

Distance Computation (GJK, LC): non-zero distance implies

separation, while zero distance implies contact.

Too general for this simple problem.

15/33

Separating Axis Theorem for AABB (1/3)

The Separating Axis Theorem holds for convex polygons (such as

AABBs and OBBs).

If we draw a straight line between two convex shapes

(separating line), they do not overlap.

This reduces to prove that two convex shapes do not overlap if

there is an axis in which the two object’s projections do not

overlap.

Figure 3: Example of some bounding boxes
16/33

Separating Axis Theorem for AABB (2/3)

We can represent an AABB in the following ways:

the minimum and maximum coordinate value

the minimum coordinate value and the diameter extents from

this corner

the center coordinate and the halfwidth extents

17/33

Separating Axis Theorem for AABB (2/3)

Figure 4: https://hackmd.io/@US4ofdv7Sq2GRdxti381_A/ryFmIZrsl

18/33

https://hackmd.io/@US4ofdv7Sq2GRdxti381_A/ryFmIZrsl

Generalized Separating Axis Theorem (1/2)

Figure 5: L is the separation axis, represented as a vector. Let T be the

vector between the two OBBs centers and L · T its projection over the

separation axis. The OBBs will be separated if the sum of the projected radii

(rA and rB) is less than L · T.

|T · L| > rA + rB

19/33

Generalized Separating Axis Theorem (2/2)

Given two general convex polytopes with F faces and E edges, it

is su�icient to test E2 + 2 · F candidate axes to determine the

overlap.

For an OBB with F = 6 and E = 12, this would require 156 axes check.

The projection over the axis would require O(V) time per axis.

Using a vertex search data structure, then the test will take

O(V2 log V) per axis.

In his OBB Overlap Test PhD thesis, Stefan Go�schalk showed that we

can reduce the number of comparisons to 15: we have only 3 distinct

normals and 3 distinct face directions.

20/33

OBB

An OBB A is just an AABB with an arbitrary orientation. We can

represent A as:

collection of 8 vertices

collection of 6 planes

a center point TA
, an orientation matrix RA

, three halfedge

lengths a1, a2, a3.

The last representation will provide a cheaper OBB-OBB intersection

test, as it minimizes the number of operations required for the

intersections (see previous slide).

21/33

Generalized Separating Axis Theorem for OBBs

We can show that the previous statement reduces to the following

computation:

|(TA−TB) · n|/|n| >
(a1|RA

1 · n|+ a2|RA
2 · n|+ a3|RA

3 · n|)
|n| +

(b1|RB
1 · n|+ b2|RB

2 · n|+ b3|RB
3 · n|)

|n|

where RA
j is the j-th column of the matrix RA

, and each candidate
vector n is defined as follows:

case 1: the 3 columns of RA
(direction axes of RA

)

case 2: the 3 columns of RB
(direction axes of RB

)

case 3: the 9 cross product of such columns.
22/33

Problem/Solution 1

When two direction axes are parallel, they provide a zero vector

n having |n| = 0.

We want to avoid the division by zero, and therefore we can

multiply all the sides by |n|. This is possible because:

If such axes are parallel, there will be no separation axis, and therefore

the test might as well be skipped.

Zero norm axes will reduce to a zero length projection, leading to a

0 > 0 test.

See NaifOverlap function with doRobust=false. See also

normalizeNotZeroVector.

23/33

Problem/Solution 2 (1/2)

Due to the catastrophic cancellation, we might have a zero vector

when all its components are strictly smaller than ε.

Due to the catastrophic cancellation, nearly parallel vectors

involved in the cross product might lead to a zero vector.

If they are nearly parallel, they will be in a same plane P: try to compute

another axis perperndicular to one of the vector and in P.

Vectors involved in the cross product with a large magnitude

might a�ect the cross product computation.

Given that we only care for the vectors’ directions, we can normalize all

the vectors involved in the cross product.

See NaifOverlap function with doRobust=true.

24/33

Problem/Solution 2 (2/2)

1: function SepAxisCrossProd(
~ab, ~cb)

2: ~v = ~ab× ~cb
3: if ~v u 0 then
4: return 〈v, true〉
5: else
6: ~ca = c− a
7: ~n = ~ab× ~ca
8: ~m = ~ab×~n
9: if ~v u 0 then return 〈v, true〉

10: elsereturn 〈0, false〉
11: end if
12: end if
13: end function

25/33

Observation

A�er solving the first problem, we might have 7 dot products, 7

absolute values, 1 vector subtraction, 6 vector-scalar

multiplications and 4 scalar additions. This reduces to 39

multiplications, 21 additions/subtractions, and 7 absolute values

for one axis. This reduces to 1005 arithmetic operations for all

the 15 axes.

Can we reduce the amount of arithmetic operations?

A�er solving the second problem, we can make an algorithm

with the cross product problem more robust. Nevertheless, the

algorithm would be even more robust if we might get rid of the

cross product as a whole.

Can we make the algorithm more robust?
Hint, we need to perform additional mathematical operations and

simplifications.

26/33

Solution 3 (1/2)

1. If we expand the definition with the actual candidate vectors, we

obtain the following simplifications:

For case 1, ra = aj for each axis RA
j .

For case 2, rb = bj for each axis RB
j .

For case 3, all the cross products on the right handside simplify into a

dot product.

2. If we express B in the coordinate system of A, we have that

RA = I3, TA
is the origin of the axes and RB

is the composition

of the two orientation matrices.

For case 1, the RA = I3 reduces the dot products into absolute values.

We have no dot product.

For case 2, the RA = I3 reduces the dot products into absolute values.

We have only one dot product per axis.

For case 3, the RA = I3 reduces the dot products into absolute values.

We only have two dot products.

27/33

Let’s Code!

Further optimizations.

3. We can save more operations by computing |RB| in advance.

4. Adding a small number to |RB|, i.e. |RB|+ ε, increases the

right-handside computation when the vectors will be nearly

zero.

A�er providing such operations, we have a function

RobustOBBOverlap which is more robust than the optimized

NaifOverlap.

See the last test in obb_overlap_testing.

28/33

Interval Arithmetic

Objectives

Understanding Interval Arithmetic

Coping with rounding errors via Interval Arithmetics in some

hard use case scenarios.

29/33

Introduction

In some other scenarios, we cannot exploit mathematical tricks for

generating a more robust version of the problem. In this scenario, we

need to exploit another technique:

Interval Arithmetic provides reliable results by bounding on

rounding errors and measurement errors in mathematical

computation. Some practical use cases are:

keeping track of and handling rounding errors directly during the

calculation when no other optimization is possible

represent measurement uncertainties from physical and technical

parameters

In particular, we can express any real x ∈ R as a [a, b] where

a, b ∈ F and a ≤ x ≤ b.

30/33

Interval Arithmetic

[a, b] + [c, d] = [a + c, b + d]

[a, b]− [c, d] = [a− d, b− c]

[a, b] · [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

[a, b]/[c, d] = [a, b] ·
[

1
d

,
1
c

]
0 /∈ [c, d]

[a, b]2 =

[0, max(a2, b2)] 0 ∈ [a, b]

[min(a2, b2), max(a2, b2)] oth.

See examples_on_interval_arithmetic for some implementation.
31/33

Sphere-AABB Collision Detection

Given that we can describe a sphere of radius r centered in

(cx, cy, cz) as S(p) = (px − cx)2 + (py − cy)2 + (pz − cz)2 − r2

where all the points outside of the sphere g have S(g) > 0, we can

represent the same formula in interval arithmetic as follows:

S(p) = (px − [cx, cx])
2 + (py − [cy, cy])

2 + (pz − [cz, cz])
2 − [r, r]2

So, we will have that min(S(p)) > 0 if p lies outside the sphere.

Given the minimum and maximum coordinate representation of the

AABB, we can represent it as three intervals

See sphere_AABB_intersection for some implementation.

32/33

Further Work

Two dimensional objects can be also used: one of the two

dimensions has halfsize of 0. You can now further reduce the

number of computations.

Another application of Go�schalk’s Algorithm is Ray Casting.

Hint, you need to assume that one of the halfsizes is 8.

Given the machine epsilon ε, we can express x as a x± ε: change

the current implementation of the IntervalArithmetic

constructor over one single point accordingly.

Investigate the uses of Inverval Arithmetic for other bounding

boxes.

33/33

	Numerical Computing
	Gottschalk's Algorithm for OBB Overlap Tests
	Interval Arithmetic

