Booting Linux

Jack Rosenthal
February 23, 2017

Mines Linux Users Group



Master Boot Record



Floppy Disks

- Floppy disks organized into 512-byte
sectors




Floppy Disks

- Floppy disks organized into 512-byte
sectors

- Intel 8086 originally only allowed
booting from floppy




Floppy Disks

- Floppy disks organized into 512-byte
sectors

- Intel 8086 originally only allowed
booting from floppy

- First sector is the boot sector, 512 bytes
of executable x86 machine code which
runs in real mode.




The 10 MB Hard Disk Came

- IBM wanted a way to boot their systems
off their new 10 MB hard disk in 1983




The 10 MB Hard Disk Came

- IBM wanted a way to boot their systems
off their new 10 MB hard disk in 1983

- They added a 4-partition table to the
end of the 512-byte boot sector




The 10 MB Hard Disk Came

- IBM wanted a way to boot their systems
off their new 10 MB hard disk in 1983

- They added a 4-partition table to the
end of the 512-byte boot sector

- Boot sectors compatible with older
systems because the machine code
ends before the partition data




The 10 MB Hard Disk Came

- IBM wanted a way to boot their systems
off their new 10 MB hard disk in 1983

- They added a 4-partition table to the
end of the 512-byte boot sector

- Boot sectors compatible with older
systems because the machine code
ends before the partition data

- This is called Master Boot Record




Master Boot Record

Address

Hex Dec
1000 +0
+1BEpey | +446
+1CEhex | +462
+1DEpey | +478
+1EEpey | +494
+1FEpex | +510
+1FFhex | +511

Description

Bootstrap code area
Partition entry Nel
Partition entry Ne2
Partition entry Ne3
Partition entry Ne4

55hex

AAhex

Partition table
(for primary partitions)

Boot signaturel?l

Total size: 446 + 4x16 + 2

Size
(bytes)
446
16
16
16

16

512



What does a MBR bootloader do?

1. Determine the partition to boot from



What does a MBR bootloader do?

1. Determine the partition to boot from

2. Determine where your kernel image is on the partition



What does a MBR bootloader do?

1. Determine the partition to boot from
2. Determine where your kernel image is on the partition

3. Load the kernel into memory



What does a MBR bootloader do?

Determine the partition to boot from
Determine where your kernel image is on the partition

Load the kernel into memory

= & N

Enable protected mode



What does a MBR bootloader do?

Determine the partition to boot from
Determine where your kernel image is on the partition
Load the kernel into memory

Enable protected mode

Sl &> W PN S

Set up the environment for the kernel (stack space, etc.)



What does a MBR bootloader do?

Determine the partition to boot from

Determine where your kernel image is on the partition
Load the kernel into memory

Enable protected mode

Set up the environment for the kernel (stack space, etc.)

oy G & W N 2

Call your kernel’'s main function



What does a MBR bootloader do?

. Determine the partition to boot from
. Determine where your kernel image is on the partition

. Load the kernel into memory

1

2

3

4. Enable protected mode

5. Set up the environment for the kernel (stack space, etc.)
6

. Call your kernel’s main function

You will probably agree, that's a lot to do in 446 bytes of
machine code.



Some Real Challenges

- Most C compilers won’t compile to real mode code, so
booting is on the list of things you can’t even do in C



Some Real Challenges

- Most C compilers won’t compile to real mode code, so
booting is on the list of things you can’t even do in C

- Real mode uses 16 memory segments of 64K each



Some Real Challenges

- Most C compilers won’t compile to real mode code, so
booting is on the list of things you can’t even do in C

- Real mode uses 16 memory segments of 64K each

- To switch segments, you must issue special instructions to
the processor



Some Real Challenges

- Most C compilers won’t compile to real mode code, so
booting is on the list of things you can’t even do in C

- Real mode uses 16 memory segments of 64K each

- To switch segments, you must issue special instructions to
the processor

- This gives you a total of 1 MiB of memory to use for
booting



Some Real Challenges

- Most C compilers won’t compile to real mode code, so
booting is on the list of things you can’t even do in C

- Real mode uses 16 memory segments of 64K each

- To switch segments, you must issue special instructions to
the processor

- This gives you a total of 1 MiB of memory to use for
booting

- Does your kernel fit in 1 MiB? Minus the memory you are
using for your program to boot?



Approaches to Solving Booting Challenges

- Geek Booting: Do everything your kernel needs to boot in
the 512-byte boot sector. You will need your kernel to fit in
1 MiB as well. This is hard.



Approaches to Solving Booting Challenges

- Geek Booting: Do everything your kernel needs to boot in
the 512-byte boot sector. You will need your kernel to fit in
1 MiB as well. This is hard.

- One-Stage Booting: Write your bootloader in the first 1
MiIB of your kernel image, then write a 512-byte program
that loads that program. The 1 MiB program is responsible
for loading the rest of your kernel and booting it.



Approaches to Solving Booting Challenges

- Geek Booting: Do everything your kernel needs to boot in
the 512-byte boot sector. You will need your kernel to fit in
1 MiB as well. This is hard.

- One-Stage Booting: Write your bootloader in the first 1
MiIB of your kernel image, then write a 512-byte program
that loads that program. The 1 MiB program is responsible
for loading the rest of your kernel and booting it.

- Two-Stage Booting: Write a separate kernel that fits in 1
MiB called a bootloader. This program is responsible for
providing a high level interface to boot other kernels.
GRUB is an example.



Extensible Firmware Interface




- Historically, Macs have booted using a
hardware chip on the board called the
Macintosh ROM




- Historically, Macs have booted using a
hardware chip on the board called the
Macintosh ROM

- The Mac ROM provided a miniature
operating system (with a mouse cursor
and all) capable of booting Mac OS




- Historically, Macs have booted using a
hardware chip on the board called the
Macintosh ROM

- The Mac ROM provided a miniature
operating system (with a mouse cursor
and all) capable of booting Mac OS

- With the switch to PowerPC from 68K, = e —
Apple modified the ROM to include an
Open Firmware Interface capable of
extending booting capabilities beyond just
classical Mac OS




- With the switch to Intel x86 from PowerPC,
Apple looked for a solution to boot Mac
OS X from something that didn't suck as
much as MBR




- With the switch to Intel x86 from PowerPC,
Apple looked for a solution to boot Mac
OS X from something that didn't suck as
much as MBR

- Apple looked at Intel's long forgotten
Extensible Firmware Interface (EFI)




- With the switch to Intel x86 from PowerPC,
Apple looked for a solution to boot Mac
OS X from something that didn't suck as
much as MBR

- Apple looked at Intel's long forgotten
Extensible Firmware Interface (EFI)

- EFI was similar to Apple’s OFI, but it

worked on Intel processors and had plenty
of more features




Apple

- With the switch to Intel x86 from PowerPC,
Apple looked for a solution to boot Mac
0S X from something that didn’t suck as
much as MBR

- Apple looked at Intel's long forgotten
Extensible Firmware Interface (EFI)

- EFI was similar to Apple’s OFI, but it
worked on Intel processors and had plenty
of more features

- Thanks Apple! You popularized EFI and
made booting x86 suck less!



UEFI in a Nutshell

- Simply write your bootloader in C and
leave a .ef1 binary on the FAT32
formatted EFI System Partition, the
system’s UEFI firmware takes care of
running your program for you

7



UEFI in a Nutshell

- Simply write your bootloader in C and
leave a .ef1 binary on the FAT32
formatted EFI System Partition, the
system’s UEFI firmware takes care of
running your program for you

7

- Provides high level interfaces to the
graphical console, hardware, disks,
memory, and even network



UEFI in a Nutshell

- Simply write your bootloader in C and
leave a .ef1 binary on the FAT32
formatted EFI System Partition, the
system’s UEFI firmware takes care of
running your program for you

7

- Provides high level interfaces to the
graphical console, hardware, disks,
memory, and even network

- Capable of doing hash checks on your
bootloader to ensure it was not
tampered with by a computer virus



Hello World EFI-Style

#include <efi.h>
#tinclude <efilib.h>

EFI_STATUS
EFIAPI
efi_main (EFI_HANDLE Handle, EFI_SYSTEM TABLE *Table)
{
InitializeLib(Handle, Table);
Print(L"Hello, world!\n");
return EFI_SUCCESS;



Booting Linux




So this is all great, how does Linux boot?

1. First, the compressed Linux kernel (vmlinuz) is loaded by
the bootloader and started



So this is all great, how does Linux boot?

1. First, the compressed Linux kernel (vmlinuz) is loaded by
the bootloader and started

2. The Linux kernel then loads a file system called initrd
into memory which contains just enough programs to
mount your disk and load drivers



So this is all great, how does Linux boot?

1. First, the compressed Linux kernel (vmlinuz) is loaded by
the bootloader and started

2. The Linux kernel then loads a file system called initrd
into memory which contains just enough programs to
mount your disk and load drivers

3. The kernel flag root specifies where your root partition is
located to be mounted



So this is all great, how does Linux boot?

1. First, the compressed Linux kernel (vmlinuz) is loaded by
the bootloader and started

2. The Linux kernel then loads a file system called initrd
into memory which contains just enough programs to
mount your disk and load drivers

3. The kernel flag root specifies where your root partition is
located to be mounted

4. Once the root partition is mounted, /etc/fstab is read
to determine any other partitions to be mounted



So this is all great, how does Linux boot?

1. First, the compressed Linux kernel (vmlinuz) is loaded by
the bootloader and started

2. The Linux kernel then loads a file system called initrd
into memory which contains just enough programs to
mount your disk and load drivers

3. The kernel flag root specifies where your root partition is
located to be mounted

4. Once the root partition is mounted, /etc/fstab is read
to determine any other partitions to be mounted

5. /bin/init is called



So what is /bin/init?

- init is the process with PID 1; it is the super-parent
process of every process started on your system



So what is /bin/init?

- init is the process with PID 1; it is the super-parent
process of every process started on your system

- If init were to die, the kernel would panic



So what is /bin/init?

- init is the process with PID 1; it is the super-parent
process of every process started on your system

- If init were to die, the kernel would panic

- Historically, System V style init programs would start a
shell script located at /etc/rc that then loads your
programs and desktop environment



So what is /bin/init?

- init is the process with PID 1; it is the super-parent
process of every process started on your system

- If init were to die, the kernel would panic

- Historically, System V style init programs would start a
shell script located at /etc/rc that then loads your
programs and desktop environment

- Most /etc/rc files use modularized shell scripts under
/etc/rc.dor /etc/init.d to start services



So what is /bin/init?

- init is the process with PID 1; it is the super-parent
process of every process started on your system

- If init were to die, the kernel would panic

- Historically, System V style init programs would start a
shell script located at /etc/rc that then loads your
programs and desktop environment

- Most /etc/rc files use modularized shell scripts under
/etc/rc.dor /etc/init.d to start services

- Shell scripts are slow, and all sorts of standards exist for
how to write these shell scripts



systemd: An alternative init

- Theory: Shell scripts as a configuration file is clunky and
provides scattered interfaces



systemd: An alternative init

- Theory: Shell scripts as a configuration file is clunky and
provides scattered interfaces

- Acts as a replacement /bin/init but uses configuration
files rather than shell scripts



systemd: An alternative init

- Theory: Shell scripts as a configuration file is clunky and
provides scattered interfaces

- Acts as a replacement /bin/init but uses configuration
files rather than shell scripts

- This topic kind of deserves a talk of it's own? Anyone want
to do it?



Resources




Resources

- OSDev Wiki: Great resource on developing your own OS,
including writing bootloaders. http://osdev.org


http://osdev.org

Resources

- OSDev Wiki: Great resource on developing your own OS,
including writing bootloaders. http://osdev.org

- There's nothing else. That wiki has about everyting you
need.


http://osdev.org

Questions?



Copyright Notice

This presentation was from the Mines Linux
Users Group. A mostly-complete archive of our
presentations can be found online at
https://lug.mines.edu.

Individual authors may have certain copyright
or licensing restrictions on their presentations.
Please be certain to contact the original author

to obtain permission to reuse or distribute Colorado School of Mines
these slides. Linux Users Group



https://lug.mines.edu

	Master Boot Record
	Extensible Firmware Interface
	Booting Linux
	Resources

