
The Pythonic Way

Jack Rosenthal
November 4, 2017

Mines Linux Users Group

Table of contents

1. Background

2. Python Style

3. Language Structures

4. Object Oriented Programming

5. Decorators

6. Generators & Comprehensions

7. Functional Programming

8. Useful Libraries

9. Learning Resources

Background

A Bit of History

• Python first appeared in early 1991. This means that
Python is older than Java and Ruby.

• Guido van Rossum (GvR, the creator of Python) designed
his language with emphasis on readability.

• Python was named after Monty Python’s Flying Circus.
• The language quickly gained popularity because of its
appeal to long-time UNIX/C hackers1.

1See the Jargon File on hackers vs. crackers

A Bit of History

• Python first appeared in early 1991. This means that
Python is older than Java and Ruby.

• Guido van Rossum (GvR, the creator of Python) designed
his language with emphasis on readability.

• Python was named after Monty Python’s Flying Circus.
• The language quickly gained popularity because of its
appeal to long-time UNIX/C hackers1.

1See the Jargon File on hackers vs. crackers

A Bit of History

• Python first appeared in early 1991. This means that
Python is older than Java and Ruby.

• Guido van Rossum (GvR, the creator of Python) designed
his language with emphasis on readability.

• Python was named after Monty Python’s Flying Circus.
• The language quickly gained popularity because of its
appeal to long-time UNIX/C hackers1.

1See the Jargon File on hackers vs. crackers

A Bit of History

• Python first appeared in early 1991. This means that
Python is older than Java and Ruby.

• Guido van Rossum (GvR, the creator of Python) designed
his language with emphasis on readability.

• Python was named after Monty Python’s Flying Circus.
• The language quickly gained popularity because of its
appeal to long-time UNIX/C hackers1.

1See the Jargon File on hackers vs. crackers

Python: The Perfect Companion to Linux

• Easy to use without a domain
specific IDE or editor

• On-line documentation with
pydoc similar to man

• UNIX system calls share the
same name as in libc

• Fast and lightweight
• Very general purpose
• Easy to learn, but plenty to
master

Python: The Perfect Companion to Linux

• Easy to use without a domain
specific IDE or editor

• On-line documentation with
pydoc similar to man

• UNIX system calls share the
same name as in libc

• Fast and lightweight
• Very general purpose
• Easy to learn, but plenty to
master

Python: The Perfect Companion to Linux

• Easy to use without a domain
specific IDE or editor

• On-line documentation with
pydoc similar to man

• UNIX system calls share the
same name as in libc

• Fast and lightweight
• Very general purpose
• Easy to learn, but plenty to
master

Python: The Perfect Companion to Linux

• Easy to use without a domain
specific IDE or editor

• On-line documentation with
pydoc similar to man

• UNIX system calls share the
same name as in libc

• Fast and lightweight
• Very general purpose
• Easy to learn, but plenty to
master

Python: The Perfect Companion to Linux

• Easy to use without a domain
specific IDE or editor

• On-line documentation with
pydoc similar to man

• UNIX system calls share the
same name as in libc

• Fast and lightweight
• Very general purpose
• Easy to learn, but plenty to
master

Python: The Perfect Companion to Linux

• Easy to use without a domain
specific IDE or editor

• On-line documentation with
pydoc similar to man

• UNIX system calls share the
same name as in libc

• Fast and lightweight
• Very general purpose
• Easy to learn, but plenty to
master

A Note on Python 2 and Python 3

Python 3 fixed many odds and ends from older versions of
Python. When it was originally released, its usage was low due
to many backwards incompatibilities. Now days, most modern
projects use Python 3, so this issue is largely irrelevant.

For the purposes of this presentation, we will be talking strictly
of Python 3.

Setting The Default
Some systems have Python 2 as the default, the general solution is
to alias python to python3. Add this to your shell’s rc file.

alias python=python3

A Note on Python 2 and Python 3

Python 3 fixed many odds and ends from older versions of
Python. When it was originally released, its usage was low due
to many backwards incompatibilities. Now days, most modern
projects use Python 3, so this issue is largely irrelevant.

For the purposes of this presentation, we will be talking strictly
of Python 3.

Setting The Default
Some systems have Python 2 as the default, the general solution is
to alias python to python3. Add this to your shell’s rc file.

alias python=python3

A Simple Example

The classical Fizz Buzz problem: for all the numbers from 1 to
100, print Fizz if the number is divisible by 3, Buzz if divisible
by 5, Fizz Buzz if divisible by 3 and 5, and the number
otherwise.

for i in range(1, 101):
if i % 3 == 0 and i % 5 == 0:

print("Fizz Buzz")
elif i % 3 == 0:

print("Fizz")
elif i % 5 == 0:

print("Buzz")
else:

print(i)

The Zen of Python

PEP-20 lists a series of principles for which the language was
designed under. Typing import this at the Python
interpreter will show you the zen:

>>> import this
The Zen of Python, by Tim Peters
...

In short, Python was designed with careful thought about how
to make it Pythonic.

The Zen of Python

PEP-20 lists a series of principles for which the language was
designed under. Typing import this at the Python
interpreter will show you the zen:

>>> import this
The Zen of Python, by Tim Peters
...

In short, Python was designed with careful thought about how
to make it Pythonic.

Python Style

A Foolish Consistency is the Hobgoblin of Little Minds

• GvR makes a point: code is read more often than it is
written, so readability counts.

• Python is one of the few languages with a style guide
(PEP-8) since there is a huge amount of Python code out
there and the language’s core principle is readability.

• Thus, it’s important to follow Python’s official style
whenever possible

Legacy Code
It should be noted that when working on a project that was started
before the ages of PEP-8, generally they have their own style guide
and you should follow that instead. Otherwise, it would be
generally considered unacceptable to not follow PEP-8.

A Foolish Consistency is the Hobgoblin of Little Minds

• GvR makes a point: code is read more often than it is
written, so readability counts.

• Python is one of the few languages with a style guide
(PEP-8) since there is a huge amount of Python code out
there and the language’s core principle is readability.

• Thus, it’s important to follow Python’s official style
whenever possible

Legacy Code
It should be noted that when working on a project that was started
before the ages of PEP-8, generally they have their own style guide
and you should follow that instead. Otherwise, it would be
generally considered unacceptable to not follow PEP-8.

A Foolish Consistency is the Hobgoblin of Little Minds

• GvR makes a point: code is read more often than it is
written, so readability counts.

• Python is one of the few languages with a style guide
(PEP-8) since there is a huge amount of Python code out
there and the language’s core principle is readability.

• Thus, it’s important to follow Python’s official style
whenever possible

Legacy Code
It should be noted that when working on a project that was started
before the ages of PEP-8, generally they have their own style guide
and you should follow that instead. Otherwise, it would be
generally considered unacceptable to not follow PEP-8.

A Foolish Consistency is the Hobgoblin of Little Minds

• GvR makes a point: code is read more often than it is
written, so readability counts.

• Python is one of the few languages with a style guide
(PEP-8) since there is a huge amount of Python code out
there and the language’s core principle is readability.

• Thus, it’s important to follow Python’s official style
whenever possible

Legacy Code
It should be noted that when working on a project that was started
before the ages of PEP-8, generally they have their own style guide
and you should follow that instead. Otherwise, it would be
generally considered unacceptable to not follow PEP-8.

Naming

• Python uses snake_case for variable names, function
names, method names, and module names

• You should avoid using underscores when possible to
improve readability (eg. randint is better than
rand_int, as the naming is obvious without the
underscore).

• When there are conflicts with builtin keywords and a
better name is not possible, an underscore should be
appended to the variable name (eg. class_)

• Class names should be typed in CapWords
• Function, method, and class names should describe the
interface rather than the implementation.

• Private methods and variables should start with an
underscore.

Naming

• Python uses snake_case for variable names, function
names, method names, and module names

• You should avoid using underscores when possible to
improve readability (eg. randint is better than
rand_int, as the naming is obvious without the
underscore).

• When there are conflicts with builtin keywords and a
better name is not possible, an underscore should be
appended to the variable name (eg. class_)

• Class names should be typed in CapWords
• Function, method, and class names should describe the
interface rather than the implementation.

• Private methods and variables should start with an
underscore.

Naming

• Python uses snake_case for variable names, function
names, method names, and module names

• You should avoid using underscores when possible to
improve readability (eg. randint is better than
rand_int, as the naming is obvious without the
underscore).

• When there are conflicts with builtin keywords and a
better name is not possible, an underscore should be
appended to the variable name (eg. class_)

• Class names should be typed in CapWords
• Function, method, and class names should describe the
interface rather than the implementation.

• Private methods and variables should start with an
underscore.

Naming

• Python uses snake_case for variable names, function
names, method names, and module names

• You should avoid using underscores when possible to
improve readability (eg. randint is better than
rand_int, as the naming is obvious without the
underscore).

• When there are conflicts with builtin keywords and a
better name is not possible, an underscore should be
appended to the variable name (eg. class_)

• Class names should be typed in CapWords
• Function, method, and class names should describe the
interface rather than the implementation.

• Private methods and variables should start with an
underscore.

Naming

• Python uses snake_case for variable names, function
names, method names, and module names

• You should avoid using underscores when possible to
improve readability (eg. randint is better than
rand_int, as the naming is obvious without the
underscore).

• When there are conflicts with builtin keywords and a
better name is not possible, an underscore should be
appended to the variable name (eg. class_)

• Class names should be typed in CapWords
• Function, method, and class names should describe the
interface rather than the implementation.

• Private methods and variables should start with an
underscore.

Naming

• Python uses snake_case for variable names, function
names, method names, and module names

• You should avoid using underscores when possible to
improve readability (eg. randint is better than
rand_int, as the naming is obvious without the
underscore).

• When there are conflicts with builtin keywords and a
better name is not possible, an underscore should be
appended to the variable name (eg. class_)

• Class names should be typed in CapWords
• Function, method, and class names should describe the
interface rather than the implementation.

• Private methods and variables should start with an
underscore.

Indentation

As Python uses the indentation of the text to denote scope,
consistency of indentation is critically important. PEP-8
recommends the following:

• Use 4 spaces per indentation level, never use hard tabs.
• On multiline function calls, list literals, etc., the arguments
should be aligned and indented from the rest of the text.
“Hanging indent” is acceptable as well.

• Multiline if/while etc. should be indented to align with
the top line

Indentation

As Python uses the indentation of the text to denote scope,
consistency of indentation is critically important. PEP-8
recommends the following:

• Use 4 spaces per indentation level, never use hard tabs.
• On multiline function calls, list literals, etc., the arguments
should be aligned and indented from the rest of the text.
“Hanging indent” is acceptable as well.

• Multiline if/while etc. should be indented to align with
the top line

Indentation

As Python uses the indentation of the text to denote scope,
consistency of indentation is critically important. PEP-8
recommends the following:

• Use 4 spaces per indentation level, never use hard tabs.
• On multiline function calls, list literals, etc., the arguments
should be aligned and indented from the rest of the text.
“Hanging indent” is acceptable as well.

• Multiline if/while etc. should be indented to align with
the top line

Other Pet Peeves

• Keep lines to 79 characters2

• Avoid extraneous whitespace inside parentheses,
brackets, and braces
Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })

• Don’t use parentheses on if/while etc. like you might in
C-like languages
Yes: if i < 3:
No: if(i < 3):

2It’s OK to go to 90 or 100 if everyone in your project agrees.

Other Pet Peeves

• Keep lines to 79 characters2

• Avoid extraneous whitespace inside parentheses,
brackets, and braces
Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })

• Don’t use parentheses on if/while etc. like you might in
C-like languages
Yes: if i < 3:
No: if(i < 3):

2It’s OK to go to 90 or 100 if everyone in your project agrees.

Other Pet Peeves

• Keep lines to 79 characters2

• Avoid extraneous whitespace inside parentheses,
brackets, and braces
Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })

• Don’t use parentheses on if/while etc. like you might in
C-like languages
Yes: if i < 3:
No: if(i < 3):

2It’s OK to go to 90 or 100 if everyone in your project agrees.

Truthiness

Anything None, False, zero, or an empty sequence/mapping
will implicity be false, and you should take advantage of that.

Disgusting: if mybool == False:
Pythonic: if mybool:

Disgusting: if mydata == None:
Pythonic: if mydata:

Ehh: if mynumber != 0:
Pythonic: if mynumber:

Ugly: if len(mylist) == 0:
Better: if not len(mylist):
Pythonic: if not mylist:

Comments

Every comment in the source code is a personal failure of the
programmer, because it proves that he didn’t manage to
express the purpose of the code fragment with the
programming language itself. — Uncle Bob

Take Home: Comments are important when they are needed, but
you should try and make your code readable instead.

Concluding Remarks on Coding Style

Readability Counts!
No really, it is of utmost importance that Python code be
readable by following the guidelines of PEP-8. You should
read through PEP-8 before getting serious with Python.

Language Structures

Literals

List
names = ['Euclid', 'Lovelace', 'Turing']

Tuples (immutible)
names = ('Euclid', 'Lovelace', 'Turing')

To specify a one-tuple
names = ('Euclid',)

Dictionaries
names = {'Lovelace': 'Ada', 'Turing': 'Alan'}

Sets (unique values)
names = {'Euclid', 'Lovelace', 'Turing'}

The empty set (to distinguish from a dictionary)
names = set()

Selection

Python’s primary structure for selection is if:

if i == 0 and j == 1:
print(i, j)

elif i > 10 or j < 0:
print("whoa!")

else:
print("all is fine")

There’s also a ternary operator (good for simple conditionals):

def foo(bar, baz):
return bar if bar else baz

Selection

Python’s primary structure for selection is if:

if i == 0 and j == 1:
print(i, j)

elif i > 10 or j < 0:
print("whoa!")

else:
print("all is fine")

There’s also a ternary operator (good for simple conditionals):

def foo(bar, baz):
return bar if bar else baz

Why no switch/case?

Most switch/case statements over-complicate what could
be done in a single line using a dictionary. Where this is not
the case, you really shouldn’t be using a switch anyway.

Why no switch/case?

An Example switch in C

switch (a) {
case 'q':

count++;
break;

case 'x':
count--;
break;

case 'z':
count += 4;

}

Why no switch/case?

The Pythonic Way

choice = {'q': 1, 'x': -1, 'z': 4}
count += choice[a]

Iteration

Python provides your traditional while loop, the syntax is
similar to if:

while n < 100:
j /= n
n += j

But under most cases, the range-based for loop is preferred:

for x in mylist:
print(x)

It should be noted that Python’s for loop is strictly range-based,
unlike C’s for loop which is really just a fancy while loop.

Iteration

Python provides your traditional while loop, the syntax is
similar to if:

while n < 100:
j /= n
n += j

But under most cases, the range-based for loop is preferred:

for x in mylist:
print(x)

It should be noted that Python’s for loop is strictly range-based,
unlike C’s for loop which is really just a fancy while loop.

while-else and for-else

Little known is the ability to pair an else block with for and
while. The block will be executed only if the loop finishes
without breaking.
An example of this can be seen below:

for i in range(10):
x = input("Enter your guess: ")
if i == x:

print("You win!")
break

else:
print("Truly incompetent!")

Slicing

mylist = [1, 2, 3, 4]

syntax is [start:stop:step], step optional
mylist[1:3] # => [2, 3]

unused parameters can be ommited
mylist[::-1] # => [4, 3, 2, 1]

without the first element
mylist[1:] # => [2, 3, 4]

without the last element
mylist[:-1] # => [1, 2, 3]

Tuple Expansion & Collection

Multiple assignments work like so:

names = ("R. Stallman", "L. Torvalds", "B. Joy")
a, b, c = names

* can be used to collect a tuple:

drop the lowest and highest grade
grades = (79, 81, 93, 95, 99)
lowest, *grades, highest = grades

The same can be done to expand a tuple in a function call:

print(*grades)

Tuple Expansion & Collection

Multiple assignments work like so:

names = ("R. Stallman", "L. Torvalds", "B. Joy")
a, b, c = names

* can be used to collect a tuple:

drop the lowest and highest grade
grades = (79, 81, 93, 95, 99)
lowest, *grades, highest = grades

The same can be done to expand a tuple in a function call:

print(*grades)

Tuple Expansion & Collection

Multiple assignments work like so:

names = ("R. Stallman", "L. Torvalds", "B. Joy")
a, b, c = names

* can be used to collect a tuple:

drop the lowest and highest grade
grades = (79, 81, 93, 95, 99)
lowest, *grades, highest = grades

The same can be done to expand a tuple in a function call:

print(*grades)

Functions

Functions are first-class citizens in Python:

>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>

Functions can also be written anonymously as lambdas:

>>> identity = lambda x:x
>>> identity(42)
42
In this case, the first style is preferred. It’s a bit easier to read, not to
mention it’s actually named.

Functions

Functions are first-class citizens in Python:

>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>

Functions can also be written anonymously as lambdas:

>>> identity = lambda x:x
>>> identity(42)
42
In this case, the first style is preferred. It’s a bit easier to read, not to
mention it’s actually named.

Functions

Functions are first-class citizens in Python:

>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>

Functions can also be written anonymously as lambdas:

>>> identity = lambda x:x
>>> identity(42)
42
In this case, the first style is preferred. It’s a bit easier to read, not to
mention it’s actually named.

*args, **kwargs

Python allows you to define functions that take a variable
number of positional (*args) or keyword (**kwargs)
arguments. In principle, this really just works like tuple
expansion/collection.

def crazyprinter(*args, **kwargs):
for arg in args:

print(arg)
for k, v in kwargs.items():

print("{}={}".format(k, v))

crazyprinter("hello", "cheese", bar="foo")
hello
cheese
bar=foo

*args, **kwargs

Python allows you to define functions that take a variable
number of positional (*args) or keyword (**kwargs)
arguments. In principle, this really just works like tuple
expansion/collection.

def crazyprinter(*args, **kwargs):
for arg in args:

print(arg)
for k, v in kwargs.items():

print("{}={}".format(k, v))

crazyprinter("hello", "cheese", bar="foo")
hello
cheese
bar=foo

Generator Functions

Python provides a special kind of function which yields rather than
returns. This generator function is effectively an efficient iterable.

Consider the range function we have been using3:

def range(start, stop, step=1):
i = 0
while i < stop:

yield i
i += step

As we will see later on, generator functions are a certain kind of the
more generic generator.

3This is actually a simplification

Generator Functions

Python provides a special kind of function which yields rather than
returns. This generator function is effectively an efficient iterable.

Consider the range function we have been using3:

def range(start, stop, step=1):
i = 0
while i < stop:

yield i
i += step

As we will see later on, generator functions are a certain kind of the
more generic generator.

3This is actually a simplification

Object Oriented Programming

Classes

A simple class can be defined like so:

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

A few things to notice:

• __init__ is the initializes the object. It’s actually what is
called a magic method

• All the methods of the class take a parameter self, the
object you are working on

Classes

A simple class can be defined like so:

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

A few things to notice:

• __init__ is the initializes the object. It’s actually what is
called a magic method

• All the methods of the class take a parameter self, the
object you are working on

Magic Methods

Magic methods are methods with certain names that allow
you to bind features of your class to certain Python features.

• __init__ was the simple example we just saw.
• __del__ gets called when your object gets destructed.
• __lt__, __eq__, etc. allow you to define comparisons.
• __len__ binds into Python’s len(·)
• There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There
should be one – and preferably only one – obvious way to do it.

Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods

Magic methods are methods with certain names that allow
you to bind features of your class to certain Python features.

• __init__ was the simple example we just saw.
• __del__ gets called when your object gets destructed.
• __lt__, __eq__, etc. allow you to define comparisons.
• __len__ binds into Python’s len(·)
• There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There
should be one – and preferably only one – obvious way to do it.

Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods

Magic methods are methods with certain names that allow
you to bind features of your class to certain Python features.

• __init__ was the simple example we just saw.
• __del__ gets called when your object gets destructed.
• __lt__, __eq__, etc. allow you to define comparisons.
• __len__ binds into Python’s len(·)
• There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There
should be one – and preferably only one – obvious way to do it.

Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods

Magic methods are methods with certain names that allow
you to bind features of your class to certain Python features.

• __init__ was the simple example we just saw.
• __del__ gets called when your object gets destructed.
• __lt__, __eq__, etc. allow you to define comparisons.
• __len__ binds into Python’s len(·)
• There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There
should be one – and preferably only one – obvious way to do it.

Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods

Magic methods are methods with certain names that allow
you to bind features of your class to certain Python features.

• __init__ was the simple example we just saw.
• __del__ gets called when your object gets destructed.
• __lt__, __eq__, etc. allow you to define comparisons.
• __len__ binds into Python’s len(·)
• There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There
should be one – and preferably only one – obvious way to do it.

Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods

Magic methods are methods with certain names that allow
you to bind features of your class to certain Python features.

• __init__ was the simple example we just saw.
• __del__ gets called when your object gets destructed.
• __lt__, __eq__, etc. allow you to define comparisons.
• __len__ binds into Python’s len(·)
• There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There
should be one – and preferably only one – obvious way to do it.

Avoid .length(), .getLength(), .size() inconsistencies

Properties

Readability counts, so Python provides a way to avoid writing
“getters and setters” when unnecessary.

In Java, it’s nearly impossible to make everything public, since
changing a class to use getters and setters would require a
change of everything that interfaces with it.

Python’s properties allow you to make your variable public to
begin with, and then write getters and setters only once they
are needed to actually check something.

Properties

Readability counts, so Python provides a way to avoid writing
“getters and setters” when unnecessary.

In Java, it’s nearly impossible to make everything public, since
changing a class to use getters and setters would require a
change of everything that interfaces with it.

Python’s properties allow you to make your variable public to
begin with, and then write getters and setters only once they
are needed to actually check something.

Properties

Readability counts, so Python provides a way to avoid writing
“getters and setters” when unnecessary.

In Java, it’s nearly impossible to make everything public, since
changing a class to use getters and setters would require a
change of everything that interfaces with it.

Python’s properties allow you to make your variable public to
begin with, and then write getters and setters only once they
are needed to actually check something.

Using Properties

class CameraSensor:
def __init__(self):

self.brightness = 10

def take_picture(self):
do something
return image

camera = CameraSensor()
camera.brightness = 40
camera.take_picture()

Using Properties

class CameraSensor:
def __init__(self):

self._brightness = 10

def take_picture(self):
do something
return image

@property
def brightness(self):

return self._brightness

@brightness.setter
def brightness(self, value):

if not 0 <= value <= 100:
raise ValueError

self._brightness = value

camera = CameraSensor()
camera.brightness = 40
camera.take_picture()

Decorators

Decorators

@property as we just saw is what is called a decorator.
Decorators are really just a pretty way to wrap functions using
functions that return functions.

Both the following are equivalent:

@logging
def foo(bar, baz):

return bar + baz - 42

equivalent to...
def foo(bar, baz):

return bar + baz - 42
foo = logging(foo)

Decorators

@property as we just saw is what is called a decorator.
Decorators are really just a pretty way to wrap functions using
functions that return functions.

Both the following are equivalent:

@logging
def foo(bar, baz):

return bar + baz - 42

equivalent to...
def foo(bar, baz):

return bar + baz - 42
foo = logging(foo)

Defining Decorators

When defining wrapper functions, you should decorate it with
wraps from functools, this will keep attributes about the
function.

from functools import wraps

def logging(func):
@wraps(func)
def wrapper(*args, **kwargs):

result = func(*args, **kwargs)
print(result)
return result

return wrapper

Decorators in the Wild: Dynamic Programming

lru_cache from functools can be a quick way to make a
recursive function with a recurrence relation fast. Here’s an
example:

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):

if n == 0 or n == 1:
return n

return fibonacci(n - 1) + fibonacci(n - 2)

Decorators in the Wild: Dynamic Programming

lru_cache from functools can be a quick way to make a
recursive function with a recurrence relation fast. Here’s an
example:

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):

if n == 0 or n == 1:
return n

return fibonacci(n - 1) + fibonacci(n - 2)

Decorators in the Wild: Welford’s Equations

Welford’s Equations are a one-pass mean and standard
deviation algorithm. One important property is that we won’t
have to store the results in a list.

Our goal will be to implement a decorator we can use like this:

@Welford
def diceroll(u):

return int(u * 6) + 1

call diceroll with some u's in (0, 1)

print(diceroll.mean, diceroll.stdev)

Decorators in the Wild: Welford’s Equations

Welford’s Equations are a one-pass mean and standard
deviation algorithm. One important property is that we won’t
have to store the results in a list.

Our goal will be to implement a decorator we can use like this:

@Welford
def diceroll(u):

return int(u * 6) + 1

call diceroll with some u's in (0, 1)

print(diceroll.mean, diceroll.stdev)

Decorators in the Wild: Implementing Welford

The key here is that we can make callable objects using __call__.

from functools import update_wrapper
from math import sqrt

class Welford:
def __init__(self, f):

self.f = f
update_wrapper(self, f)
self.mean = 0
self.v = 0
self.trials = 0

def __call__(self, *args, **kwargs):
r = self.f(*args, **kwargs)
self.trials += 1
d = r - self.mean
self.v += d**2 * (self.trials - 1)/self.trials
self.mean += d/self.trials
return r

@property
def stdev(self):

return sqrt(self.v/self.trials) if self.trials else 0

More Decorator Tricks

• Decorators can wrap classes as well as functions. A
practical example might be creating a decorator which
adds attributes of a class to a database (a @model
decorator?)

• When multiple decorators are typed, they are applied
bottom-up.

More Decorator Tricks

• Decorators can wrap classes as well as functions. A
practical example might be creating a decorator which
adds attributes of a class to a database (a @model
decorator?)

• When multiple decorators are typed, they are applied
bottom-up.

Generators & Comprehensions

Generator Expressions

Remember the generator function from earlier? Generators
can be written inline, these are called generator expressions.

(x + 4 for x in nums if x % 2 == 0)

There’s two parts to a generator expression:

1. Performing something for every element with for...in.
2. Selecting a subset of elements to operate on with if. This

part is optional.

The Pythonic Way
Generator expressions are key to the art of Python. Without
extensive knowledge of generator expressions, one will forever be a
novice Pythonist.

Generator Expressions

Remember the generator function from earlier? Generators
can be written inline, these are called generator expressions.

(x + 4 for x in nums if x % 2 == 0)

There’s two parts to a generator expression:

1. Performing something for every element with for...in.
2. Selecting a subset of elements to operate on with if. This

part is optional.

The Pythonic Way
Generator expressions are key to the art of Python. Without
extensive knowledge of generator expressions, one will forever be a
novice Pythonist.

Generator Expressions

Remember the generator function from earlier? Generators
can be written inline, these are called generator expressions.

(x + 4 for x in nums if x % 2 == 0)

There’s two parts to a generator expression:

1. Performing something for every element with for...in.
2. Selecting a subset of elements to operate on with if. This

part is optional.

The Pythonic Way
Generator expressions are key to the art of Python. Without
extensive knowledge of generator expressions, one will forever be a
novice Pythonist.

Generator Expressions

Remember the generator function from earlier? Generators
can be written inline, these are called generator expressions.

(x + 4 for x in nums if x % 2 == 0)

There’s two parts to a generator expression:

1. Performing something for every element with for...in.
2. Selecting a subset of elements to operate on with if. This

part is optional.

The Pythonic Way
Generator expressions are key to the art of Python. Without
extensive knowledge of generator expressions, one will forever be a
novice Pythonist.

Expression Syntax

(expression for expr in sequence1
if condition1
for expr2 in sequence2
if condition2
for expr3 in sequence3 ...
if condition3
for exprN in sequenceN
if conditionN)

Notice the loops are evaluated outside-in.

Applications of Generator Expressions

• Summing ASCII values of a string
sum(ord(c) for c in s)
Note that the double-parentheses can be omitted.

• File readers
reader = (float(line) for line in f)
while processing_queue:

process(next(reader))

• Hash Function pRNGs
rng = (hashfunc(x)/MAXHASH for x in count())
diceroll(next(rng))

• The possibilities are endless!

Applications of Generator Expressions

• Summing ASCII values of a string
sum(ord(c) for c in s)
Note that the double-parentheses can be omitted.

• File readers
reader = (float(line) for line in f)
while processing_queue:

process(next(reader))

• Hash Function pRNGs
rng = (hashfunc(x)/MAXHASH for x in count())
diceroll(next(rng))

• The possibilities are endless!

Applications of Generator Expressions

• Summing ASCII values of a string
sum(ord(c) for c in s)
Note that the double-parentheses can be omitted.

• File readers
reader = (float(line) for line in f)
while processing_queue:

process(next(reader))

• Hash Function pRNGs
rng = (hashfunc(x)/MAXHASH for x in count())
diceroll(next(rng))

• The possibilities are endless!

Applications of Generator Expressions

• Summing ASCII values of a string
sum(ord(c) for c in s)
Note that the double-parentheses can be omitted.

• File readers
reader = (float(line) for line in f)
while processing_queue:

process(next(reader))

• Hash Function pRNGs
rng = (hashfunc(x)/MAXHASH for x in count())
diceroll(next(rng))

• The possibilities are endless!

List Comprehensions

Building lists in a syntax like generator expressions can be
done simply by using square brackets.

my_list = [x + 4 for x in nums if x % 2 == 0]

Non-comprehensive Alternative
A novice Pythonist might choose this instead:

my_list = []
for x in nums:

if x % 2 == 0:
my_list.append(x + 4)

Why use a comprehension? It’s easier to read and faster.

List Comprehensions

Building lists in a syntax like generator expressions can be
done simply by using square brackets.

my_list = [x + 4 for x in nums if x % 2 == 0]

Non-comprehensive Alternative
A novice Pythonist might choose this instead:

my_list = []
for x in nums:

if x % 2 == 0:
my_list.append(x + 4)

Why use a comprehension? It’s easier to read and faster.

Generic Comprehensions

The same comprehension syntax can be applied to other data
structures like so:

Sets
myset = {foo(x, y) for x, y in points}

Dictionaries
mydict = {point: dist(p) for p in points}

Tuples
mytup = tuple(foo(x, y) for x, y in points)

Functional Programming

Functional Programming

• High-order functions
• We can do a lot in very few lines
• Allow us to mathematically prove our
algorithms correct, that’s better than
any finite amount of unit tests!

• Decorators are a little piece of
functional programming

• Generator expressions are also a form
of functional programming

Functional Programming

• High-order functions
• We can do a lot in very few lines
• Allow us to mathematically prove our
algorithms correct, that’s better than
any finite amount of unit tests!

• Decorators are a little piece of
functional programming

• Generator expressions are also a form
of functional programming

Functional Programming

• High-order functions
• We can do a lot in very few lines
• Allow us to mathematically prove our
algorithms correct, that’s better than
any finite amount of unit tests!

• Decorators are a little piece of
functional programming

• Generator expressions are also a form
of functional programming

Functional Programming

• High-order functions
• We can do a lot in very few lines
• Allow us to mathematically prove our
algorithms correct, that’s better than
any finite amount of unit tests!

• Decorators are a little piece of
functional programming

• Generator expressions are also a form
of functional programming

Functional Programming

• High-order functions
• We can do a lot in very few lines
• Allow us to mathematically prove our
algorithms correct, that’s better than
any finite amount of unit tests!

• Decorators are a little piece of
functional programming

• Generator expressions are also a form
of functional programming

min/max

min/max gets the minimum or maximum value from an
iterable, optionally using a key function to select by.

Example:
x = min(points, key=lambda p:dist(p, z))

The Bad Programming Version
min_dist = float('inf')
for p in points:

d = dist(p, z)
if d < min_dist:

x = p
Don’t do this crap!

min/max

min/max gets the minimum or maximum value from an
iterable, optionally using a key function to select by.

Example:
x = min(points, key=lambda p:dist(p, z))

The Bad Programming Version
min_dist = float('inf')
for p in points:

d = dist(p, z)
if d < min_dist:

x = p
Don’t do this crap!

min/max

min/max gets the minimum or maximum value from an
iterable, optionally using a key function to select by.

Example:
x = min(points, key=lambda p:dist(p, z))

The Bad Programming Version
min_dist = float('inf')
for p in points:

d = dist(p, z)
if d < min_dist:

x = p
Don’t do this crap!

zip

zip creates a iterator over the nth element of each of it’s
arguments (which are iterables).

Example:

for a, b, c in zip(list1, list2, list3):
do something

Pro Tip: Iterating over the columns of a 2D matrix
for col in zip(*M):

do something with each column

zip

zip creates a iterator over the nth element of each of it’s
arguments (which are iterables).

Example:

for a, b, c in zip(list1, list2, list3):
do something

Pro Tip: Iterating over the columns of a 2D matrix
for col in zip(*M):

do something with each column

zip

zip creates a iterator over the nth element of each of it’s
arguments (which are iterables).

Example:

for a, b, c in zip(list1, list2, list3):
do something

Pro Tip: Iterating over the columns of a 2D matrix
for col in zip(*M):

do something with each column

Other Functional Things

• map(func, *iterables), which calls func(*t) for all
t in zip(*iterables). Note that map is completely
unnecessary as the same can be done using generator
expressions. Under a few cases, it may be better to use
map to improve readability.

• reduce(func, sequence) which reduces a sequence
by calling func(func(func(a, b), c), ...). This is
useful for taking the product of a sequence (use
operator.mul)

Other Functional Things

• map(func, *iterables), which calls func(*t) for all
t in zip(*iterables). Note that map is completely
unnecessary as the same can be done using generator
expressions. Under a few cases, it may be better to use
map to improve readability.

• reduce(func, sequence) which reduces a sequence
by calling func(func(func(a, b), c), ...). This is
useful for taking the product of a sequence (use
operator.mul)

Recommended Reading

The Functional Programming HOWTO page in the Python
documentation has some very useful tips for functional
programming.

https://docs.python.org/howto/functional.html

https://docs.python.org/howto/functional.html

Useful Libraries

itertools

• Built into Python’s standard library
• Features common generator functions
• Features generator functions for
iterating over various combinatorics,
eg. permutations

Example: Exhaustive Search Over Permutations
def tourlen(tour):

return sum(dist(a, b) for a, b in zip(tour, tour[1:] + tour[:1]))

def exhaustive(points):
st = points.pop(0)
return list(min(((st,) + p for p in permutations(points)), key=tourlen))

itertools

• Built into Python’s standard library
• Features common generator functions
• Features generator functions for
iterating over various combinatorics,
eg. permutations

Example: Exhaustive Search Over Permutations
def tourlen(tour):

return sum(dist(a, b) for a, b in zip(tour, tour[1:] + tour[:1]))

def exhaustive(points):
st = points.pop(0)
return list(min(((st,) + p for p in permutations(points)), key=tourlen))

itertools

• Built into Python’s standard library
• Features common generator functions
• Features generator functions for
iterating over various combinatorics,
eg. permutations

Example: Exhaustive Search Over Permutations
def tourlen(tour):

return sum(dist(a, b) for a, b in zip(tour, tour[1:] + tour[:1]))

def exhaustive(points):
st = points.pop(0)
return list(min(((st,) + p for p in permutations(points)), key=tourlen))

itertools

• Built into Python’s standard library
• Features common generator functions
• Features generator functions for
iterating over various combinatorics,
eg. permutations

Example: Exhaustive Search Over Permutations
def tourlen(tour):

return sum(dist(a, b) for a, b in zip(tour, tour[1:] + tour[:1]))

def exhaustive(points):
st = points.pop(0)
return list(min(((st,) + p for p in permutations(points)), key=tourlen))

Requests

• Useful library to do make HTTP
requests easy

• Requests is the only Non-GMO HTTP
library for Python, safe for human
consumption.

Behold! The power of Requests!
>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
u'{"type":"User"...'
>>> r.json()
{u'private_gists': 419, u'total_private_repos': 77, ...}

Requests

• Useful library to do make HTTP
requests easy

• Requests is the only Non-GMO HTTP
library for Python, safe for human
consumption.

Behold! The power of Requests!
>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
u'{"type":"User"...'
>>> r.json()
{u'private_gists': 419, u'total_private_repos': 77, ...}

Requests

• Useful library to do make HTTP
requests easy

• Requests is the only Non-GMO HTTP
library for Python, safe for human
consumption.

Behold! The power of Requests!
>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
u'{"type":"User"...'
>>> r.json()
{u'private_gists': 419, u'total_private_repos': 77, ...}

Bottle: Really Simple Web Framework

• Provides routing and convenient access
to data

• Built in HTTP server, or use any
WSGI-compatible web server

• Very lightweight, only a couple
thousand lines of code

A Hello, World! App
from bottle import route, run, template

@route('/hello/<name>')
def index(name):

return template('Hello {{name}}!', name=name)

run(host='localhost', port=8080)

Bottle: Really Simple Web Framework

• Provides routing and convenient access
to data

• Built in HTTP server, or use any
WSGI-compatible web server

• Very lightweight, only a couple
thousand lines of code

A Hello, World! App
from bottle import route, run, template

@route('/hello/<name>')
def index(name):

return template('Hello {{name}}!', name=name)

run(host='localhost', port=8080)

Bottle: Really Simple Web Framework

• Provides routing and convenient access
to data

• Built in HTTP server, or use any
WSGI-compatible web server

• Very lightweight, only a couple
thousand lines of code

A Hello, World! App
from bottle import route, run, template

@route('/hello/<name>')
def index(name):

return template('Hello {{name}}!', name=name)

run(host='localhost', port=8080)

Bottle: Really Simple Web Framework

• Provides routing and convenient access
to data

• Built in HTTP server, or use any
WSGI-compatible web server

• Very lightweight, only a couple
thousand lines of code

A Hello, World! App
from bottle import route, run, template

@route('/hello/<name>')
def index(name):

return template('Hello {{name}}!', name=name)

run(host='localhost', port=8080)

Library Suggestions?

Learning Resources

Learning Resources

• The Python documentation is excellent, and includes
many tutorials and howtos that may be more readable to
a beginner

• My slides4 from this past summer are online at
https://coding.campinc.com, these might be better
for someone with zero programming experince

• Online courses? I haven’t tried any.
• The Python Cookbook by David Beazely and Brian K. Jones
is a good book for seasoned Pythonists

4These slides aren’t complete without someone to teach them.

https://coding.campinc.com

Learning Resources

• The Python documentation is excellent, and includes
many tutorials and howtos that may be more readable to
a beginner

• My slides4 from this past summer are online at
https://coding.campinc.com, these might be better
for someone with zero programming experince

• Online courses? I haven’t tried any.
• The Python Cookbook by David Beazely and Brian K. Jones
is a good book for seasoned Pythonists

4These slides aren’t complete without someone to teach them.

https://coding.campinc.com

Learning Resources

• The Python documentation is excellent, and includes
many tutorials and howtos that may be more readable to
a beginner

• My slides4 from this past summer are online at
https://coding.campinc.com, these might be better
for someone with zero programming experince

• Online courses? I haven’t tried any.
• The Python Cookbook by David Beazely and Brian K. Jones
is a good book for seasoned Pythonists

4These slides aren’t complete without someone to teach them.

https://coding.campinc.com

Learning Resources

• The Python documentation is excellent, and includes
many tutorials and howtos that may be more readable to
a beginner

• My slides4 from this past summer are online at
https://coding.campinc.com, these might be better
for someone with zero programming experince

• Online courses? I haven’t tried any.
• The Python Cookbook by David Beazely and Brian K. Jones
is a good book for seasoned Pythonists

4These slides aren’t complete without someone to teach them.

https://coding.campinc.com

Questions?

Copyright Notice

This presentation was from the Mines Linux
Users Group. A mostly-complete archive of our
presentations can be found online at
https://lug.mines.edu.

Individual authors may have certain copyright
or licensing restrictions on their presentations.
Please be certain to contact the original author
to obtain permission to reuse or distribute
these slides.

https://lug.mines.edu

	Background
	Python Style
	Language Structures
	Object Oriented Programming
	Decorators
	Generators & Comprehensions
	Functional Programming
	Useful Libraries
	Learning Resources

