
VIM: The Awesome Part

Jack Rosenthal

September 8, 2016

Jack Rosenthal VIM: The Awesome Part



Generalizing our Keystrokes I

Most beginners at VIM see the keystrokes we type statically, i.e.
they see the only keystrokes we make are the ones we remember
the keystrokes for.

Keys remembered What it does
dd Delete line
cw Change word
dw Delete word
yy Yank line
... ...

This is tedious, and incredibly hard to remember. Chances are, if
you remember VIM this way, then you will hate it.

Jack Rosenthal VIM: The Awesome Part



Generalizing our Keystrokes II
Let’s divide our NORMAL mode keystrokes as two types1: actions
and movements.

Movements alone will move your cursor.
Actions do things, and often take movements to act on.
Repeating an action keystroke for its movement will act on
the movement of the line
When using one of the VISUAL modes, the m parameter to
actions are dropped, and actions apply to the selection

Action Movement
dm delete m h j k l left, down, up, right
ym yank m b w word left, right
cm change m ^ $ beginning, end of line
g~m swap case on m gg G beginning, end of file

... ... ... ...
1not all keystrokes fall under these two categories

Jack Rosenthal VIM: The Awesome Part



Repeating NORMAL Mode Commands

Adding a number n in front of a movement will do it n times.
Examples:

d5w – delete the next 5 words
5j – move 5 lines down
c2j – change this line, and the next two

You can also use the . key to repeat a command again. For
example, change a word, then move 5 words over, press . to make
the same substitution again.

Jack Rosenthal VIM: The Awesome Part



find and till

fc will be the motion on to the next occurrence of the c
character on the current line
tc does the same, but goes right before c rather than on
Fc and Tc do the same, but go backwards on the line

Examples:

fs – move to the next occurrence of s on the line
ct. – change till .
dTA – delete backwards until just before A

Jack Rosenthal VIM: The Awesome Part



inside and around

VIM has special movements that only act with actions called
inside and around. They take a parameter of what to go inside or
around. It works a bit like this:

Inside

i" i' – inside a string
i) i} i] – inside parens,
squirly braces, brackets
iw is ip – inside a word,
sentence, paragraph

Around

a" a' – around a string
a) a} a] – around parens,
squirly braces, brackets
aw as ap – around a word,
sentence, paragraph

For example:
ci" – change inside the string you are on
vip – select the current paragraph
dis – delete the current sentence

Jack Rosenthal VIM: The Awesome Part



The promised ROT13 encoding action

g?m

Jack Rosenthal VIM: The Awesome Part



Taking Advantage of Deletion

d, x will put what was deleted into the paste register. This means
you can swap things really easily:

xp – swap characters
ddp – swap lines
and so fourth…

Jack Rosenthal VIM: The Awesome Part



Some Ex mode stuff: :g/

:g/regex/cmd will run the Ex mode command cmd on every
line that matches regex
For example, to delete all blank lines, do :g/^$/d
Because the order on which :g/ acts, you can use it to flip all
the lines in a file using :g/^/m0

Jack Rosenthal VIM: The Awesome Part



Getting some command output in your buffer

:! followed by some shell command will run that command
using your shell from vim.
:rcmd will redirect some Ex mode command to the buffer
We can combine them to redirect shell commands to our
buffer. For example :r!fortune | cowsay

Jack Rosenthal VIM: The Awesome Part



VIM Plugins

VIM plugins are awesome, they let you alter VIM to nicely fit
your work flow
There are crap tons of VIM plugins
You can turn VIM into a full fledged IDE with plugins
I invite you to do a web search to find the ones you like best!

Jack Rosenthal VIM: The Awesome Part


