zsh Protips

Jack Rosenthal

4 April 2016

Colorado School of Mines

Linux Users Group

Jack Rosenthal zsh Protips

What is zsh?

zsh is a UNIX shell with bash-like syntax and plenty of features.

Jack Rosenthal zsh Protips

What is zsh?

zsh is a UNIX shell with bash-like syntax and plenty of features.

m zsh features its own line editor, zle, with bindable widgets
and the ability to make custom bindings

Jack Rosenthal zsh Protips

What is zsh?

zsh is a UNIX shell with bash-like syntax and plenty of features.

m zsh features its own line editor, zle, with bindable widgets
and the ability to make custom bindings

m zsh features its own history expansion engine with Readline
compatibility

Jack Rosenthal zsh Protips

What is zsh?

zsh is a UNIX shell with bash-like syntax and plenty of features.

m zsh features its own line editor, zle, with bindable widgets
and the ability to make custom bindings

m zsh features its own history expansion engine with Readline
compatibility

m zsh tries to avoid bashisms by making the syntax do what it

looks like it is doing (eg. appending and writing to two files in
the same command)

Jack Rosenthal zsh Protips

What is zsh?

zsh is a UNIX shell with bash-like syntax and plenty of features.

m zsh features its own line editor, zle, with bindable widgets
and the ability to make custom bindings

m zsh features its own history expansion engine with Readline
compatibility

m zsh tries to avoid bashisms by making the syntax do what it
looks like it is doing (eg. appending and writing to two files in
the same command)

m zsh comes with plenty of syntactic sugar and features like
floating point arithmetic

Jack Rosenthal zsh Protips

Using zsh as your default shell (Personal machine)

$ chsh -s “which zsh

Jack Rosenthal zsh Protips

Using zsh as your default shell (School machine)

Put this line at the top of your .bash_profile:
tty >/dev/null && command -v zsh >/dev/null && exec zsh

A few notes:

m You only have to do this because the loginShell LDAP
attribute is used as your shell, and you don't have permission
to change it.

m If you change it on one machine that uses fermat for its /u,
then it will be changed on all.

Jack Rosenthal zsh Protips

Setting up zsh

Option 1

Use an “instantly awesome zsh” framework like Oh My Zsh or
Prezto. This has the advantage of a Vundle-like plugin system and
less time spent configuring.

Option 2
Do it yourself. Allows more customisation and typically lighter.

Jack Rosenthal zsh Protips

Writing a .zshrc

If you've decided to go with Option 2, you will need to write a
.zshrc, a script that runs when you start zsh. Here are some
things you may consider adding:

bindkey -v or bindkey -e vim or emacs zle bindings

HISTFILE=~/.histfile Persistent history

HISTSIZE=1000 Up to 1000 items in history
SAVEHIST=1000 Up to 1000 items persistent

setopt appendhistory Append history to the history file
setopt histignoredups Ignore duplicates in history

setopt histignorespace Ignore lines which begin with a space
setopt autopushd Use the dirstack as you cd

Also don't forget to set your EDITOR, PAGER, etc.

Jack Rosenthal zsh Protips

More setopt options

m beep/nobeep - Ring the terminal bell on zle error
m notify - Report the status of background jobs immediately

m nomatch - If a globbing pattern has no matches, print an
error, instead of leaving it unchanged in the argument list.

m autocd - Change to a directory if you just type the name

m correct - Typo Correction

extendedglob - Extended globbing, explained later

Read man zshoptions. There are many options.

Jack Rosenthal zsh Protips

Extended Globbing

With setopt extendedglob, you can use some cool extended
globbing patterns:

m ** matches any all of the child directories, recursively,
including the current directory

m **x* is the same as above, but follows symlinks

If you enable setopt globstarshort, you can shorten **/* to
x and *x*/* to ***. This would cause **.c to match all files
ending in .c recursively.

Jack Rosenthal zsh Protips

More Cool Globbing

Globbing What Its Not
zsh % 1s
main.c Makefile README .md

zsh % echo “*.c
Makefile README.md

Jack Rosenthal zsh Protips

More Cool Globbing

Globbing What Its Not

zsh % 1s

main.c Makefile README.md
zsh % echo “*.c

Makefile README.md

Numeric Ranges

zsh % 1s

hello1234 hellol235 hello1400
zsh % echo hello<1230-1240>
hello1234 hellol1235

Jack Rosenthal zsh Protips

More Cool Globbing

Globbing What Its Not

zsh % 1s

main.c Makefile README.md
zsh % echo “*.c

Makefile README.md

Numeric Ranges

zsh % 1s

hello1234 hellol235 hello1400
zsh % echo hello<1230-1240>
hello1234 hellol1235

Perl-Style Or

zsh % 1s

hello.txt world.gif zap.sh
zsh ¥ echo *.(txtl|gif)
hello.txt world.gif

Jack Rosenthal zsh Protips

Brace Expansion

zsh 7 echo hello_{one,two,three,four,five}
hello_one hello_two hello_three hello_four hello_five

Jack Rosenthal zsh Protips

Brace Expansion

zsh 7 echo hello_{one,two,three,four,five}

hello_one hello_two hello_three hello_four hello_five
zsh 7, echo hello{1l..5}

hellol hello2 hello3 hello4 hellob

Jack Rosenthal zsh Protips

Brace Expansion

zsh 7 echo hello_{one,two,three,four,five}

hello_one hello_two hello_three hello_four hello_five
zsh 7, echo hello{1l..5}

hellol hello2 hello3 hello4 hellob

zsh % echo hello{07..12}

hello07 hello08 hello09 hellol0 helloll hellol2

Jack Rosenthal zsh Protips

Brace Expansion

zsh 7 echo hello_{one,two,three,four,five}

hello_one hello_two hello_three hello_four hello_five
zsh 7, echo hello{1l..5}

hellol hello2 hello3 hello4 hellob

zsh % echo hello{07..12}

hello07 hello08 hello09 hellol0 helloll hellol2

zsh % echo {a..z}
abcdefghijklmnopgqrstuvwzxyz

Jack Rosenthal zsh Protips

Parameter Expansion

${...} is a parameter expansion. A parameter expansion will always
involve a variable.

m ${VAR} will expand to the value of VAR.

Jack Rosenthal zsh Protips

Parameter Expansion

${...} is a parameter expansion. A parameter expansion will always
involve a variable.

m ${VAR} will expand to the value of VAR.
m ${#VAR} will expand to the length of VAR.

Jack Rosenthal zsh Protips

Parameter Expansion

${...} is a parameter expansion. A parameter expansion will always
involve a variable.

m ${VAR} will expand to the value of VAR.
m ${#VAR} will expand to the length of VAR.

m If VAR is a filename, ${VAR:h} will expand to the directory of
the file, :t to the name of the file, and :r to the file without
its extension.

Jack Rosenthal zsh Protips

Parameter Expansion

${...} is a parameter expansion. A parameter expansion will always
involve a variable.

m ${VAR} will expand to the value of VAR.
m ${#VAR} will expand to the length of VAR.

m If VAR is a filename, ${VAR:h} will expand to the directory of
the file, :t to the name of the file, and :r to the file without
its extension.

m ${VAR:s/find/replace/} will do sed-style substitution

Jack Rosenthal zsh Protips

Parameter Expansion

${...} is a parameter expansion. A parameter expansion will always
involve a variable.

m ${VAR} will expand to the value of VAR.
m ${#VAR} will expand to the length of VAR.

m If VAR is a filename, ${VAR:h} will expand to the directory of
the file, :t to the name of the file, and :r to the file without
its extension.

m ${VAR:s/find/replace/} will do sed-style substitution

Jack Rosenthal zsh Protips

Parameter Expansion

${...} is a parameter expansion. A parameter expansion will always
involve a variable.

m ${VAR} will expand to the value of VAR.
m ${#VAR} will expand to the length of VAR.

m If VAR is a filename, ${VAR:h} will expand to the directory of
the file, :t to the name of the file, and :r to the file without
its extension.

m ${VAR:s/find/replace/} will do sed-style substitution

Read man zshexpn for more. | take no responsibility for brain
damage.

Jack Rosenthal zsh Protips

Suffix Aliases

Say you want .tex files to open in your $EDITOR.

alias -s tex=$EDITOR

Then type just the filename as the command.

Jack Rosenthal zsh Protips

Global Aliases

Global aliases expand anywhere in the command.

alias -g ...='../.."
alias -g='../../.."
alias -g =\ /.

Jack Rosenthal zsh Protips

Multiple Redirection

zsh can redirect to and from multiple inputs/outputs at the same

time. So...
Rather than typing You can type
w >filel; w >file2; w >file3 w >file{1..3}
cat file{1,2} | 1less less <file{1,2}

./server | tee log | grep ERR ./server >log | grep ERR

Jack Rosenthal zsh Protips

Process Substitution

You can substitute a command in, like it's a file.
m <(...) is used to read output from a command
m >(...) is used to write to the stdin of a command

m =(...) is like <(...), however creates a temporary file (so
seek is allowed)

For example, to compare the output of two commands:
diff <(commandl) <(command2)

Jack Rosenthal zsh Protips

Kill command for later use

Say you start typing a command but then realise you have to do
something else first. Bind a key to push-line. | use q in vi
normal mode:

bindkey -M vicmd g push-line

Then, press <Esc>q when you have another command to run first.
Your old command will reappear when the first one finishes.

Jack Rosenthal zsh Protips

Making custom key widgets

Write a function, then bind it with z1le -N. Example:

function __zkey_prepend_sudo {

if [[$BUFFER != "sudo "#*]]; then
BUFFER="sudo $BUFFER"
CURSOR+=5

fi

b
zle -N prepend-sudo __zkey_prepend_sudo
bindkey -M vicmd "s" prepend-sudo

Now <Esc>s will put sudo at the beginning of the command.

Jack Rosenthal zsh Protips

Completion

To add intelligent completion to zsh, add this line to your
~/ .zshrc:

autoload -U compinit && compinit

Jack Rosenthal zsh Protips

Completion Automagic Rehash

zstyle ':completion:*' rehash true

Jack Rosenthal zsh Protips

Completion Case Correction

zstyle ':completion:*' matcher-list 'm:{a-z}={A-Z}'

Jack Rosenthal zsh Protips

Approximate Completion

Allow one error for every three letters typed.

zstyle ':completion:*:approximate:' max-errors
'reply=($ ((($#PREFIX+$#SUFFIX)/3)) numeric)'

Jack Rosenthal zsh Protips

Misc: Directory Hashing

Hash directories like their home direcories for quick and convenient

access:

zsh % hash -d os=~/classes/cs/os
zsh % cd ~os

Jack Rosenthal zsh Protips

Misc: Directory Hashing

Hash directories like their home direcories for quick and convenient
access:

zsh % hash -d os=~/classes/cs/os
zsh % cd ~os

Protip

If you copy your ~/.zshrc between systems, it may be convenient to set
up hashes on a per system basis:
case $(hostname) in

toilers)

hash -d web=/home/www
mastergo)

hash -d web=/var/www

2

esac

Jack Rosenthal zsh Protips

