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What is zsh?

zsh is a UNIX shell with bash-like syntax and plenty of features.

m zsh features its own line editor, zle, with bindable widgets
and the ability to make custom bindings

m zsh features its own history expansion engine with Readline
compatibility

m zsh tries to avoid bashisms by making the syntax do what it
looks like it is doing (eg. appending and writing to two files in
the same command)

m zsh comes with plenty of syntactic sugar and features like
floating point arithmetic
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Using zsh as your default shell (Personal machine)

$ chsh -s “which zsh
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Using zsh as your default shell (School machine)

Put this line at the top of your .bash_profile:
tty >/dev/null && command -v zsh >/dev/null && exec zsh

A few notes:

m You only have to do this because the loginShell LDAP
attribute is used as your shell, and you don't have permission
to change it.

m If you change it on one machine that uses fermat for its /u,
then it will be changed on all.
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Setting up zsh

Option 1

Use an “instantly awesome zsh” framework like Oh My Zsh or
Prezto. This has the advantage of a Vundle-like plugin system and
less time spent configuring.

Option 2
Do it yourself. Allows more customisation and typically lighter.
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Writing a .zshrc

If you've decided to go with Option 2, you will need to write a
.zshrc, a script that runs when you start zsh. Here are some
things you may consider adding:

bindkey -v or bindkey -e vim or emacs zle bindings

HISTFILE=~/.histfile Persistent history

HISTSIZE=1000 Up to 1000 items in history
SAVEHIST=1000 Up to 1000 items persistent

setopt appendhistory Append history to the history file
setopt histignoredups Ignore duplicates in history

setopt histignorespace Ignore lines which begin with a space
setopt autopushd Use the dirstack as you cd

Also don't forget to set your EDITOR, PAGER, etc.
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More setopt options

m beep/nobeep - Ring the terminal bell on zle error
m notify - Report the status of background jobs immediately

m nomatch - If a globbing pattern has no matches, print an
error, instead of leaving it unchanged in the argument list.

m autocd - Change to a directory if you just type the name

m correct - Typo Correction

extendedglob - Extended globbing, explained later

Read man zshoptions. There are many options.
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Extended Globbing

With setopt extendedglob, you can use some cool extended
globbing patterns:

m ** matches any all of the child directories, recursively,
including the current directory

m **x* is the same as above, but follows symlinks

If you enable setopt globstarshort, you can shorten **/* to
*x* and *x*/* to ***. This would cause **.c to match all files
ending in .c recursively.
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More Cool Globbing

Globbing What Its Not
zsh % 1s
main.c Makefile README .md

zsh % echo “*.c
Makefile README.md
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zsh % 1s

main.c Makefile README.md
zsh % echo “*.c

Makefile README.md

Numeric Ranges

zsh % 1s

hello1234  hellol235 hello1400
zsh % echo hello<1230-1240>
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More Cool Globbing

Globbing What Its Not

zsh % 1s

main.c Makefile README.md
zsh % echo “*.c

Makefile README.md

Numeric Ranges

zsh % 1s

hello1234  hellol235 hello1400
zsh % echo hello<1230-1240>
hello1234 hellol1235

Perl-Style Or

zsh % 1s

hello.txt  world.gif zap.sh
zsh ¥ echo *.(txtl|gif)
hello.txt world.gif
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Brace Expansion

zsh 7 echo hello_{one,two,three,four,five}
hello_one hello_two hello_three hello_four hello_five
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Brace Expansion

zsh 7 echo hello_{one,two,three,four,five}

hello_one hello_two hello_three hello_four hello_five
zsh 7, echo hello{1l..5}

hellol hello2 hello3 hello4 hellob
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Brace Expansion

zsh 7 echo hello_{one,two,three,four,five}

hello_one hello_two hello_three hello_four hello_five
zsh 7, echo hello{1l..5}

hellol hello2 hello3 hello4 hellob

zsh % echo hello{07..12}

hello07 hello08 hello09 hellol0 helloll hellol2
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Brace Expansion

zsh 7 echo hello_{one,two,three,four,five}

hello_one hello_two hello_three hello_four hello_five
zsh 7, echo hello{1l..5}

hellol hello2 hello3 hello4 hellob

zsh % echo hello{07..12}

hello07 hello08 hello09 hellol0 helloll hellol2

zsh % echo {a..z}
abcdefghijklmnopgqrstuvwzxyz

Jack Rosenthal zsh Protips



Parameter Expansion

${...} is a parameter expansion. A parameter expansion will always
involve a variable.

m ${VAR} will expand to the value of VAR.
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Parameter Expansion

${...} is a parameter expansion. A parameter expansion will always
involve a variable.

m ${VAR} will expand to the value of VAR.
m ${#VAR} will expand to the length of VAR.

m If VAR is a filename, ${VAR:h} will expand to the directory of
the file, :t to the name of the file, and :r to the file without
its extension.

m ${VAR:s/find/replace/} will do sed-style substitution

Read man zshexpn for more. | take no responsibility for brain
damage.
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Suffix Aliases

Say you want .tex files to open in your $EDITOR.

alias -s tex=$EDITOR

Then type just the filename as the command.
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Global Aliases

Global aliases expand anywhere in the command.

alias -g ...='../.."
alias -g ....='../../.."
alias -g ..... =\ /.
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Multiple Redirection

zsh can redirect to and from multiple inputs/outputs at the same

time. So...
Rather than typing You can type
w >filel; w >file2; w >file3 w >file{1..3}
cat file{1,2} | 1less less <file{1,2}

./server | tee log | grep ERR ./server >log | grep ERR
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Process Substitution

You can substitute a command in, like it's a file.
m <(...) is used to read output from a command
m >(...) is used to write to the stdin of a command

m =(...) is like <(...), however creates a temporary file (so
seek is allowed)

For example, to compare the output of two commands:
diff <(commandl) <(command2)
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Kill command for later use

Say you start typing a command but then realise you have to do
something else first. Bind a key to push-line. | use q in vi
normal mode:

bindkey -M vicmd g push-line

Then, press <Esc>q when you have another command to run first.
Your old command will reappear when the first one finishes.
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Making custom key widgets

Write a function, then bind it with z1le -N. Example:

function __zkey_prepend_sudo {

if [[ $BUFFER != "sudo "#* ]]; then
BUFFER="sudo $BUFFER"
CURSOR+=5

fi

b
zle -N prepend-sudo __zkey_prepend_sudo
bindkey -M vicmd "s" prepend-sudo

Now <Esc>s will put sudo at the beginning of the command.
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Completion

To add intelligent completion to zsh, add this line to your
~/ .zshrc:

autoload -U compinit && compinit
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Completion Automagic Rehash

zstyle ':completion:*' rehash true
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Completion Case Correction

zstyle ':completion:*' matcher-list 'm:{a-z}={A-Z}'
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Approximate Completion

Allow one error for every three letters typed.

zstyle ':completion:*:approximate:' max-errors
'reply=($ ((($#PREFIX+$#SUFFIX)/3 )) numeric )'
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Misc: Directory Hashing

Hash directories like their home direcories for quick and convenient

access:

zsh % hash -d os=~/classes/cs/os
zsh % cd ~os
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Misc: Directory Hashing

Hash directories like their home direcories for quick and convenient
access:

zsh % hash -d os=~/classes/cs/os
zsh % cd ~os

Protip

If you copy your ~/.zshrc between systems, it may be convenient to set
up hashes on a per system basis:
case $(hostname) in

toilers)

hash -d web=/home/www
mastergo)

hash -d web=/var/www

2

esac
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