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Abstract

Garbage Collection (GC) is often considered to be an inherent property of a programming

language, or a particular implementation of a language. While it is possible to retrofit

a conservative GC to non-GC’d language implementations, the performance of the

resulting implementation is considered to be slow, and the impact on the language itself

non-idiomatic.

In this thesis I show that conservative GC has more applications than it is traditionally

thought suitable for. First, I show that the implementation of V8, an industrial strength

Virtual Machine (VM), can be simplified without worsening performance by retrofitting

conservative GC in place of its existing precise GC which uses bookkeeping information

available at runtime. Second, I show how conservative GC can be idiomatically added to

the non-GCed language Rust. The latter raises several challenges around correctness and

performance: I show each challenge has a good solution. My aim in this thesis is not to

suggest that conservative GC is the right solution for all circumstances, but that it is, at

least, often a better solution than has previously been thought.
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Chapter 1

Introduction

Garbage Collection (GC) is often considered to be an inherent property of a programming

language implementation. It is possible to retrofit GC onto uncooperative language

implementations using conservative GC [Boehm and Weiser, 1988], but performance is

considered to be slow. In this thesis I show that conservative GC has wider uses than

traditionally thought. My aim is not to suggest that conservative GC is the right solution

for all circumstances, but that it is, at least, often a better solution than has previously

been thought.

First, I modify a significant portion of V8 – a widely used, high performance, JavaScript

VM – to show that semi-conservative GC can make Virtual Machines (VMs) less error-

prone, with equivalent performance, to precise GC.

Second, I show that conservative GC can be idiomatically added to Rust, a non-GC’d

language that uses the concept of ownership (based on affine types [Pierce, 2004]) to

guarantee memory safety. This approach allows Rust programmers to write memory safe

programs without runtime overhead. However, Rust’s type system is too restrictive to

express programs which directly operate on cyclic data structures. Instead, workarounds

such as the use of weak reference counting or arenas [Goregaokar, 2021a] can protect the

user from dangling pointers, but cannot prevent memory leaks, and are difficult to write.

Because of this, there have been multiple attempts to add GC to Rust (see [Goregaokar,

2021b] for an overview of several of these), but the results either have significant ergonomic,

performance, or soundness issues.

In this thesis I introduce a new approach to adding GC to Rust — Alloy. At the language

level, Alloy provides a natural interface to programmers, making use of conservative

GC at lower levels. However, Alloy raises several challenges around correctness and

performance, mostly related to finalisation, several of which are unique to, or exacerbated

1



Chapter 1. Introduction 2

by, Rust. I show that these challenges have good solutions and that it is possible to

extend Rust to statically rule out problematic finalisers, and that a series of optimisations

can elide most finalisers.

1.1 Motivation

The majority of low-level software is written in systems programming languages such as

C/C++ which use manual memory management. In such languages, the programmer is

responsible for explicitly managing allocation and deallocation of objects in their program.

This means that they must request memory for objects when they are created, and then

release that memory when the object is no longer needed. This places a burden on the

programmer to ensure that programs are memory safe: that is, they must be careful

not to use memory they do not have access too, or free memory while it is still in use.

Violating memory safety in this way has both correctness and security implications: both

Microsoft and the Chromium project report that memory safety violations account for

around 70% of their security vulnerabilities [Microsoft, 2019; The Chromium Developers,

2022].

An alternative is to use garbage collection: an automatic approach to managing memory.

GCs typically come in two forms: reference counting, which counts the number of incoming

references for each object, deallocating them when their counts reaches zero; and tracing

garbage collection, where references in the program are periodically traced in order to

find objects. Both kinds of GC are memory safe because they restrict the programmer’s

control over deallocation.

While manual memory management and garbage collection are fundamentally different,

there are cases when they need to be used together. Systems programming languages such

as C++ are often used to implement language virtual machines (VMs) for performance

reasons. However, where the target language requires a tracing garbage collector, some

form of GC is also needed to manage objects written in C++ code. For example, JavaScript

VMs such as V8 [Google, 2008], SpiderMonkey [Mozilla, 1995], and JavaScriptCore [Apple,

2013] all use some form of GC internally to manage objects which are accessible from

within their C++ code.

Garbage collection is also used where managing memory manually is too difficult. Rust –

a systems programming language which uses the concept of ownership for memory safety

– makes it very difficult to write data structures which contain cycles. This has motivated

an active design space for some form of retro-fitted tracing collection [Goregaokar, 2021b].

This desire for non-GC’d languages to provide an opt-in form of GC has led to several
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retro-fitting attempts [Boehm and Weiser, 1988; Baker et al., 2007; Ager et al., 2013;

Goregaokar, 2015]. However, for languages which were not designed with GC in mind

during their inception, this is often fraught with both performance and correctness

challenges.

1.1.1 The problem with retro-fitting garbage collection

Pointer identification

A major challenge when retro-fitting tracing garbage collection is finding the references

to objects in the program. Systems languages and compilers make this difficult, or

impossible, as pointers to objects can be ‘lost’ on the call stack or in the heap. The ideal,

and universal, solution would be for such languages to allow introspection of a program’s

memory layout, telling it, for example, where each local variable lives within a frame, and

which one is a reference to an object. Unfortunately, no mainstream systems language

defines an introspection capability.

Instead, a retro-fitted GC can identify pointers conservatively : that is, the call stack and

allocated blocks in the heap are exhaustively examined for possible pointers to objects.

This requires the GC to know at what address a thread’s stack began, and what address

the stack is currently at. Each aligned word on the stack is checked to see whether it

points to an instance of an object: if it does, that object is further traced conservatively

to find other objects. Depending on the GC, checking whether an arbitrary word is

a pointer to an object can be fairly expensive, particularly if the GC requires interior

pointers to objects be translated to base pointers.

Other attempts to retro-fit tracing GC to languages rely on providing the collector with

bookkeeping information, allowing it to identify pointers precisely. Precise pointer identi-

fication can take on two forms. First, the compiler can be modified to emit the location

of pointers for the collector to use at runtime [Diwan et al., 1992]. Second, programmers

interacting with GC’d objects can use handles, that is wrappers around object references,

such that the handles inform the collector of the location of objects [Brooks, 1984].

Handles are less invasive, as they do not require modifications to the language, but they

place the burden of correctness onto the programmer.

For performance reasons, some GCs [SUN Microsystems, 2006; Bartlett, 1988; Apple,

2013] use a hybrid of both conservative and precise pointer identification. This often

involves precisely identifying pointers within objects on the heap, but using conservative

identification for pointers on the stack or within registers where it is more difficult to

provide bookkeeping information at runtime. Such GCs are often called semi-conservative.
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Finalisation

When an object can be proven to no longer be used, the collector can run the object’s

finaliser (e.g. to close file descriptors or database connections). VM authors must imple-

ment finalisation carefully to prevent a number of known correctness problems [Boehm,

2003]. Unfortunately, such problems can be exacerbated when GC is retro-fitted to

non-GC’d languages. In Rust, for example, finalisers present new problems, as they can

violate the tight restrictions the language places on how references can be used [Matsakis,

2013]. For example, Rust references have a clearly defined lifetime guaranteed by the

compiler. However, if used from within finalisers, which are called non-deterministically,

the reference may be invalid.

1.1.2 A case for retro-fitted conservative GC

Conservative scanning is often eschewed for two reasons: first, it is considered slower,

since it prohibits many GC optimisations which would move objects around in memory

(though semi-conservative GCs may still move objects which are not pointed to con-

servatively [Bartlett, 1988]); and second, it has a reputation for overestimating which

objects might be live, leading to longer than desired memory retention [Zorn, 1993].

Fortunately, there is now good evidence that conservative scanning tends to only slightly

over-approximate the values which may be pointers [Shahriyar et al., 2014].

In this thesis I show that the performance of retro-fitted conservative collection is not as

bad as previously thought. I do this by retrofitting semi-conservative GC into V8, an

industrial strength JavaScript VM Machine (VM) which uses handles. I am able to show

that, despite only migrating about half of V8’s source code, conservative GC using direct

references is no slower than the existing precise approach which uses handles. I also show

that switching to conservative GC makes V8 more ergonomic. That is, it allows VM

authors to write less code while using more idiomatic, and less error-prone C++ code.

I also show that retro-fitting conservative GC can be used to address two key ergonomic

issues in Rust: writing cyclic data structures; and using Rust as a language for writing

VMs. In this thesis, I introduce Alloy, a new GC for Rust. Alloy is sound from

a Rust language perspective (though dependent on the compiler tool-chain to respect

conservative GC’s limitations), and has reasonable performance. It also allows Rust data

structures with cycles to be expressed with ease, and can also be used in conjunction

with existing memory management strategies in Rust. Alloy uses tracing, conservative

GC provided by the Boehm-Demers-Weiser (BDW) collector [Boehm and Weiser, 1988],

though it introduces many Rust specific optimisations which are independent of the
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underlying collector. Alloy also introduces a novel technique, known as finaliser safety

analysis, which extends the Rust type system to reject programs whose finalisers are

unsound.

Alloy’s performance is evaluated in several different ways: somrs and WLambda, two

externally written reference counted interpreters which I have retrofitted to use Alloy;

and an artificial heap allocating benchmark which we use to compare Alloy against

various existing GC implementations in Rust.

1.2 Contributions

The main contributions of this thesis are as follows:

1. A source transformation and performance comparison between two methods of

representing pointers to garbage-collected objects in V8 – an industrial strength

JavaScript VM.

2. The design of Alloy– a tracing garbage collector for Rust.

3. Introducing the novel concept of finaliser safety analysis, showing that static

soundness guarantees for finalisation in a GC for Rust can be achieved by extending

the compiler and type system.

4. An optimisation in Alloy to remove unnecessary finalisers in a GC for Rust where

garbage collected and non-garbage collected objects are used together.

1.3 Publications

The majority of Chapter 3 forms a draft paper where I was the lead researcher:

• Jacob Hughes, Michael Lippautz, Hannes Payer, and Laurence Tratt. Comparing

the Performance of Handles and Direct References on VM Performance

1.4 Synopsis

The structure of this thesis is as follows: Chapter 2 introduces the concepts in memory

management needed to understand the rest of this thesis. It gives a brief overview of

the two fundamental approaches to managing memory: manual memory management,



Chapter 1. Introduction 6

and automatic memory management. It also provides background information about the

different kinds of garbage collection algorithms available and their relative advantages

and disadvantages. Chapter 3 explains the different ways a tracing garbage collector can

identify pointers. The main focus of this chapter is a performance comparison between

two ways a VM can refer to objects on the garbage collected heap: handles, which

use a level of indirection to refer to objects, and directly referencing them while using

conservative stack scanning during GC. Though both approaches are well established, the

performance trade-offs are unclear. This chapter details how I migrated around half of V8

– an industrial strength JavaScript VM – to refer to objects using direct references instead

of handles, with a performance evaluation which shows that even though the migration

is partial, direct references are at least as fast as handles on the Speedometer2.1

benchmark suite. Chapter 4 gives an overview of the Rust programming language and

how it uses ownership to manage memory without a garbage collector. It also shows how

Rust programs can be written with reference counting or arenas where the ownership

model does not fit. Chapter 5 gives an overview of where tracing garbage collection

can be useful in Rust. The main focus of this chapter is the introduction of Alloy–

a conservative GC based on the Boehm-Demers-Weiser GC [Boehm and Weiser, 1988]

I wrote for Rust so that writing cyclic data structures and implementing other GC’d

languages in Rust is more ergonomic. Chapter 6 explains how finalisation works in Alloy.

It details the soundness and performance challenges that finaliser present, some of which

are unique to a GC in Rust. The main focus of this chapter is on finaliser safety analysis

(FSA), one of the main contributions of this thesis. It explains how FSA extends the

Rust type system to ensure that finalisers in Alloy are sound. This chapter also shows

how finalisers in Alloy can be optimised based knowledge from the Rust type system.

Chapter 7 presents a performance evaluation of Alloy.



Chapter 2

Background

Computer memory is finite, and for non-trivial programs it is not possible to know statically

how much memory will be allocated on the heap. Over the course of a program’s lifetime,

its memory needs may go up and down many times. This means that for most programs

some form of memory management is needed — that is, a way to allocate memory for the

program when required, and to free it when no longer needed. There are two approaches

to this: manual memory management and automatic memory management.

This chapter gives the necessary background for the reader to understand the thesis.

Section 2.1 starts by explaining manual memory management. Section 2.2 introduces

two forms of automatic memory management: reference counting and tracing garbage

collection. Section 2.3 shows how the latter can be implemented in real systems. Finally,

Section 2.4 shows that, in real systems, a combination of various different techniques

is often used. Note that this chapter provides an overview of the memory management

landscape, and that Chapter 3 and Chapter 4 contain in-depth background sections which

are more specific to the contributions in this thesis.

2.1 Manual memory management

Languages such as C/C++ use manual memory management, where the programmer

explicitly manages allocation and deallocation for objects in their program. This means

that the programmer must request memory for objects when they are created, typically

via explicit calls to the allocator (malloc / new in C/C++), and then release that memory

when the object is no longer needed (free / delete in C/C++). In non-trivial programs,

requiring the programmer to manually track and free memory can be complex and error-

7
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1 #include <stdlib.h>
2

3 int main() {
4 int** arr = malloc(sizeof(int*) * 10);
5 if (!arr) {
6 return 1;
7 }
8

9 // allocate memory for each row
10 for (int i = 0; i < 10; i++) {
11 arr[i] = malloc(sizeof(int) * 10);
12 if (!arr[i]) {
13 break;
14 }
15 }
16

17 free(arr);
18

19 // At this point the program has lost access to the memory located
20 // in the for loop, which constitutes a leak.
21

22 return 0;
23 }

Listing 2.1: An example of a memory leak in C. main creates a two-dimensional array by first
allocating enough space for 10 inner rows (line 4), and then allocating additional memory for
each row using a loop (line 11). At the end of main, the initial memory allocated for the array is
freed (line 17) but not memory allocated for the inner rows, resulting in a memory leak.

prone. There are two primary considerations a programmer must think about when using

a language with manual memory management: memory safety and memory leaks.

2.1.1 Memory safety

Memory safe programs only dereference valid pointers. This section explains the most

relevant form of memory safety violations to this thesis: use-after-free violations.

Freeing memory too early means that it is deallocated while the program still holds a

reference to it. This reference becomes a dangling pointer, because the location it points to

is no longer valid memory. The correctness of the program is violated if the program then

uses this reference later on. This could manifest as a crash because the hardware notified

the OS of an access violation (typically a segmentation fault in the case of Unix-like OS’s,

or a general protection fault in Windows). In other cases, more subtle and hard to debug

errors can arise, such as a memory corruption where the program appears to continue

working normally, but reads from (or writes to) incorrect places in memory. This kind of

error can be exploited in attacks for reasons such as privilege escalation [Xu et al., 2015].
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A variant on this is a double free, where an allocator’s free function is called more than

once on the same reference. This may corrupt the state of the allocator, or free memory

in use by another part of the program. As with use-after-free violations, this is due

to a dangling pointer, and is a common source of security vulnerabilities. Fortunately,

several dynamic tools have been developed to help to identify and prevent use-after-free

vulnerabilities [Serebryany et al., 2012; Nethercote and Seward, 2007; Ainsworth and

Jones, 2020].

2.1.2 Memory leaks

The second kind of concern in manually managed languages are memory leaks.1 Memory

leaks occur when memory which is no longer used is not released. The most common

example of this can be seen in Listing 2.1, where the programmer forgets to call free (or

equivalent) on memory that is no longer needed. In addition to causing a program to

consume more memory than it needs to, memory leaks can cause performance problems

because of poor spatial locality of objects. In the worst case scenario, memory leaks can

cause out-of-memory (OOM) crashes, or slow programs to a crawl because the requested

memory is too large to fit into RAM and is regularly swapped in from the disk (known as

page thrashing). Memory leaks are difficult to detect as they are often subtle, and do

not cause an immediate crash. As with use-after-free detection tools, there also exist

dynamic tools help to identify and prevent memory leaks [Nethercote and Seward, 2007;

Novark et al., 2009; KDE, 2013].

2.1.3 RAII

To help deal with some of the pitfalls of manual memory management, C++ developed a

programming idiom known as Resource Acquisition is Initialization (RAII) [Stroustrup,

1997, Section 14.4]. RAII makes it harder to introduce memory bugs by tying object

lifetimes to resource management. In other words, the constructor of an object is

responsible for acquiring the resource (whether that is a heap allocation, file handle,

database socket, etc.), whereas the destructor is responsible for releasing that resource.

This means that as long as the object is alive, the resource is available.

C++ has specific language support for RAII: an object’s destructor is called automatically

when it goes out of lexical scope. When used to manage a heap allocation, delete (C++’s

deallocation operator) can be called from inside the object’s destructor. This allows the

programmer to use scope-based deallocation, instead of relying on the more error-prone
1Though, as we will see, they are not unique to languages with explicit deallocation!
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1 #include <iostream>
2

3 class Employee {
4 private:
5 int* id; // a pointer to an int, which is allocated on the heap.
6 public:
7 // Constructor
8 Employee(int id) {
9 this->id = new int;

10 *this->id = id;
11 }
12

13 // Destructor
14 ~Employee() {
15 std::cout << "Employee " << *id << " destructor called" << std::endl;
16 delete id; // frees the heap allocated int.
17 }
18 };
19

20 int main() {
21 Employee alice(1);
22

23 {
24 Employee bob(2);
25 } // bob’s destructor called.
26

27 return 0;
28 } // alice’s destructor called.

Listing 2.2: An example of using RAII to manage a heap allocated integer. The Employee class
has a single member, id which is a pointer to an int. The Employee constructor allocates this
value on the heap (line 9), and its destructor deallocates it (line 16). When main creates the
Employee instance alice, its destructor is run at the end of main automatically, freeing its heap
allocation. The bob instance is created in an inner scope, so its destructor is run first.

method of explicitly calling delete when they think they are finished with it. Listing 2.2

shows an example of how RAII can be used to automatically deallocate an object’s

memory when it goes out of scope.

2.2 Automatic memory management

Automatic memory management is a programming language feature where unused memory

is reclaimed automatically, relieving the programmer of the burden of having to do this

themselves. This is also known as garbage collection.2 There are two fundamental
2The term GC is somewhat overloaded, and can mean different things to different people. It is generally

understood that garbage collection encompasses both forms of automatic memory management [Bacon
et al., 2004], however, most uses of the term GC in literature refer specifically to tracing garbage collection.
This thesis will adopt a similar convention henceforth: using GC to refer exclusively to tracing garbage
collection, unless otherwise stated.
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approaches: reference counting; and tracing garbage collection. This section will give a

basic overview of both approaches, their relative advantages and disadvantages, and why

one would choose one over the other.

2.2.1 Reference counting

Reference counting was first used in 1960 [Collins, 1960]. As the name suggests, it works

by maintaining a “count” of the number of references that point to each object. When a

new reference to an object is created, the reference count for that object is incremented.

Conversely, when a reference to an object is destroyed, the count is decremented. When

an object’s reference count reaches zero, it is no longer reachable, and its memory is

reclaimed.

Advantages and disadvantages

The main advantage of reference counting is that an object can be freed as soon as the last

reference to it is destroyed. This makes it very appealing for real-time applications where

low latency is important to maintain responsiveness (e.g. in GUI programming where

responsiveness is important for operations such as closing windows or dialogue boxes).

Reference counting can also be simpler to implement than tracing garbage collection, as

the latter usually requires platform specific knowledge to identify pointers.3

Reference counting has several disadvantages. First, the overhead of incrementing and

decrementing the count has a performance overhead on write operations. Not only does

this require extra instructions for updating the count in potential hot paths, but it can

also pollute the cache [Jones et al., 2016, p. 59]. In addition, if thread-safety is required,

reference count operations have a higher overhead as they must be performed atomically.

Second, reference counting requires an extra machine word to store the count for each

object. This is because, in the worst case, the number of references to an object could be

equal to the number of objects in the heap, so the count must be word sized. In languages

such as Java, where objects tend to be small but vast in quantity [Dieckmann and Hölzle,

1999, p. 16], the count overhead can quickly add up.
3Of course, high performance reference counted implementations are anything but simple: deferred

reference counting implementations can remove much of the count overhead from temporaries on the
stack [Blackburn and McKinley, 2003]; and coalesced reference counting can can often remove count
operations that cancel each other out [Shahriyar et al., 2012]. Some systems are even able to replace
atomic count operations with non-atomic ones where they can guarantee that this does not affect
thread-safety [Ungar et al., 2017].



Chapter 2. Background 12

A

0

B

1 1 1

C D

Figure 2.1: An example of a graph of objects which will never be reclaimed due to a cyclic
reference. Even after a is deleted, objects b still maintains a count of one because of d’s reference
to it.
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Figure 2.2: An example of using a weak reference to break a reference cycle. b is now pointed
to by a weak reference from d, allowing all objects in the cycle to be freed.

Third, when a large chain of objects are recursively deallocated at once, a reference counted

system can cause noticeable pauses to the application. If deleting a reference removes

the root to a large graph, the application thread will be blocked from progressing while

each node is freed one-by-one. Worse still, this can block all threads in multi-threaded

systems if locks are involved during deallocation [Boehm, 2004].

Finally, a fundamental problem with naive reference counting is that it cannot free objects

with cyclic references. In other words, an object which refers to itself – directly or

indirectly – will never be reclaimed in a naive reference counting system (see Figure 2.1

for an example). This is because even if all other references are removed, the count will

never reach zero. Without some kind of additional support, none of the objects in a cycle

can be freed, causing a memory leak. For this reason, many reference counting systems

use some other mechanism to handle cycles.

In the next subsections, two possible approaches to overcoming this problem are shown:

using weak references, and an algorithm for cycle reclamation.

Weak references

Weak references are references which do not form part of the count, so do not protect an

object from being deallocated. Unlike regular strong references, a weak reference can be

used to break the link in cycles of strongly connected objects (shown in in Figure 2.2).

The problem with using weak references is that the burden is placed on the programmer

to ensure they do not leak memory, requiring them to correctly break cycles. In large

graph-like data structures this can be difficult to keep track of.
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Cycle collection

There have been several proposed solutions to allowing a reference counting system to

automatically reclaim data structures made up of objects which contain cyclic references

without programmer intervention [Lins, 1992; Bacon and Rajan, 2001]. Each algorithm

has different performance characteristics, but they are based on the same two fundamental

observations. The first observation is that the most interesting operation to cycle detection

is when a reference count is decremented to a non-zero value as this is the state where a

cycle may exist. If a reference count is decremented to zero, the garbage has been found,

and cycle detection is not necessary.

The second observation is that all reference counts in a garbage cycle are internal. In

other words, if the counts between objects in a cycle are subtracted, and there aren’t any

externally incoming references, then they will cancel each other out, identifying it as a

garbage cycle.

Based on these observations, what each cycle detection algorithm has in common is

that if an object’s reference count is decremented and does not reach zero, then it is a

potential root of a garbage cycle. These roots can be added to a work-list, and at some

later stage can be the starting points for a local cycle detection scan. This scan involves

a depth-first-search, where every reachable object is decremented to see if their counts

reach zero. If zero counts are discovered, then the second observation holds, and the cycle

of objects can be considered a garbage cycle.

2.2.2 Tracing garbage collection

Tracing garbage collection was first developed in 1960 as a way of automatically managing

memory in Lisp [McCarthy, 1960]. In order to know which objects to collect, a garbage

collector must know which objects are going to be accessed at some point in the program.

Such objects are referred to as live. True liveness is an undecidable problem, so tracing

garbage collection uses pointer reachability as a conservative approximation. An object is

reachable if it can be reached either directly, or indirectly (by following a chain of pointers

from fields in other objects) from a set of known roots in the program. An object which

is no longer reachable is considered dead and a garbage collector can reclaim its memory

at some point in the future.

Tracing GCs reclaim garbage periodically, which means that there is a delay between

when an object was last used, and when its memory becomes available for future reuse.

This lag is referred to as heap drag [Röjemo and Runciman, 1996]. Reclaiming garbage is

not cost-free, so regardless of how many objects exist there is a performance and space
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trade-off: more frequent garbage collections will reduce the amount of heap drag, but

will end up having to do more work.

Finalisation

Finalisation is the term given in tracing garbage collection to the process in which objects

run methods to execute some cleanup code before they are reclaimed. Such methods are

referred to as finalisers.

Finalisers are similar to destructors in manually managed languages with RAII, or

reference counted systems. However, GC literature often distinguishes them due to the

key difference that destructors are called deterministically on object destruction, whereas

finalisers are run non-deterministically. In other words, a tracing GC does not reclaim

objects immediately after they are unreachable, but instead at some point later in time.

This means that all we can know about a given object’s finaliser is that it may run at

some point in the future. Listing 2.3 shows a simple example of a using a finaliser to

close a file handle in Java.

Advantages and disadvantages

As with reference counting, one of the main advantages of using tracing garbage collection

instead of manual memory management is that it allows programmers to write programs

which are memory safe,4. Use-after-free violations are not possible with tracing garbage

collection because, by definition, dangling references cannot occur in a tracing collector:

an object which has a reference to it is considered reachable, so it will not be reclaimed.

In addition, because reclaiming memory is the responsibility of the collector, tracing GC

is often easier to use.

Tracing garbage collection can deal with data structures which include cycles. In contrast

to reference counting, from the programmers perspective, cyclic data structures “just

work”, with no extra effort needed to ensure they are collected. This is due to how a

tracing GC determines how an object is reachable (explained in Section 2.3).

The main disadvantage of tracing garbage collection is that because of the collector

runtime, it may be unsuitable for applications which have constrained memory or require

real-time responsiveness.
4However, in Section 5.3.2 I show how incorrectly using a particular kind of tracing garbage collection

– known as conservative collection – can actually violate memory safety.
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1 import java.io.File;
2 import java.io.FileWriter;
3 import java.io.IOException;
4

5 public class FileHandler {
6 private File file;
7 private FileWriter writer;
8

9 public FileHandler(String filename) {
10 file = new File(filename);
11 try {
12 writer = new FileWriter(file);
13 } catch (IOException e) {
14 e.printStackTrace();
15 }
16 }
17

18 public void write(String data) {
19 try {
20 writer.write(data);
21 } catch (IOException e) {
22 e.printStackTrace();
23 }
24 }
25

26 @Override
27 protected void finalize() throws Throwable {
28 try {
29 writer.close();
30 } catch (IOException e) {
31 e.printStackTrace();
32 } finally {
33 super.finalize();
34 }
35 }
36 }

Listing 2.3: Using a finaliser to close a file handle in Java.

Memory leaks are also possible in tracing garbage collection – though far less likely than

its manually managed or reference counted cousins. It is possible for programmers to

accidentally hold on to a reference to an object (e.g. via a global variable), preventing

anything referenced by it from being collected.

2.3 Tracing garbage collection implementation

In this section, I briefly explain the three main algorithms for tracing GC: mark-sweep;

mark-compact; and semi-space collection. Each of these algorithms have different per-

formance and space trade-offs and, as will become apparent, there is overlap between
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the techniques which they use. One particular trade-off in contention between various

implementations is throughput (how much work can be done in a given time) and latency

(the responsiveness of the application). Unfortunately, as we will see, these factors are

often in tension with each other. High performance industrial strength GCs such as those

used in Java’s HotSpot JVM or JavaScript’s V8 usually use a combination of different

implementation approaches.

When talking about GC, it is useful to separate the core of the GC from the user program.

The term collector refers to the system component responsible for garbage collection,

whereas the mutator is used to refer to the user program (so called because from the

point of view of the collector it simply mutates the object graph [Dijkstra et al., 1978]).

2.3.1 Mark-sweep garbage collection

All tracing algorithms share one thing in common: in order to free garbage, they must be

able to locate all the reachable (i.e. live) objects in a program. An object is considered

reachable if it is referenced – directly or indirectly – from a set of known roots. To achieve

this, the algorithm for a mark-sweep GC can be split into two distinct mark and sweep

phases. In the mark phase, a transitive closure over the object graph is performed. That

is, starting from a set of roots – references which form the entry points in to the object

graph – the collector traces through each reference it finds, marking each object along

the way. Once this is finished, all reachable objects will have been marked and are thus

considered live.

The sweep phase then scans the heap linearly and frees all objects which were not marked.

Marked objects are reset ready for the next collection. This can be done efficiently by

flipping the meaning of the mark bit from one collection to the next.

In its most naive form, mark-sweep garbage collection would pause the mutator entirely

in order to perform a collection, before handing control back to the mutator to resume

the program. Such a process is referred to as stopping the world. This is fine when

throughput is the only concern, but in more modern applications, lower latency is often

desired, reducing the acceptable time for the collector to pause the mutator.

One technique to lower latency is to perform incremental marking [Baker Jr and Hewitt,

1977], where instead of one big stop the world pause, the program is interrupted more

frequently to perform smaller chunks of marking which can interleave with the mutator.

In the common case, this can improve the latency of a program, but long pauses can still

happen under memory pressure when the collector tries to keep up with a large number

of allocations.
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Unfortunately, there is no free lunch, and incremental marking comes at the cost of

throughput: the mutator can change the state of the object graph after each chunk of

marking happens so it must be able to inform the collector of this. The mutator does

this using a small fragments of code before write operations known as barriers [Pirinen,

1998]. These are used to give the collector a chance to do some work, and to ensure that

certain invariants in the object graph are maintained. The exact barriers used depend on

which invariants the collectors wish to maintain, a topic which is outside the scope of

this thesis.

A mark-sweep collector’s latency can also be optimised by making it concurrent. A

concurrent collector is one which can perform marking or sweeping (or both) at the same

time as the mutator. In modern GC implementations, most of the marking can be done

concurrently to the mutator, and very short pauses are needed only to scan a thread’s

call stack [Flood et al., 2016]. Concurrent garbage collection is notoriously difficult to

implement: synchronisation primitives are needed when accessing the object graph and

similar barriers to incremental marking are often used to preserve invariants.

A high performance collector will often use parallel collector threads to perform both

mark and sweep phases. This should not be confused with concurrent collection, where

the mutator and collector can work on the object graph simultaneously.

2.3.2 Mark-compact garbage collection

A garbage collector based on the mark-sweep algorithm described above can suffer from

memory fragmentation. Over time, contiguous blocks of memory become harder to

allocate as frequent allocation and deallocation results in memory being sparsely filled

with smaller contiguous blocks. This can make it harder (and sometimes impossible) to

allocate a contiguous block of the requested size. In addition to reducing the effective

available memory, this can cause two kinds of performance problems: first, allocating

requires more work as the parts of the allocator responsible for mapping memory, known

as freelists, must be scanned looking for a contiguous chunk of memory that fits the

requested size; second, a program containing objects with poor locality in memory can

be slower because of the negative effects this has on the CPU cache.5

5Fragmentation is not a unique to garbage collection. Languages which use manual memory manage-
ment also suffer from fragmentation because, apart from through limited interfaces such as realloc,
they cannot move allocated blocks in memory. This is because in general there is no mechanism for
identifying and then updating references in the program. More recently, the Mesh allocator provides
a solution to this by using the indirection of virtual and physical page addresses to compress physical
pages in memory behind the user program’s back [Powers et al., 2019].
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As the name suggests, a mark-compact (or compacting) collector addresses fragmentation

by moving live objects closer together after collection to make the available memory more

contiguous. There are three types of compaction algorithms: arbitrary compaction, where

object order is not preserved after compaction [Saunders, 1974]; linearising compaction,

where objects are relocated next to objects they refer to [Jones et al., 2016, p.31]; and

sliding compaction, where gaps between objects are compressed, but the order of the

objects in memory is preserved [Suzuki and Terashima, 1995; Flood et al., 2001]. Each

technique has different performance and space trade-offs, however, most modern collectors

preserve object locality in some way, as empirical observations have found that this has

an important impact on the cache friendliness of the program [Huang et al., 2004].

A crucial component of a mark-compact collector is that after moving objects, the

references to those objects in the mutator must be updated to point to the new object

location. In GCs which perform concurrent compaction, that is compaction which happens

concurrently with the mutator, a forwarding pointer is usually placed in the header of the

old object, so that the mutator can locate the new address for the moved object. A read

barrier may also be needed to ensure the correct version of an object is being read [Tene

et al., 2011].

A mark-compact collector can increase the effective memory available to a program. It

also has performance benefits of improved object locality, and faster allocation because

allocating in a contiguous heap can be done efficiently with a single bounds check (known

as contiguous or bump allocation) [Blackburn et al., 2004]. Of course, these benefits are

not free. As well as the increased complexity that compaction adds, the additional passes

over the heap required by compaction tends to lead to worse throughput than mark-sweep

collection. As a result, high performance GCs such as V8 tend to avoid compaction unless

their heuristics have determined that fragmentation needs addressing [Jones et al., 2016,

p.41].

2.3.3 Semi-space garbage collection

The final approach to tracing GC is semi-space collection (also referred to as stop-and-

copy) [Cheney, 1970]. A semi-space collector works by dividing the heap into two equally

sized partitions known as tospace and fromspace. New objects are bump allocated in

fromspace until it becomes full. At this point, a collection takes place and live objects

in fromspace are moved to the beginning of tospace (a process commonly referred to

as scavenging). The remaining objects in fromspace are considered garbage and can be

ignored as new allocations now begin at the next available location in tospace. The roles

of tospace and fromspace have now been effectively flipped.
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The semi-space algorithm has the advantage that allocation is very fast as it is always

a simple bump allocation. However, this comes at a cost that the available heap size is

effectively halved. The consequence of this is that a copying collector will perform more

collection cycles than their other tracing counterparts.

2.4 Combining memory management strategies

Neither mark-sweep, mark-compact, or copying collection can be considered the best

choice for all use-cases. Rather, they each have different trade-offs that must be carefully

considered by the implementation. As a result, it is common for high performance tracing

GC implementations to combine elements of each based on the performance characteristics

they wish to tune for [Bacon et al., 2004].

A common example is that high performance GCs use a form of generational collection

to take advantage of the weak-generational hypothesis: the empirical observation that

most objects die young [Ungar, 1984]. The basic idea is that much recovered spaced

can be achieved with minimal collector effort by focusing only on collecting younger

objects. Generational collectors divide the heap into logically separate old and young

generations. Typically, these generations are phsyically separated too, so that short-lived

objects can be allocated separately from long-lived ones. A generational GC typically

allocates objects in the young generation first, before moving them to the old generation

after they survive a certain number of collection cycles.6

High performance collectors such as the Dart VM [Google, 2019a], Java’s HotSpot

JVM [SUN Microsystems, 2006], and the V8 JavaScript VM [Google, 2008] use a form of

copying collection for their young generation: taking advantage of the faster allocation it

provides, and the knowledge that though collection cycles will be more frequent, garbage

will be regularly collected since their objects will be shorter lived. It is common for such

collectors to then use a form of mark-sweep or mark-compact for the old generation.

Hybrid reference counting and tracing garbage collection language implementations are

also common. Python’s CPython implementation uses reference counting as its primary

GC mechanism with a secondary tracing mark-sweep collector to free cycles [Galindo Sal-

gado, 2022].

6Objects which are known to live longer can be allocated directly in the old generation, in a process
known as pretenuring.



Chapter 3

Retro-fitting conservative garbage

collection in v8

Some programming language Virtual Machines (VMs) use handles, that is wrappers

around pointers to heap objects, to allow the root set of garbage collected objects to be

precisely enumerated. Other VMs use direct references to heap objects, requiring the

C/C++ call stack to be conservatively scanned for values that appear to be pointers

to heap objects. The performance trade-offs of these two approaches are unclear: in

particular, do direct references gain more performance by removing a level of indirection

than they pay through conservative stack scanning (including the costs of checking

whether arbitrary words point to heap objects)?

This chapter studies the performance difference between these two approaches on V8 – a

large, industrial strength VM with a codebase containing roughly 1.75MLoc. Because of

this complexity, and the considerable engineering effort involved, I migrate around half

of V8’s handles to use direct references. However, I show that, even though a partial

migration imposes additional runtime costs and the conservative stack scanner is naive,

direct references are at least as fast as handles on the Speedometer2.1 benchmark

suite.

This chapter is structured as follows. Section 3.1 begins by explaining the difference

between writing VMs using handles or references and the implications this has on the

GC for locating references. Section 3.2 offers some background on V8’s approach using

handles before detailing the migration strategy in Section 3.4 for retro-fitting conservative

collection. Section 3.5 shows a performance evaluation of the migration strategy. Finally,

an overview of the related work is provided in Section 3.7.

20
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3.1 Handles or direct references?

This section provides a brief overview of direct references and handles in the context

of VMs. To help make this concrete, I do so for a hypothetical VM, written in C, that

implements an object orientated language. In this VM, every language-level object is

an instance of a struct called Obj, which, for the sake of simplicity, we will assume has

a single field data of type int.1 We assume that the VM contains a GC that runs in

a thread concurrently with other VM mutator threads, and thus the GC can free the

memory of any unreachable Obj at any point.

3.1.1 Direct references

The most ‘natural’ way to program this hypothetical VM is to use direct references.

We assume that the GC exposes a single function Obj *gc_new_obj(), which returns a

pointer to a block of memory with a freshly initialised Obj. When we want to create a

new object, we call gc_new_obj, assign the result to a local variable, and then operate

upon its data field:

1 Obj *n = gc_new_obj();

2 n.data = 1;

As this example suggests, ‘direct references’ is the term for what many would see as the

‘normal’ way of programming in C. Unlike most normal C programming, however, this

VM has a concurrent GC: it can run immediately after line 1 has executed, but before

line 2 has executed. If the GC were not to notice that n is pointing to a live Obj, it

would free that Obj’s memory, causing the program to misbehave (e.g. the program might

segfault or overwrite a portion of memory now used in another thread). In other words,

at that point in the program, n is a root, that is an entry point into the graph of objects

created by the VM. For our purposes, we can consider the root set to be all references to

objects stored in C-level variables, bearing in mind that at run-time such variables may

be stored as part of a function frame on the C call stack.2

The ideal, and universal, solution would be for C’s language specification to allow

introspection of a function’s frame layout, telling it, for example, where each local variable

lives within a frame. For each frame on the stack, the GC could then read the value of only

those variables whose compile-time type is Obj*, considering the objects they reference

as roots. Local variables of other types, which are not of interest to the GC, would be
1This precludes our hypothetical VM from tracing through objects, which is out of scope for this

chapter.
2There are other hiding places for such references, ranging from thread-locals to registers to intermediate

variables: for introductory purposes, these can be considered minor variations on the C call stack problem.
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ignored. This would allow the GC to precisely enumerate the GC roots (i.e. to include

all live objects as root while not including any non-live objects as roots). Unfortunately,

due to the performance costs of persisting type information at runtime, no mainstream

systems language defines an introspection capability. To address this problem, a garbage

collector can be split into two categories depending on how it identifies references: precise;

and conservative collection.

3.1.2 Conservatively identifying references on the stack

Many VMs using direct references turn to conservative stack scanning, where the C call

stack is exhaustively examined for possible pointers to instances of Obj. This requires

the GC to know at what address a thread’s stack began, and what address the stack is

currently at. Each aligned word on the stack is then checked to see whether it potentially

points to an instance of Obj: if it does, that Obj is considered a root. Depending on the

GC, checking whether an arbitrary word is a pointer to an Obj can be fairly expensive,

particularly if the GC requires interior pointers to objects be translated to base pointers

— in this thesis, I consider these costs inherent to conservative stack scanning.

Conservative stack scanning inherently over-approximates the root set, because random

words on the stack may accidentally point to an Obj, keeping it alive longer than necessary.

Fortunately, in practice relatively few objects tend to be kept alive unnecessarily long:

the most extensive study we know of suggests the false detection rate in Java programs is

under 0.01% of live objects [Shahriyar et al., 2014].

Objects identified as live via conservative scanning must also be pinned in memory, as

the GC cannot know whether pointers to those objects on the stack are ‘genuine’ or

‘accidental’. This prevents those objects from being moved by the collector, as a stack

value which was misclassified as a pointer would have its value erroneously updated. Fully

conservative GCs, that is GCs which conservatively scan all parts of memory, from the

call stack to the heap (e.g. the Boehm-Demers-Weiser GC [Boehm and Weiser, 1988]) are

thus unable to move any objects in memory. However, many GCs are semi-conservative,

that is most references to objects are determined precisely, with only roots on the stack

discovered conservatively.

Conservative scanning occupies an odd position in software. Technically speaking, the

way it works violates the rules of most compilers which, unaware of the existence of GC,

manipulate stack layouts for optimisation purposes. In rare cases, compiler optimisations

have been known to hide pointers from a conservative GC [Google, 2020]. Furthermore,

some programming techniques (e.g. XOR lists) thoroughly defeat it. However, because



Chapter 3. Retro-fitting conservative garbage collection in v8 23

conservative scanning is widely used (e.g. the well-known Boehm-Demers-Weiser GC and

WebKit [Pizlo, 2017]), it is well supported in practise.

3.1.3 Precisely identifying references on the stack

One method of precisely identifying references on the call stack is by dynamically maintain-

ing a shadow stacks [Henderson, 2002]. A shadow stack is a global data structure which

precisely identifies the location of references on each stack frame. The main disadvantage

of using a shadow stack is the performance cost it has at runtime: any stack operation

which involves references must update the shadow stack. Since such operations are often

frequent, this cost adds up.

Another method is to use an approach known as dynamic pointer provenance track-

ing [Banerjee et al., 2020]. This is a combination of static analysis and runtime taint

propagation to locate the allocation from which a pointer in the program came from.

Currently, this approach has only been realised on single-threaded applications and

support for multi-threading is an open research area.

The most efficient way to precisely identify stack roots is for the compiler to emit their

location in a way that can be accessed as a constant at runtime. Some compilers offer

this as a concept known as stack maps, where the compiler defines a way for a program to

introspect the call stack at specific locations. Stack maps offer the same functionality as

language-defined introspection, but do so in a way that is not portable between compilers.

In LLVM for example, a stack map records the locations of pointers in a stack frame at a

particular instruction address.

Stack maps are stored in the binary of an application to be used at runtime. This has

a memory overhead which means that it is often impractical to include them at every

possible instruction address in a program.3 Instead, stack maps are generated for specific

safe points in a program. That is, a point in the program where it is safe for the collector

to pause the mutator in order to schedule a GC cycle.4

At a minimum, safe points are needed at any call to an allocator so that a GC cycle can

be scheduled if an allocation failed. In addition, safe points are also needed at loop back

edges if there are parallel mutator threads. This is because if one thread fails to allocate

due to memory pressure, it may not be possible to schedule a GC cycle if another thread

is spinning in a non-allocating tight loop. This could cause the program to crash because
3Though Stichnoth et al. [1999] show a compression technique for how this can be done in the JVM,

with the stack map entries about 20% of the generated code size
4The term safe point is somewhat overloaded as it is also used in GC terminology to refer to specific

points in the program where parallel mutator threads can block when a collection is requested.
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it is unable to halt each mutator thread safely to perform GC. In order to GC more

frequently, safe points (and thus stack maps) are needed at more points in the program.

This represents a trade-off between GC frequency and the programs code size due to

increase number of stack maps. In the case of the Modula-3 language, compressed stack

maps increased the code size by around 13% [Diwan et al., 1992].

Unfortunately, stack maps are highly implementation specific and poorly supported by

C/C++ compilers. GCC does not support stack maps, and while LLVM does have

some stack map support – introduced to support Azul’s Falcon JVM [Reames, 2017]

– it is experimental, incomplete, and unsupported, with particular problems at higher

optimisation levels [Project, 2014].

Stack maps are also notoriously difficult when used in languages with optimising compilers.

Diwan et al. [1992] show that certain compiler optimisations, such as those which obtain

an inner pointer and throw away the base pointer, must be disabled.

3.1.4 Handles

An alternative approach to direct references and conservative scanning has become known

as handles. Modern VMs use handles in two distinct ways: in this section we will consider

comprehensive handles, as found in e.g. [Kalibera and Jones, 2011] (in Section 3.2 we will

consider the other kind of handles).

Comprehensive handles add a level of indirection to all object references, with the

indirection being the ‘handle’. Handles are stored at a fixed point in memory, with one

handle per object. In the context of our hypothetical VM, this means that we never

store references to Obj directly, instead storing references to a Handle struct. When the

VM wants to access an Obj it must tag the corresponding Handle; this informs the GC

that the Handle is a root. When the VM is finished with the Obj it must untag the

corresponding Handle. We maintain a tag count for each Handle, as it may be tagged

multiple times before being untagged: when the tag count goes to zero, the Handle is no

longer a root.

Our hypothetical GC needs three altered/new functions: Handle *gc_new_obj() re-

turns a pointer to a handle, where the handle points to a freshly initialised Obj; Obj

*tag(Handle *) which increments a handle’s tag count by one and returns a pointer to

the underlying Obj; and void untag(Handle *) which decrements the handle’s tag count

by one. Because such a function updates important state used by the GC, the collector

must not be invoked while it is executed.
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An example of this API in use looks like:

1 Handle *h = gc_new_obj();

2 Obj *o = tag(h);

3 o.data = 1;

4 untag(h);

Handles have important advantages. First, tagging and untagging allows the GC to

precisely determine the root set by iterating over all handles and considering as a root any

handle with a tag count greater than 0. Second, handles are fully portable and require

no explicit language or compiler support. Third, any Handle with a zero tag count can

have its underlying Obj safely moved. In other words, handles make it trivial to write

precise, moving GCs. Comprehensive handles also have the virtue that moving an Obj

requires only updating its corresponding Handle.

There are however disadvantages. First, a handle API without compiler support is easy

to misuse: forgetting to tag a handle or untaging a handle twice leads to undefined

behaviour. Finding such API misuse is notoriously hard, and VMs such as V8 have

developed home-grown linters that scan for obvious API misuse, though none that we

know of can catch all possible kinds of API misuse. Second, handles’ double level of

indirection implies at least some performance loss relative to the single indirection of

direct references. Third, handles have additional run-time costs beyond those of double

indirection: each handle consumes memory; since handles cannot move, they can cause

memory fragmentation; and tagging / untagging a handle requires memory reads and

writes.

3.2 V8 background

V8 is a widely used JavaScript and WebAssembly VM, embedded in Chromium-based

browsers (e.g. Chrome) and other well known systems (e.g. NodeJS). In this section we

introduce some general V8 background, before describing V8’s use of handles.

V8 is largely written in C++. A single V8 process can run many unrelated programs

by encapsulating them in isolates, each of which has a private heap. Each heap is

separated into young and old generations. Young generation-only collection uses a semi-

space strategy that is a variant of Halstaed’s approach [Halstead, 1984] (though V8

uses dynamically-sized lists of segments to allow for work stealing). A young and old

generation collection uses a mark-sweep-compact strategy where marking and sweeping

are performed concurrently [Degenbaev et al., 2018], and compaction occurs during idle
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time [Degenbaev et al., 2016]. Collection can also be performed during idle time to reduce

latency from the user’s perspective.

3.2.1 Handles in V8

V8 uses handles to determine the root set of objects. Unlike the simple VM described in

Section 3.1.4, V8 uses partial handles: that is, it uses direct references in those places

where it can precisely track them (e.g. object slots), and handles in those places where

it would otherwise lose track of roots (e.g. stack references). Although V8 has various

kinds of handles (e.g. root handles, persistent handles, eternals, and traced reference

handles [Google, 2019b]), most of these have very narrow, specific uses:5 we focus in this

chapter exclusively on ‘normal’ handles

Comprehensive handles as described in Section 3.1.4 persist throughout a VM’s lifetime,

with each heap object having a single handle pointing to it. In contrast, V8’s partial

handles are temporary, being regularly created and destroyed: any object may, both at

any given point and over its lifetime, have multiple handles pointing to it. This has a

significant impact on the way handles are used within V8.

In essence, when V8’s C++ code wishes to operate on a JavaScript object, it must create

a handle to it, destroying that handle when it is finished. This can be thought of as a

kind of ‘lock’: the handle guarantees that the object is kept alive while C++ code works

upon object, without having to worry that pointers to the object will be ‘lost’ on the

C++ call stack.

As with other VMs using this style of partial handles, V8 faces two challenges: how to

make partial handles easy to use for the programmer; and how to make their regular

creation and destruction fast.

The C++ Handle class is used pervasively throughout V8: most functions that operate

on heap objects either take or return Handle instances. The Handle class exposes a

pointer-like API (e.g. the dereferencing ‘*’ operator on a handle returns an Object) that

makes it relatively transparent in use. A Handle instance contains a pointer to the

underlying handle but no additional storage (i.e. size_of(Handle<T>) == size_of(T*),

giving programmers confidence about handle storage and moving costs.

A challenge with partial handles is knowing when they are no longer needed. To help with

this, V8 uses handle scopes, which can be thought of as pools of handles: newly created

handles are automatically placed in the ‘current’ handle scope; and when a handle scope
5There are also a few parts of V8 where handles are forbidden and GC is prohibited.
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1 void main() {
2 HandleScope scope(GetIsolate());
3 Handle<String> str = foo();
4 }
5

6 Handle<String> foo() {
7 HandleScope scope(GetIsolate());
8 Handle<String> a = NewString("a");
9 Handle<String> b = NewString("b");

10 return scope.CloseAndEscape(a);
11 }

Listing 3.1: A simplified example of V8’s C++ code, showing the use of handles. main creates a
handle scope (line 2), and then calls foo which creates a further handle scope (line 7). Two new
heap objects are created, each of which produces a handle (lines 8 and 9), ensuring that both
objects are considered as roots. foo cannot directly return a handle to its caller, as that handle
will be automatically destroyed when the handle scope is destroyed by RAII at the end of the
function call. The CloseAndEscape method adds a new handle to main’s handle scope pointing
to the "a" string, and passes a reference to that handle to the caller, allowing the underlying
object to safely ‘escape’ the handle scope it was created in.

is no longer needed all of the handles in it are destroyed. When V8 code creates a new

HandleScope instance, that handle scope is pushed onto a stack, whose topmost element

is the current handle scope. C++’s RAII mechanism is used to automatically destroy

HandleScope instances, which also destroys all the handles it contains.

Handle scopes ensure that C++ code dealing with objects remains relatively terse,

and reduces several opportunities for programmer mistakes. However, C++ code must

carefully ensure that it does not leak a pointer to an object beyond the lifetime of the

handle scope that references that object — doing so causes undefined behaviour. V8 has

various lints (for example gcmole) which search the codebase for possible API misuse and

warn when such instances are found. However, lints cannot identify all possible misuses:

some misuses are later detected in debug builds, but some misuses end up in release code,

where they can become a significant security concern.

Listing 3.1 shows a simplified snippet of V8’s C++ code, demonstrating how Handles and

HandleScopes interact. In this example, two handle scopes are created, with the second

handle scope wanting to return a handle that outlives its handle scope. Handle scopes

expose a CloseAndEscape method which allow a handle to be safely moved to the parent

handle scope.

Handle scopes are an important performance optimisation, since destroying a handle

scope causes its backing storage containing multiple handles to be destroyed in one go:

neither individual deallocation or any form of handle compaction is necessary.
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A further optimisation is based on the observation that within a given handle scope it

is common for the same object to be referenced multiple times. Although it is always

correct to create multiple handles to the same object, it is inefficient, since each handle

requires memory, requiring the storage area pointed to by a handle scope to be enlarged.

When a handle for an object is requested, V8 thus performs a linear scan through the

current handle scope to see if an existing handle to that object is present, only creating a

new handle if none exists.

Though handles and handle scopes are needed in V8 to precisely enumerate the roots,

JavaScript provides introspection, so object slots in the V8 heap can be traced precisely

because their layout information is available to the collector.

Although in most of this chapter we consider V8 in isolation, we are particularly interested

in how our changes affect V8 when running browser code. That means that we also

need to consider the interactions between V8 and Blink, Chrome’s rendering engine. V8

exposes a simplified Handle-like class called Local, which also uses two levels of indirection,

to ‘external’ applications such as Blink. Moving objects between Blink and V8 requires

converting to/from Handles/Locals, though the default configuration optimises these

conversions to a compile-time cast (i.e. there is no run-time copying of data).

3.3 Why switch to direct references in V8?

3.3.1 Ergonomics

A full migration from V8’s handle based architecture to direct references would make the

V8 codebase more ergonomic. That is, it would be easier for VM developers to read and

write code and reduce the surface of possible programming errors which can be introduced.

This is for two main reasons. First, the creation of HandleScope objects take place in over

17,000 locations inside the V8 codebase. A full migration to direct references would allow

these to be removed. This would reduce the overall size of the codebase and simplify the

parts which deal with on-stack references to heap objects.

Second, direct references allow for more idiomatic usage of pointers in C++. V8 developers

would no longer need to adhere to the handle scoping rules (Section 3.2), and could refer

to garbage-collected heap objects using ordinary C++ references. The lifetime of object

references would be tied to lexical scope, something which C++ programmers will already

be familiar with.
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3.3.2 Performance

The major performance problem with handles is that each heap object dereference

requires an additional level of pointer indirection. This constitutes at least an extra load

instruction; has negative cache behaviour; and can prevent certain compiler optimisations.

In addition, the memory cost for storing handles at runtime, alongside the frequent

creation and destructions of handle scopes can be removed.

Conservative stack scanning is also a promising approach for V8 since over 80% of V8’s

GC cycles occur during the JavaScript event loop,6 when there can be, by design, no

pointers on the call stack. This means that it would only need to take place on allocation

failure, and the likelihood of needing to pin objects in memory would be greatly reduced.

However, the main performance trade-offs when using this conservative approach is that

objects marked in the GC via a conservatively identified pointer cannot be moved, which

could negatively impact the effectiveness V8’s compaction.

3.4 Gradually migrating from handles to direct references

Unfortunately, while migration from handles to direct references sounds conceptually easy,

on a codebase of V8’s size and complexity it is practically laborious. In total, I migrated

around 743 files, with 73,544 lines changed equating to roughly half of the handle usage in

V8. The migration evaluated in this chapter is the result of my second migration attempt.

In this section I explain my general migration strategy, the challenges I faced, and what

parts of V8 have migrated.

3.4.1 Migration strategy

Simplifying slightly, my first migration attempt tried to move the codebase wholesale

from handles to direct references — after considerable effort this failed. This was due to

a combination of factors but two are of particular note. First, many parts of V8 quite

reasonably make use of implicit properties of handles that are not captured by the type

system or API. This primarily includes type casts to other types which assume a level of

indirection. These must be manually inspected and altered to work correctly with direct

references. Second, when I inevitably hit bugs due to my changes, I found it difficult to

debug and work out which of my many changes caused a particular problem.
6Based on data from Chrome’s User Metric Analysis for Chrome’s stable release branch (M110) on

Windows
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This chapter is the result of my second migration attempt. I used the experience from the

first failed attempt to devise a scheme that allows gradual migration of small portions of

V8 from handles to direct references. The migration is ‘hidden’ behind a compile-time

flag that is false by default, allowing changes to be incrementally upstreamed without

affecting mainstream users.

The most obvious part of the gradual migration approach is to realise that handles and

direct references must be able to co-exist for as long as the migration takes. Thus, this

lead to the introduction of a new C++ class which I will refer to in this chapter as

DirectRef.7 which stores a direct reference to objects on the heap while exposing the

same API as Handle. Once a full migration is complete, the DirectRef wrapper around

the pointer has no impact and can be removed entirely.

In many cases, migrating from handles to direct references simply requires replacing

Handle with DirectRef. However, many parts of V8 make assumptions about handles,

normally for performance reasons, that are not encoded in the Handle API.

For example, string builders and array backing stores are used extensively by JavaScript

code. When constructing and reallocating their value in memory, a handle’s intermediate

pointer is modified in-place so that this propagates to other handles using this value.

This is done because it makes initialising such objects easier for the V8 developer, as

they rely on the implicit knowledge that all heap references use indirection. In contrast,

migrating such places to use direct references means ensuring they are used exclusively

so as not to invalidate other references.8

Similarly, the parts of V8 that enable a transition from C++ code to JIT-compiled

machine code and back are written in a macro-assembler which is translated into each

platform’s assembly format. The macro-assembler does not refer to the Handle class

directly but generates code which implicitly follows handle conventions. This had to be

carefully adjusted to follow the state of migration in C++ code.

Another difficulty was ensuring that direct references can interact correctly handles during

the migration. The chief problem is that the Handle class constructors need a reference to

an isolate because they need to know which isolate the handle scopes belong to, but the

DirectRef class constructors do not. When moving from a migrated portion of code using

DirectRef to unmigrated code using Handle, we thus do not know which isolate to create

the new handle in. I could have required DirectRef to store a reference to an isolate, but

this would be awkward and muddy performance comparisons. Instead, I assume that a
7The actual name of this class is the confusing, and contradictory, DirectHandle.
8When I started my first migration attempt, I had to look for challenging parts of the code like

this manually. Motivated by this work, V8 has since developed a Handle<T>::PatchValue API which
captures all the challenging places in a way that makes finding them fairly easy.
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Handle created from a DirectRef lives in the current isolate. When this assumption is

incorrect (for example, when the JIT compiler hands compilation off to another thread),

this almost always results in an immediate crash. Fixing such a crash can be tedious, as

the necessary isolate needs to be threaded through one or more layers.

3.4.2 Performance challenges during migration

Since migrated and unmigrated code frequently interact, moving from code which uses

direct references to code using handles or back again requires additional computation.

Migrated code that interfaces with unmigrated code must create handles. This sometimes

leads to the surprising outcome that migrating a small portion of code created a significant

slowdown in runtime performance; in general, migrating a small additional portion of

code restored performance. In the early stages of migration this problem was frequently

encountered. However, since migration sometimes imposes handle creation costs on the

callers of a function, it was often unclear which callers of a migrated function were causing

performance problems. I developed a simple ‘profiler’ which pinpoints how often a line of

source code creates handles, allowing us to quickly identify such locations.

When moving from unmigrated code to migrated code we have to take account of V8’s

uses of tagged pointers, which avoids storing small integers as full objects on the heap.

The tagging is done on the ‘pointer’ from a handle to a heap object: if the top bit is set

to 1, this is really a pointer; if the top bit is set to 0, it is a small integer. I use the same

pointer tagging scheme in DirectRef. However, when converting from handles to direct

references, null handles (which are often used as place holders) must be treated with care.

To avoid allocating backing memory, the ‘nullness’ is represented by a null pointer to the

handle itself. In other words, a null Handle instance itself contains a null pointer, but if

a small integer is stored, the Handle points to a handle whose tagged pointer has a top

bit set to 0. We have to flatten this representation for DirectRef. Thus, converting from

Handles to DirectRefs requires an extra compare-and-branch to deal with null handles

correctly: though the cost of this check is small, it imposes a performance cost in the

general case.

Since the migration of V8 is partial, these performance costs show up in the later

experiments. A fully migrated V8, however, would show no such costs.
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3.4.3 What was migrated

When deciding what parts of V8 to migrate, I wanted to choose those parts whose migration

would give us greatest overall confidence in terms of correctness and performance. That

meant that we chose some of the hardest parts to migrate, and those that are considered

as the most likely performance bottlenecks. I thus migrated most of the following parts

of V8:

1. The V8 embedder API layer (where V8 interacts with other applications, such as

the Blink rendering engine in Chrome).

2. The interface between C++ code and V8’s JIT compiled JavaScript runtime.

3. JavaScript object definitions and implementations.

4. Intrinsics, builtins, and runtime functions.

3.4.4 Conservative stack scanning

Direct references require conservative stack scanning, so I needed to add a conservative

stack scanner to V8. Rather than writing one fully from scratch, I was able to borrow

some parts of the conservative stack scanner which were already engineered in Chrome

using Blink’s GC Oilpan, specifically the platform specific assembly stubs for spilling

registers during a stop-the-world pause.

The conservative stack scanner tests each word on the call stack to see whether values

constructed from such words look like pointers to heap object. For each value, we first

check if the value points into a page in the heap; if it does not, we quickly move on. If

the value does point into a page in the heap, we then check if it points to an object or

empty space. This is done by scanning the freelist in the allocator. If the value does

point to an object, we then query the isolate’s heap layout to find out the object’s base

pointer. Our scanner is not yet production ready: compared to Oilpan’s scanner, it is

relatively unoptimised.

3.5 Evaluation

In order to understand the performance effects of migrating from handles to direct

references, I conducted an experiment on two variants of V8 running the Speedometer2.1

benchmark suite. This section starts by outlining the methodology (Section 3.5.1) before

examining the results (Section 3.5.2).
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3.5.1 Methodology

The overall question we would like the study to answer is: are handles or direct references

faster? While this thesis can provide an accurate assessment of handle’s performance,

it can only provide a lower bound of direct references’ performance: around half of

V8’s (large) codebase remains unmigrated, and the conservative stack scanner I have

implemented is naive, and thus slower than a production version. I am also forced to non-

generational GC because the young generation scavenger is a moving semi-space collector,

and work to migrate this to a non-moving generational GC has not yet been carried out.

Fortunately, and despite these restrictions, this study is able to provide valuable insights.

To try and answer this question, this study is divided into two sub-experiments.

The experiment performed is a straightforward comparison between handles and direct

references, with the GC running as normal (subject to the restrictions noted earlier). This

implicitly includes the full costs of both handles (creating handles; destroying handles; an

extra level of indirection) and direct references (conservative stack scanning). A limitation

of this experiment is that I must disable heap compaction when a GC is scheduled and

there are frames on the C++ stack, as the compacter is not yet aware of conservative

stack scanning.

I evaluate each browser variant on the well known Speedometer2.1 browser benchmark

suite [WebKit, 2022] using Chrome’s Crossbench benchmark runner. Speedometer2.1

consists of 16 widely used JavaScript web frameworks all modeling the same application,

TodoMVC: a todo program using the model-view-controller pattern. This benchmark suite

executes various performance critical pieces of a JavaScript VM and the web rendering

engine overall, and is therefore considered one of the most relevant workloads for web

browser engine optimizations. Crossbench was used to run Speedometer2.1 for 30

process executions, where each browser instance is closed down and a fresh one is started.

Speedometer2.1 records wall-clock times using JavaScript’s performance.now(), re-

porting the results back to Crossbench. I report 99% confidence intervals for each

benchmark.

I use Chrome version 112.0.55572 and V8 version 11.2.28. The benchmarks were run on

a Xeon E3-1240v6 3.7GHz CPU cores, with 32GB of RAM, and running Debian 8. I

disabled turbo boost and hyper-threading in the BIOS and set Linux’s CPU governor to

performance mode. I observed the dmesg after benchmarking and did not observe any

oddities such as the machine overheating.
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Figure 3.1: Results from both experiments on Speedometer2.1 for 30 process executions, which shows the speedup of the configuration using direct
references with conservative stack scanning normalised to using handles. The error bars show 99% confidence intervals.
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3.5.2 Results

Fig. 3.1 shows the results for this study. For both configurations of V8, the garbage

collector scheduled a full GC cycle 24 times for each iteration of the benchmark suite.

The results show that – even though V8 has only been partly migrated, that there remain

costs for moving between migrated and unmigrated code, and the conservative stack

scanner is naive – direct references with conservative stack scanning performs between

1-12% faster on 9 benchmarks. However, in 5 benchmarks this configuration regressed

by 2-6%, while the Vanilla-ES2015-BWP and React-Redux benchmarks observed no

statistically significant difference.

It is possible (indeed, likely) that completing the migration from handles to direct refer-

ences, and improving the performance of the conservative stack scanner, will meaningfully

improve upon this lower bound.

In order to understand better which parts of the code are responsible for the variations

in performance for each benchmark, I used Linux’s perf tool to profile the execution of

them as single runs. Two benchmarks serve as exemplars of the effects of the migration.

The jQuery benchmark (where direct references are 2% faster than handles in Figure 3.1),

puts particular stress on interactions between the Blink’s DOM heap and V8’s JavaScript

heap — a part of V8 which was almost entirely migrated (see Section 3.4.3). The perf

profile showed that direct references were approximately 15% faster in these parts of the

embedder API.

The EmberJS benchmark (where direct references are 4% slower than handles in Figure 3.1)

puts stress on: entry to parts of the JIT compiler; a section of the inline cache; and

JavaScript debug objects. Other than small parts of the inline cache, none of these

sections of V8 have been converted to use direct references. However, each of them

interacts frequently with parts of V8 which have been migrated: in other words, frequent

conversion costs to/from handles due to the partial migration exist which I expect to

improve once more of V8 is migrated. Our profiling data shows a 30% slow down in parts

of the execution engine (responsible for invoking JavaScript functions) which interact

with non-migrated code.

3.6 Threats to validity

We have only migrated about half of V8 to direct references. It is possible that there are

challenges in the remainder of the code base that would change our view of the merits

of direct references. We have tried to mitigate this by migrating what we consider to
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be the most challenging parts of V8 first. While V8 is only partly migrated, there are

also performance overheads involved in moving between migrated and unmigrated code

(e.g. the null checks explained in Section 3.4.2): our results can only establish a lower

bound for direct references performance.

JavaScript VMs such as V8 are somewhat unusual amongst modern VMs in two respects:

JavaScript is single-threaded; and it is based around an event loop which naturally gives

frequent opportunities to perform garbage collection without pointers existing on the C

stack. This eases the cost of conservative stack scanning, as over 80% of V8’s GC cycles

occur during the JavaScript event loop, when there can be, by design, no pointers on the

call stack.

These two factors may have a notable impact on our understanding of the performance

merits of direct references and handles. We would have to migrate at least one non-

JavaScript VM (e.g. HotSpot) to understand whether these are significant factors or

not.

There are two differences between the configurations of Chrome/V8 run in the experiments

and those run by normal users. First, I have to disable V8’s young generation, because

it does not support pinning immovable objects which were located by conservative

stack scanning. Second, I do not have the ability to generate or use the profile-guided-

optimisation data that production builds have access to. At best, these two factors mean

that our Chrome/V8 builds will be slower than their production cousins; at worst, it

could be that this changes the relative performance of handles and direct references.

Objects identified via conservative stack scanning cannot be moved. However, since

per-object pinning has not yet been implemented, I am forced to prevent heap compaction

whenever GC occurs and there might be pointers on the stack.

Speedometer2.1 is a small, synthetic benchmark suite: it can not tell us about the

performance of all possible programs. However, its ubiquity does mean that its strengths

and weaknesses as a benchmark suite are widely acknowledged, and it allows a good

degree of comparison across JavaScript VMs and browsers.

3.7 Related work

The relative merits of direct pointers and handles have a long history in GC and VMs,

though quantitative comparisons are few in number. Generalising somewhat, one technique

or the other has tended to hold sway either at different points in time, or within different

communities.
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Early Smalltalk VMs used handles, generally calling them ‘object tables’. Though the

reasons for this are not made it explicit, the VMs that did so used a compacting GC, so

it is reasonable to assume this was the motivation [Krasner, 1983, p. 18]. Handles are

often used in VMs that descend from the Smalltalk tradition (e.g. HotSpot [Oracle, 2007],

Dart [Egorov, year]).

To the best of my knowledge, the most comprehensive study of handles is [Kalibera

and Jones, 2011] which evaluates different styles of handles in the context of the Ovm’s

real-time GC, which uses a concurrent compacting GC. Although Kalibera and Jones

[2011] use the term ‘direct references’ to refer to Ovm’s initial state, and uses conservative

stack scanning, these are not the same as ‘direct references’ in this chapter. Due to Ovm’s

concurrent compacting GC, mutator threads may still reference an object’s ‘previous’

location, necessitating a level of indirection to ‘direct references’ to get the current location.

They show that, in their context, ‘thin’ or ‘fat’ handles were more effective than (their use

of the term) ‘direct references’ because it allowed objects to be moved without requiring

forwarding pointers. This is a notably different context to V8, hence my rather different

conclusions.

Firefox’s JavaScript engine SpiderMonkey uses handles in a similar fashion to V8 [Mozilla,

1995], including similar lints to catch handle misuse.

The use of direct pointers implicitly requires conservative scanning of at least the stack.

However, most (perhaps all) programming languages and most (perhaps all) compilers

have rules which suggest that conservative stack scanning is undefined behaviour. Most

obviously, there is no way of writing a conservative stack scanner in C/C++ which is

not undefined behaviour. In practise, fortunately, conservative stack scanning ‘works’,

as perhaps best evidenced by the long history of the Boehm-Demers-Weiser (BDW)

GC [Boehm and Weiser, 1988] which uses conservative scanning for the stack and other

possible location of GC roots (though note that the first conservative scanning GC appears

to have been [Caplinger, 1998]). BDWGC has been ported to most platforms in its long

history, and used by a wide variety of software (including relatively modern software such

as Inkscape): it is plausible that its very existence has been the reason why conservative

stack scanning continues to be supported in practise across languages and compilers.

Oilpan [Ager et al., 2013], the GC for the Blink rendering engine uses conservative stack

scanning to find roots on the C stack but is able to precisely trace object slots. This is a

similar design to that I am proposing for V8 in this Chapter, though Oilpan cannot move

objects in the heap.

Safari’s underlying engine WebKit (of which the JavaScript VM, JavaScriptCore, is a

part) use direct pointers and conservative stack scanning [Pizlo, 2017], which is very
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similar to what I propose for V8 in this chapter. WebKit has had at least two different

GCs over time (the current GC, [Pizlo, 2017], mostly runs concurrently to JavaScript

execution, similarly to V8), but this has not changed the details relevant to this chapter.

Unlike V8, WebKit’s GC never moves objects, even across generations (instead using

‘sticky mark bits’ that implicitly mark a given object as belonging to a certain generation).

Where V8 only uses precise stack scanning for C/C++ code, using stack maps for JIT

compiled code, WebKit uses conservative stack scanning for both C/C++ code and JIT

compiled code, slightly increasing the chances of objects being incorrectly identified as

live.

3.8 Future work

Of course, in this work I have only converted around half of V8’s 1.75MLoc to use

direct references. A complete migration is necessary to understand the full picture. In

addition, future work outside the scope of this thesis could include: the implementation

of non-moving generational GC, and a more production ready stack scanner. This would

allow a closer comparison of release versions of Chrome today.



Chapter 4

Existing memory management in

Rust

This chapter gives a brief overview of the Rust programming language [Mozilla, 2010],

with a particular focus on Rust’s approach to memory management, as this is necessary

to understand Alloy. It is not assumed that the reader is familiar with Rust.

4.1 Rust memory management basics

Rust is a statically-typed, general-purpose programming language [Klabnik and Nichols,

2018]. Rust has high-level functional programming constructs as well as low-level features

such as support for inline assembly and a foreign function interface (FFI) allowing it

to call (and be called from) C. This makes Rust popular for both low-level systems

programming and complex programs where performance is important, such as parts of

Mozilla’s Firefox web browser [Mozilla, 2012].

Arguably Rust’s most interesting feature is that it can guarantee memory safety without

using tracing garbage collection or reference counting.1 Instead, Rust’s type system

ensures that references (as distinct from pointers) are guaranteed to point to valid

memory, which can be checked at compile-time. These rules are the focus of this section,

as they are key to understanding the memory management story in Rust, and why one

may wish to extend it with a garbage collector such as Alloy.
1Though, as we will see in Section 4.2, Rust does provide optional reference counting

39
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4.1.1 Ownership

The foundation for memory safety in Rust is its concept of ownership based on affine

types [Pierce, 2004]. Each value in Rust has a single owner, and rebinding a value to a

new variable will use move semantics, where the ownership of the value is transferred,

and the old variable is invalidated. Consider the following example:

1 fn main() {

2 let mut v = Vec::new(); // v: Vec<u64>

3 v.push(1);

4 foo(v); // ownership of v is transferred to foo

5 // v.push(3); // compile-error: v has been moved into foo

6 }

7

8 fn foo(mut v: Vec<u64>) {

9 v.push(2);

10 }

A new empty vector v is created inside Rust’s main entry-point function (line 2). A

vector is a resizable heap allocated array which contains elements of a single type (u64,

unsigned 64-bit integers in this case). Variables are immutable by default, so the mut

syntax indicates that v should be mutable. v is then passed as a parameter to foo, the

ownership of v is transferred, which means its contents can no longer be accessed from

inside main. If we were to uncomment line 5, we would be attempting to use a value after

a move (line 5) which would cause a compiler error.

1 error[E0382]: borrow of moved value: ‘v‘

2 --> src/main.rs:5:5

3 |

4 2 | let mut v = Vec::new(); // v: Vec<u64>

5 | ----- move occurs because ‘v‘ has type ‘Vec<u64>‘,

6 | which does not implement the ‘Copy‘ trait

7 3 | v.push(1);

8 4 | foo(v);

9 | - value moved here

10 5 | v.push(3);

11 | ^^^^^^^^^ value borrowed here after move

The final part of ownership is that at the end of foo, when the vector goes out of scope,

Rust will automatically call its destructor. There are clear parallels here with RAII

in C++. In fact, Rust’s ownership rules can be thought of as a more strict version of
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this: the Rust compiler ensures that values are not used after they are moved, and are

automatically destructed when they go out of scope.

Destructors

Astute readers might wonder how Rust knew to deallocate the vector. In short, the Vec

type has a destructor method associated with it which Rust calls when it goes out of

scope.

To understand how this works, we first need to introduce a new concept in Rust known as

traits. A trait is a way of specifying behaviour in an abstract way which can be defined

for a type. Traits are very similar to interfaces in other languages, where a single trait

can define behaviour which can be shared between many types.2

In order to have destructor behaviour in Rust, a type must implement the Drop trait.

Consider a struct with a single field which implements the Drop trait:

1 // Defined in the Rust core library

2 trait Drop {

3 fn drop(&mut self);

4 }

5

6 struct S {

7 a: u64,

8 }

9

10 impl Drop for S {

11 fn drop(&mut self) {

12 println!("Dropping S");

13 }

14 }

The Drop trait has a single method drop, which gets called automatically by Rust when a

value goes out of scope. Here, S implements the Drop trait, so when S goes out of scope

its drop method is called, causing “Dropping S” to be printed to stdout. In Rust parlance,

when a value is destructed, it is referred to as having been dropped.
2There are some differences between traits and interfaces, but those details are not particularly relevant

for this thesis.
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Types such as Vec which allocate memory on the heap (for the backing store) implement

Drop to deallocate that memory.3 Destructors play a big part in the rest of this thesis, so

they are explained in more detail in Section 6.2.

4.1.2 Borrowing

Rust’s exclusive ownership rules allow it to avoid garbage collection.4 However, they are

fairly restrictive. It would be cumbersome and inefficient to write programs which can

only use values by transferring ownership back and forth each time. Rust addresses this

with the concept of borrowing, where values can be accessed using borrowed references

instead of transferring ownership.

There are two kinds of references in Rust: ‘&’ immutable (or shared) references; and ‘&mut’

mutable (or unique) references. Rust programs which use borrowing must adhere to two

rules.

1. A value may have an unlimited number of simultaneous immutable references or a

single mutable reference.

2. A reference must never outlive its referent (the value it points to).

These rules are checked at compile-time by Rust’s borrow checker, meaning that a Rust

program which successfully compiles is guaranteed to be memory safe.

Listing 4.1 shows how the previous example would look if foo borrowed a reference to the

vector instead.

It is easy to see how these borrow rules guarantee data-race freedom: a mutating thread

can never access aliased data. What is less obvious is that these rules also prevent a class

of memory safety bugs which occur when single-threaded shared mutability is permitted.

One such example is that Rust prevents iterator invalidation, where an iterator becomes

invalid because a data structure is mutated while it is being iterated over, as shown in

Figure 4.2.
3This is a simplification. In reality, the backing store (RawVec) has its own Drop implementation

which does the deallocation.
4However, as we will see, they make it impossible to write certain data structures in Rust (such as

doubly-linked-lists) without using some form of garbage collection.
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1 fn main() {
2 let mut v = Vec::new(); // v: Vec<u64>
3 v.push(1);
4 let vref = &mut v;
5

6 // This is not allowed, because it’s not possible to use v
7 // while a reference to it exists:
8 // v.push(2);
9

10 foo(vref);
11

12 // This is allowed, because v was not moved and vref expired
13 // at the end of foo:
14 v.push(3);
15 }
16

17 fn foo(v: &mut Vec<u64>) {
18 v.push(2);
19 }

Listing 4.1: An example of borrowing in Rust. A reference to the vector, vref, is created and
passed to foo. To ensure that nothing aliases a mutable reference, it is illegal to use the vector
via the owned variable v while vref is still alive (line 8). When vref expires at the end of foo, it
is safe to mutate the vector through v again (line 14).

1 fn main() {
2 let mut v = vec![1,2,3,4];
3

4 for i in v.iter_mut() {
5 v.push(*i);
6 }
7 }

1 error[E0499]: cannot borrow ‘v‘ as mutable
2 more than once at a time
3 --> src/main.rs:5:5
4 |
5 4 | for i in v.iter_mut() {
6 | ------------
7 | |
8 | first mutable borrow occurs
9 | here

10 | first borrow later used here
11 5 | v.push(*i);
12 | ^^^^^^^^^^ second mutable borrow
13 | occurs here

Listing 4.2: An example invalid Rust program and its compilation error. This fails to compile
because two mutable borrows overlap: the variable v which owns the vector; and the borrow from
the iterator to the vector element i. If this program were to compile, it would be potentially
memory unsafe. The call to push resizes the vector, which could cause it to be reallocated in the
heap. The iterator reference i would then be invalid as it points to the old location in memory.

4.1.3 Lifetimes

In Section 4.1.2, we see that Rust references are only valid provided they do not outlive

their referent. The borrow checker ensures that this is adhered to using a construct known

as lifetimes. Each reference in Rust has a lifetime, which begins when it is created and
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1 let mut v = vec![1, 2];
2

3 // borrow ’a starts
4 let vref = &’a mut v
5

6 // borrow ’b starts
7 println!("v:{}", &’b v);
8 // borrow ’b ends
9

10 vref.push(3);
11 // borrow ’a ends

(a) Overlapping mutable
references

1 let mut v = vec![1, 2];
2

3 // borrow ’a starts
4 let vref = &’a mut v
5

6 vref.push(3);
7 // borrow ’a ends
8

9 // borrow ’b starts
10 println!("v:{}", &’b v);
11 // borrow ’b ends

(b) Refactored to adhere to
borrow rules

Listing 4.3: An example of how Rust uses lifetimes to ensure programs adhere to the borrow
rules. The lifetime annotations ’a and ’b have been deliberately added. Program a does not
compile because a reference to v is created (line 7) while a mutable reference vref already exists.
vref has a lifetime ’a, which expires on line 11. While this reference is alive, no other reference
may exist. Program b fixes this by rearranging when the println! happens so that the two
references do not have overlapping lifetimes.

ends when it is destroyed. In the examples shown up until now, the borrow checker has

been able to infer the lifetimes of references.

These borrow rules are a key component of Rust’s memory safety because they prevent

common bugs based on aliasing and invalid references. Listing 4.3 shows how lifetimes

are used to prevent overlapping borrows.

It is not always possible for the borrow checker to infer the lifetimes of references. In such

cases, the programmer must provide annotations where lifetimes could be ambiguous.

4.1.4 Cloning and copying data

Rust provides a way to explicitly duplicate an object via the Clone trait. The Clone trait

has a single clone method which returns a duplicated version of the object.5 Listing 4.4

shows how the Clone trait can be used to provide clone semantics for an object in Rust.

In addition to cloning, types which implement the Copy trait can be duplicated simply by

copying their bits. The Copy trait has no methods: instead it is used as a special kind of

marker trait which gives a type copy semantics instead of move semantics:

1 let mut x = 1; // ‘u64‘ implements the ‘Copy‘ trait.

2 foo(x);

3 let y = x + 1; // This is valid because a copy of ‘x‘ was passed to foo.

5It is up to individual types to define the exact semantics of the clone in their implementation of the
clone method.
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1 let mut v1 = Vec::new();
2 v1.push(1);
3 v1.push(2);
4 v1.push(3);
5

6 let v2 = v1.clone(); // clone returns a duplicated vector
7 foo(v2); // Move v2 into foo
8

9 v1.push(4); // Not a use-after-move, because foo took a different object.

Listing 4.4: An example of cloning objects in Rust. Here, a deep copy of v1 is returned by
calling clone on it (line 6). This duplicated vector is then moved into foo, which means we can
still use the original vector on line 9.

Here it is fine to use x after the call to foo because a copy was passed to foo. Copiable

types help to make writing Rust more ergonomic, as they do not have to adhere to the

ownership rules.

4.2 Shared ownership using reference counting

Rust’s ownership semantics mean that every object has a single owner: without some

kind of additional mechanism, it is very difficult to represent data structures such as

graphs where each node conceptually has multiple owners. For example, consider an

object c which should be jointly owned by a and b:

A

B

C

It is not possible to represent this using Rust’s ownership semantics,6 so to address

this, Rust allows certain objects to be reference counted. Listing 4.5 shows how such an

example can be written in Rust using reference counting and Figure 4.1 shows how this

program would be represented in memory.
6This is not strictly true: there are workarounds, such as using a vector’s indices to represent edges in

a graph, though this is fraught with challenges, and can be seen as a form of “punning” around Rust’s
ownership system. Such techniques do have their uses, however, and are explained in more detail in
Section 4.3.2
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1 use std::rc::Rc;
2

3 struct Node {
4 name: &’static str,
5 child: Option<Rc<Node>>,
6 }
7

8 fn main() {
9 let c = Rc::new(Node { name: "c", child: None });

10 let a = Rc::new(Node { name: "a", child: Some(Rc::clone(&c)) });
11 let b = Rc::new(Node { name: "b", child: Some(Rc::clone(&c)) });
12

13 std::mem::drop(c); // decref "c" count to 2
14

15 } // b dropped: decref’d to 0, dropping its underlying ‘Node‘
16 // recursively decrefs ’c’ to 1
17

18 // a dropped: decref’d to 0, dropping its underlying ’Node’
19 // recursively decrefs ’c’ to 0

Listing 4.5: This example uses Rust’s Rc smart pointer : a reference to an object which has
additional reference counted semantics. The calls to Rc::new (lines 9-11) tell Rust to allocate Node
objects on the heap and use reference counting to manage their memory. Additional reference
counted references to “c” are then obtained by cloning the original Rc on lines 10-11 (incrementing
the underlying object’s count). When an Rc goes out of scope its drop method is called which
decrements the Node’s count.

Rc<Node>

Pointer from a on stack 

"a"

RcBox<Node>

0 
weak count

1 
strong count

"c"

RcBox<Node>

0 
weak count

2 
strong count

Rc<Node>

Pointer from b on stack 

"b"

RcBox<Node>

0 
weak count

1 
strong count

Figure 4.1: Memory representation of Listing 4.5, a shared data structure which uses Rc.

The Rc smart pointer in this example is single-threaded: that is, its count operations are

not synchronised. Where reference counting is needed between threads, an Arc (atomic

reference count) can be used instead.7

As enumerated in Section 2.2.1, reference counting comes with several disadvantages.

Unfortunately, in Rust there are two more. First, obtaining a new reference must be done

with an explicit call to clone(), which can make it cumbersome to use.
7C++ programmers will notice that this is similar to std::shared_pointer
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1 let a = RefCell::new(1);
2 let my_borrow = a.borrow_mut();
3 *a.borrow_mut() = 2; // Runtime panic. Two mutable borrows!
4 *my_borrow = 3;

Listing 4.6: An example of a program which crashes at runtime due to multiple mutable borrows

Second, and more importantly, if more than one reference to an object exists, the compiler

can no longer reason about the borrow rules. If we recall from Section 4.1.2: at any

given time, an object can have either one mutable reference or any number of immutable

references to it. The implication of this is that a reference counted object with more than

one shared reference could never be mutated! Fortunately, Rust solves this with a design

pattern known as interior mutability, which I explain in the next subsection.

4.2.1 Interior mutability

In Section 4.1.2 we see that Rust’s borrow checker ensures that programs adhere to the

borrow rules at compile-time. However, occasionally this can be too restrictive, preventing

some otherwise memory-safe programs from compiling.

To address this, Rust uses a design pattern known as interior mutability, which allows

values to be mutable when their ownership is shared, such as when using reference

counting. Types which use interior mutability bypass the compile-time checking of the

borrow rules, deferring the checks to runtime instead. This allows certain idioms that

could not otherwise be encoded to be used, albeit with some runtime cost.

Interior mutability is achieved using a mutable container : a type which provides its inner

type with mutation semantics. There are several mutable containers in Rust, but in this

section we will look at the most common one, RefCell. Consider the following immutable

u64, which is placed inside a RefCell:

1 let a = RefCell::new(1);

2 *a.borrow_mut() = 2

a is an immutable variable, so the RefCell allows it to be mutated through its borrow_mut

method. Unlike the compile-time borrow rules surrounding ordinary Rust references,

borrow_mut performs a runtime check to ensure that it is never called while an existing

borrow to the RefCell’s content exists. Listing 4.6 shows how a program will panic at

runtime when this is the case.
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1 struct Node {
2 name: String,
3 next: Option<Rc<RefCell<Node>>>,
4 }
5

6 impl Drop for Node {
7 fn drop(&mut self) {
8 println!("The next node is {}", self.next.unwrap().borrow());
9 }

10 }
11

12 fn main() {
13 let a = Rc::new(RefCell::new(Node {
14 name: String::from("a"),
15 next: None,
16 }));
17

18 let b = Rc::new(RefCell::new(Node {
19 name: String::from("b"),
20 next: None,
21 }));
22

23 a.borrow_mut().next.insert(Rc::clone(&b));
24 b.borrow_mut().next.insert(Rc::clone(&a));
25 }

Listing 4.7: An example of a reference counted cycle in Rust. This example creates two nodes,
a and b, before creating cyclic references between them (lines 23-24). This causes a memory leak,
resulting in the drop methods for Node, Rc, and String to never be called.

A RefCell is implemented by pairing its contents with a word-sized “borrow count” which is

incremented and decremented by borrow operations. It therefore has both a performance

and space overhead.

Interior mutability is made possible because of a concept known as unsafe Rust, where

compile-time borrow checking can be disabled for code surrounded by unsafe {} blocks. As

its name suggests, unsafe Rust is a dangerous tool because the programmer is responsible

for ensuring that unsafe code does not violate memory safety. It is used to provide safe

abstractions, such as RefCell, where compile-time borrow checking of its contents can be

disabled in favour of its runtime interface.

4.3 Cyclic data structures

So far in this chapter I’ve shown two kinds of memory management techniques on offer

in Rust: first, statically enforced ownership is used to manage memory without a garbage

collector; and second, where this is too restrictive, opt-in reference counting can be
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1 struct Node {
2 name: String,
3 strong_next: Option<Rc<RefCell<Node>>>,
4 weak_next: Option<Weak<RefCell<Node>>>,
5 }
6

7 fn main() {
8 let a = Rc::new(RefCell::new(Node {
9 name: String::from("a"),

10 strong_next: None,
11 weak_next: None,
12 }));
13

14 let b = Rc::new(RefCell::new(Node {
15 name: String::from("b"),
16 strong_next: None,
17 weak_next: None,
18 }));
19

20 a.borrow_mut().strong_next.insert(Rc::clone(&b));
21 b.borrow_mut()
22 .weak_next
23 .insert(Rc::downgrade(&Rc::clone(&a)));
24 }

Listing 4.8: An example of breaking the cycle from Listing 4.7. Here an Rc is “downgraded” to
a weak ref (line 23).

used for shared ownership. Unfortunately, neither of these options alone can address a

particular programming style which looms large — writing cyclic data structures.

This section outlines two common ways to address this in Rust: breaking reference

counted cycles with weak pointers; and using an arena which groups allocations with the

same lifetimes together.

4.3.1 Reference counting with weak references

To understand how weak references in Rust can be used to break cycles, lets first create

a strongly connected cyclic graph using reference counting. Listing 4.7 shows an example

of a graph which will leak memory as its memory will never be collected.

Section 2.2.1 explains how weak references can be used to break such cycles due to them

not forming part of the object’s reference count. In Rust, this is achieved by downgrading

Rc references to Weak references. In Listing 4.8 the cyclic data structure from the previous

example in Listing 4.7 is modified so that the cyclic reference from b to a is downgraded

to use a Weak reference instead.
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1 struct Node {
2 name: &’static str,
3 edges: Vec<usize>,
4 }
5

6 impl Node {
7 fn print(&self, arena: &Vec<Node>) {
8 println!("Node {} points to:", self.name);
9 for e in self.edges.iter() {

10 println!("--> {}", arena[*e].name)
11 }
12 }
13 }
14

15 fn main() {
16 let mut arena = Vec::new();
17

18 let a = Node { name: "a", edges: vec![1, 2]};
19 arena.push(a);
20

21 let b = Node { name: "b", edges: vec![0, 2]};
22 arena.push(b);
23

24 let c = Node { name: "c", edges: vec![0, 1]};
25 arena.push(c);
26

27 for node in arena.iter() {
28 node.print(&arena)
29 }
30 }

(a) Implementation of an arena

Vec<Node>

1 2"a" 0 2"b" 0 1"c" 

(b) Vec<Node> in memory

Figure 4.2: An example of using an arena to represent a cyclic graph. The edges of each node
are represented as indices into the arena’s vector. This creates a form of “pseudo-reference”, where
shared ownership is modelled outside of Rust’s type system.

4.3.2 Arenas

An alternative to using weak reference counting to implement cyclic data structures is to

use arenas. An arena is a memory allocation strategy where a single chunk of memory

can be pre-allocated and then used to store multiple objects with the same lifetime

together [Hanson, 1990]. Arenas are commonly used as a performance optimisation when

a user knows in advance that many objects of the same lifetime are going to be needed:

instead of allocating each object individually, a chunk of memory can be pre-allocated for

them, allowing them to all be freed at once.

In Rust, arenas are helpful for writing cyclic data structures [Goregaokar, 2021a]: objects

in an arena can contain cyclic references between each other without fear of causing

memory leaks, because they will all be deallocated once we are finished with them anyway.
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Rust’s ownership and borrow rules have no concept of arenas, so regular Rust references

cannot be used cyclically between objects in a pre-allocated arena. Instead, this pattern is

typically achieved through externally written libraries which use an existing, contiguous,

heap allocating data structures. Figure 4.2 shows an example of how a vector can be

used as an arena where each object refers to another object using its index in the vector.

Of course, using indices in this way is inflexible and causes us to lose many of the ergonomic

benefits of dealing with references (such as automatic dereferencing). Libraries such as

elsa [Goregaokar, 2018] and typed-arena [Chiovoloni, 2015] extend this fundamental idea

with interior mutability to provide a cleaner API for arena based data structures.



Chapter 5

Alloy: a conservative garbage

collector for Rust

This chapter introduces Alloy1 – an implementation of Rust which supports opt-in

garbage collection. Alloy uses the Boehm-Demers-Weiser garbage collector (BDWGC)

‘under the hood’ though Alloy tackles many Rust-specific challenges, and makes Rust-

specific optimisations, that are independent of the collector implementation.

Alloy attempts to address the two main limitations with Rust’s existing memory

management approaches: writing cyclic data structures; and implementing or interfacing

with other garbage collected languages. Alloy is not intended to replace these memory

management approaches. Instead it gives Rust programmers the choice to make certain

objects garbage collected in a way similar to the reference counting (Rc) library.

The chapter is structured as follows. Section 5.1 first explains why tracing GC is desired

in Rust. In Section 5.2 I introduce Alloy, one of the main contributions of this thesis,

outlining its goals and the design, before explaining how Alloy uses the BDWGC in

Section 5.4. Finally, in Section 5.5 I show related work in the area of retro-fitting GC to

Rust.
1In keeping with the metallic-themed naming tradition for Rust libraries, an alloy can contain iron so

technically it can still rust!
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5.1 Why provide a tracing GC for Rust?

5.1.1 Cyclic data structures

In Listing 4.3 I showed two techniques available in Rust for implementing cyclic data

structures: using reference counting with weak pointers; and using arenas. Unfortunately,

both approaches have clear ergonomic disadvantages.

Unfortunately, Section 4.3.1 shows that using reference counting with weak references

to break cycles requires an awkward combination of: creating and manually cloning

Rc references; interior mutability; and correctly downgrading strong references to weak

references. In larger, more complex graphs this can become difficult to work with and

error-prone: special care is needed to ensure that weak references are used correctly in

order to avoid leaking data by creating inadvertent cycles.

The main disadvantage of using arenas for cyclic data structures is that individual objects

cannot be deleted from the graph as all objects in the arena must have the same lifetime.

For large graphs, such as representing DOM trees in a browser, the space overhead

becomes too impractical for this to be used.

5.1.2 Implementing other languages

As a modern, memory-safe systems programming language, Rust has inevitably sparked

interest as a language for implementing other languages [Project, 2018; West, 2018;

Williams, 2018; WeirdConstructor, 2019]. In order to support tracing garbage collection

in the target language, some form of GC support is also necessary for Rust. This is

because a VM would both need to access GC’d objects from within Rust; and possibly

even put objects created in Rust on the GC heap. Of course, this problem is not unique

to Rust: V8 [Google, 2008] and WebKit [Apple, 1998] both implement tracing garbage

collection to manage objects in their C++ runtime (see Section 3.7).

Tracing garbage collection for this purpose has been explored in various kinds: luster [West,

2018] (a Lua VM written in Rust), and boa [Williams, 2018] (a JavaScript VM written in

Rust) both use various tracing GC implementations. In Section 5.5 I explain in detail

how these tracing GCs work.
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5.2 An introduction to Alloy

Alloy is an implementation of Rust which supports opt-in garbage collection. It has

four main goals:

1. To provide opt-in garbage collection which can be used in cooperation with Rust’s

existing approaches to memory management (Chapter 4).

2. To make it easier and less error-prone to implement cyclic data structures in Rust

than the existing options available in the language (Listing 4.3).

3. To be sound when used with safe Rust code: that is, using Alloy in safe Rust

should not undermine Rust’s normal safety guarantees.

4. To perform well enough to be used as a viable alternative when compared with

other GC designs in Rust which are available.

5.2.1 Garbage collection with the Gc smart pointer

Alloy introduces a new smart pointer type, Gc<T>, which provides shared ownership of a

value of type T allocated in the heap and managed by a garbage collector. Consider a

simple example and its corresponding representation in memory:

1 use std::gc::Gc;

2

3 fn main() {

4 let a = Gc::new(123);

5 }

Gc<u64>

GcBox<u64>

From a on stack.
123

This creates a garbage collected object which contains the u64 value 123. A Gc’s data

is stored in a GcBox internally. GcBoxes are managed by the collector, though this is not

visible to the user.

Gc references are copiable (i.e. they implement the Copy trait), with copied references

pointing to the same object in the heap:

1 fn main() {

2 let a = Gc::new(123);

3 let b = a;

4 }

GcBox<u64>
From a on stack.

From b on stack. 123

This makes Gc more ergonomic to use than Rc, as there is no need to call clone on a Gc

to obtain another reference to its data.
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The GcBox referenced by a Gc is guaranteed not to be freed while there are still references

to it. When there are no longer any references, the collector will reclaim it at some point

in the future. The garbage collector runs intermittently in the background, so Gc objects

may live longer than they need to.

5.2.2 Dereferencing

A Gc<T> dereferences to T with the dereference (*) operator:

1 fn main() {

2 let a = Gc::new(123);

3 let b = *a;

4 foo(b);

5 }

6

7 fn print(int: u64) {

8 println!("{}", int);

9 }

GcBox<u64>
a: Gc<u64>

b: &u64 123

Here, the value can be copied out of the Gc into b because u64s are copiable. The Gc type

also allows the dot operator to be used for calling methods of type T on a Gc<T>:

1 struct Wrapper(u64);

2

3 impl Wrapper {

4 fn foo(&self) {

5 ...

6 }

7 }

8

9 fn main() {

10 let a = Gc::new(Wrapper(123));

11 a.foo();

12 }

5.2.3 Mutation

There is no way to mutate, or obtain a mutable reference (&mut T) to a Gc<T> once it

has been allocated. This is because mutable references must not alias with any other

references, and there is no way to know at compile-time whether there is only one Gc

reference to the data.
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As with other shared ownership types in Rust, interior mutability (Section 4.2.1) must be

used when mutating the contents inside a Gc:

1 fn main() {

2 let a = Gc::new(RefCell::new(123));

3 *a.borrow_mut() = 456; // Mutate the value inside the GC

4 }

5.2.4 Finalisation

In Section 2.2.2, I give a gentle introduction to finalisation in garbage collection. In

short, an object’s finaliser in a GC runs some clean up code when that object becomes

unreachable. Alloy implements finalisers for a Gc<T> by calling T’s destructor when the

collector determines it is no longer reachable. Consider the following example:

1 let a = Box::new(123);

2 let b = Gc::new(a);

Here a refers to a boxed integer on the heap which is not managed by the collector. It is

placed inside a Gc, which has the following representation in memory:

Gc<Box>

finaliser

Box::drop();

GcBox Box

From b on stack.

123
(u64)

Before the Gc referenced by b is collected, its finaliser is called, which calls drop on the

non-GC’d box:

Gc<Box>

finaliser

Box::drop();

GcBox Box

From b on stack.

123
(u64)

deallocates

This allows a Gc object to “own” another, non-garbage-collected heap object, and deallocate

its memory when it is no longer needed.
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However, finalisation is a major source of challenges for a garbage collector in Rust:

naively mapping them to Rust drop methods introduces soundness and performance

problems. This is a large topic, so Chapter 6 explores the problems and Alloy’s solutions

in depth.

5.2.5 Concurrency

The Rust type system is able to guarantee statically that values are being used in a

thread-safe way. It does this with the use of two special "marker" traits: Send and Sync.

A value whose type implements the Send trait can be transferred to other threads. Almost

all types in Rust implement the Send trait save for a few exceptions. One such exception

is the Rc<T> (reference counting) type. This does not implement Send because it does

not perform count operations on its underlying contents atomically. If it were sent to

another thread, it could race if both threads tried to update the count simultaneously.

In contrast, the Arc<T> type (an atomic implementation of Rc<T>) does implement Send

provided its inner type T is also Send.

The corollary to Send is the Sync trait, which can be implemented on types whose values

perform mutation in a thread-safe manner. For example, a Mutex<T> implements Sync

because it provides exclusive access to its underlying data atomically. On the other

hand, a RefCell (discussed in Section 4.2.1) does not implement Sync because it only

provides single-threaded interior mutability. This is because its underlying mechanism to

increment and decrement borrow counts are not performed atomically.

The Send and Sync marker traits are a special kind of trait known as auto traits. This

means that they are automatically implemented for every type, unless the type, or a type

it contains, has explicitly opted out. Types can be opted out via a negative impl :

1 impl !Send for T {}

If, for example, a struct S contains a field of type T from the example above, then the

entire struct S will also not implement Send.

Send and Sync can be manually implemented on types, but doing so requires unsafe Rust

code since the user must guarantee it is safe to use in a multi-threaded context.

Alloy’s Gc reference is fundamentally thread-safe: if T implements Send + Sync, then

Gc<T> will too. The Gc<T> type therefore conditionally implements Send + Sync depending

on T:

1 unsafe impl<T: Send> Send for Gc<T> {}

2 unsafe impl<T: Sync> Sync for Gc<T> {}
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5.3 An overview of soundness

Alloy is a conservative GC (Section 3.1.2), which means that by nature, it is unsound.

This is because, technically speaking, the way conservative GC works violates the rules

of most languages, most compilers, and most operating systems. In very rare cases,

compilers have been known to perform optimisations which can obfuscate pointers from

the collector [Google, 2020]. Fortunately, the ubiquity of conservative GCs in industrial

strength VMs means that in practise it is well supported. If one can accept this caveat,

Alloy is otherwise correct-by-design provided that users do not hide, accidentally

or otherwise, pointers from the GC. Programming techniques which rely on pointer

obfuscation [Boehm, 1996] are therefore not allowed in Alloy. This rules out the use of

certain data structures such as XOR lists.

In a GC for Rust, soundness violations can easily occur in object finalisation. Alloy

prevents this with modifications to the Rust compiler to ensure that all finalisers are

sound at compile-time. I explain these issues in depth, in addition to how Alloy solves

them, in Chapter 6.

The rest of this section begins by explaining how Alloy uses the BDWGC to identify

which objects are reachable when performing a collection. It then describes how some Rust

programs can inadvertently hide such references from the collector, and the restrictions

this places on the user in order to ensure that programs can be correctly written with

Alloy.

5.3.1 Determining the reachability of garbage collected objects

Finding the roots

When Alloy performs a collection, it must first identify the roots from which the rest

of the object graph is traced. Such roots exist on the call stack, in registers, and in

segments of the program which store global values. When a collection is scheduled, the

BDWGC spills register values to the stack so that their contents can be scanned for

pointers along with the rest of the stack [Boehm and Weiser, 1988]. The call stack is

exhaustively examined for possible pointers to instances of objects, with each aligned

word on the stack is checked to see whether it points to an instance of an object: if it

does, that object is considered a root. Figure 5.1 shows an example of what Alloy

considers roots to garbage collected objects.
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// ‘a‘ exists on the stack.
let a = Gc::new(1);
let b = a; // obtain copy

let c = Gc::new(Gc::new(2));
// obtain a rust (&) ref
let d = c.as_ref();

(a) Roots on the stack

GcBox<u64>
root

a

root
b

GcBox<Gc<u64>>
root

c

root
d

GcBox<u64>

2

1

(b) Representation in memory

Figure 5.1: An example showing values on the stack which are considered roots to GcBoxes.

Garbage collected objects in other heap objects

In Alloy, references to garbage collected objects can be stored in traditional, non-

garbage-collected Rust objects:

1 fn main() {

2 let v = Vec::new();

3 v.push(Gc::new(1));

4 v.push(Gc::new(2));

5 }

Here, the vector contains two references to garbage collected objects which are managed

by Alloy. Even though the vector itself is not garbage collected, its backing store must

still be traced during a collection in order to locate GC objects. To support this, every

allocation in a Alloy must use the BDW allocator – even those which are not garbage

collectable. This is because the BDW allocator stores bookkeeping information such as

mark bits and the memory block size which are needed during a collection.

Rust provides a convenient way to set the global allocator for a program, and because

Alloy extends the standard library to include the BDW allocator, programs can easily

be made Alloy-compliant. This is shown in Listing 5.1.

This ensures that every heap allocation (except those created using a Gc::new()) is

made using the BDW allocator’s GC_malloc_uncollectable function. This allocates a

non-garbage-collected block which the collector is aware of and can scan for pointers to

other garbage collected objects. As with the call stack, the BDWGC scans all allocated

blocks in memory that are reachable from the root-set conservatively word-by-word.
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1 use std::gc::GcAllocator;
2

3 #[global_allocator]
4 static ALLOCATOR: GcAllocator = GcAllocator;
5

6 fn main() {
7 ...
8 }

Listing 5.1: Setting the global allocator to use the BDWGC in Alloy using Rust’s
global_allocator attribute.

5.3.2 Pointer obfuscation

As a systems programming language, Rust permits operations directly on pointers. This

includes: casting pointers to and from integer types; pointer arithmetic; and bitwise

operations on pointers. All three of these operations can be used to obfuscate a pointer,

hiding it from the collector and causing it to erroneously determine that an object is

unreachable. In order for Alloy to be sound, the user must not obfuscate any pointers

in this way.

Pointer casting and word alignment

For Alloy to be able to locate pointers during a marking, all references, raw pointers,

and machine-word sized integers (usize) must be word-aligned. This is because Boehm

scans the stack and heap blocks for pointers word-by-word, so non-word-aligned values

may be missed.

It is easy to see that Alloy needs to be able to identify objects via references or raw

pointers, and thus requires them to be word-aligned. The reason this is also true for

usizes is more subtle, and is necessary because it is possible in Rust to cast between raw

pointers and word-sized integers using the as keyword. Consider the following:

1 let gc = Gc::new(Value);

2 let gc_ref = gc.as_ref(); // Get a &Value reference.

3 let ptr_to_int = (gc_ref as *const Value) as usize;

We first obtain a reference to the Value stored inside the Gc before casting it to a raw

pointer, and then a usize (a word-sized unsigned integer). If gc and gc_ref were to go out

of scope, the ptr_to_int is enough to keep the GC’d object alive, because when Alloy

scans the stack, it would correctly identify that ptr_to_int looks like a pointer to a valid

GC object.
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1 fn make_obfuscated() -> usize {
2 let a = Gc::new(123_u64);
3

4 // Get a raw pointer to the underlying allocation
5 let aptr = a.as_ref() as *const u64;
6

7 // Use the bitwise NOT operator to obfuscate the pointer
8 return !(aptr as usize)
9 }

10

11 fn main() {
12 let obf = make_obfuscated();
13

14 ...
15

16 // GC cycle here. The ‘Gc‘ is potentially unreachable!
17

18 let reify = (!obf) as *const u64;
19

20 // ‘unsafe‘ is needed to dereference a raw pointer
21 let value = unsafe { *reify };
22 }

Listing 5.2: An example of how pointer obfuscation in Rust can hide a pointer from the collector.
Alloy uses the BDWGC to conservatively scan the stack, so this allocation could be missed if
its only remaining reference is the one obfuscated on line 8. Fortunately, however, it requires an
unsafe block to dereference (line 21).

Fortunately, Rust references must always be word-aligned anyway: constructing a non-

aligned Rust reference is already undefined behaviour. Howver, there is no such existing

requirement for Raw pointers or usizes. When initialized on the stack, or boxed on the

heap, usize values are already word aligned. The problem comes as they can be stored

as non-aligned fields in a packed struct.

Alloy includes a compiler lint, enabled by default, which prevents users from writing

packed structs which misalign pointer fields, shown in Listing 5.3. Fortunately, packed

structs are strongly discouraged in Rust anyway because of undefined behaviour due to

misalignment that can occur when using them with references.

5.4 The collector

Alloy uses the Boehm-Demers-Weiser GC (BDWGC) as the collector implementation

[Boehm and Weiser, 1988]. The BDWGC is a conservative mark-sweep collector. Similar

to V8’s GC in Chapter 3, the BDWGC scans the Rust program’s call stack conservatively

to look for pointers to garbage-collected objects when marking. The rest of this section

describes the features available in BDWGC which are used by Alloy.
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1 #[repr(packed)]
2 struct Packed {
3 x: u16,
4 y: *mut usize,
5 }

(a) Misaligned struct

1 error: packed structs cannot contain
2 *mut usize.
3 |
4 LL | #[repr(packed)]
5 | --------------- help: remove this
6 | attribute
7 LL | / struct Packed {
8 LL | | x: u16,
9 LL | | y: *mut usize,

10 LL | | }
11 | |_^

(b) Lint error in Alloy

Listing 5.3: A lint preventing a packed struct with a misaligned pointer from compiling in
Alloy. The repr(packed) attribute forces Rust to strip any padding, and only align the struct
Packed to a byte. This would cause the field y to be missed by Alloy during its conservative
marking as it is no longer word-aligned.

5.4.1 Blacklisting

Alloy uses the BDWGC’s blacklisting mechanism. This means that if, during marking,

the collector identifies a bit-pattern which resembles a pointer to a block which is not

yet allocated, it will prevent objects from being allocated in that block in the future (i.e.

blacklist them). This is designed to reduce false-positives in pointer identification which

can leak memory.

5.4.2 Incremental marking and parallel collection

Alloy uses the BDWGC’s incremental marking to reduce the latency. This means that

instead of using single stop-the-world (STW) pause, bits of marking are performed in

smaller chunks that interleave with the mutator to reduce the latency of the program.

This does not require any modifications to Alloy as it identifies modified objects by

relying on the OS to determine which pages have been dirtied.

The BDWGC uses parallel collector threads for both mark and sweep phases.

5.4.3 Non-moving generational collection

The BDWGC is a non-moving collector. However, it provides a form of non-moving gener-

ational GC using sticky mark-bits which Alloy enables by default. This is implemented

by not clearing the mark bit between minor collections. This way, objects that were live

at the previous collection are considered the old generation [Demers et al., 1989].
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5.4.4 Parallel mutator threads

In order to support thread-safe Gcs in Alloy, the BDWGC must be able to scan each

thread’s call stack for roots. I extend the Rust compiler to register newly spawned threads

with BDWGC’s collector, and to unregister them when they are destroyed.

Alloy relies on the BDWGC’s signal spin implementation to come to a GC safepoint.

That is, when a mutator thread comes under allocation pressure and needs to schedule a

GC, the BDWGC will send a SIGPWR signal to each registered thread and has them

spin in a signal handler while the collection cycle takes place.

The main disadvantage of this approach is that it makes use of implementation-defined

behaviour because it relies on the target OS’s mechanism for pausing threads. The

BDWGC provides implementations for most platforms, but it is not portable. An

implementation where Rust inserts thread pause safepoints at appropriate locations would

largely solve these issues, though at the expense of considerable implementation effort.

5.5 Related work

This section gives an overview of existing approaches to including garbage collection in

Rust in particular, though it is worth noting that there has been interest in using Rust

as a library for building GCs for other languages [Lin et al., 2016, 2017].

Throughout Rust’s history, there have been several attempts to introduce some form of

tracing garbage collection [Klock, 2015, 2016; Goregaokar, 2016]. In fact, early versions

of Rust explored using a form of this as a first class feature of the language through

the use of managed pointers (with the syntax @T). This was removed fairly early in

Rust’s development before the first stable release, and was only implemented as reference

counting. Since then, there have been several attempts at a more advanced form of GC

than the reference counting library Rc to the language. This section will explain those

approaches, and how they differ from Alloy.

The Bacon-Rajan cycle collector

bacon-rajan-cc [Fitzgerald, 2015] is a Rust library implementation of the Bacon-Rajan

cycle collecting reference counting implementation [Bacon and Rajan, 2001]. bacon-

rajan-cc is single-threaded, and provides thread-local reference counted boxes with the

Cc<T> type. Though not intended as a general purpose GC, it is designed to make it

easier to manage cyclic data structures in Rust. Listing 5.4 shows a small example of how
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1 struct Node {
2 name: String,
3 next: Option<Cc<Node>>
4 }
5

6 fn main(){
7 let a = Cc::new(Node { name: String::from("a"), next: None });
8 {
9 let b = Cc::clone(&a); // create new ref ‘a‘, incrementing the ref count.

10 } // ‘b‘ goes out of scope, decrementing the ref count.
11 }

Listing 5.4: An example of using bacon-rajan-cc. This looks very similar to reference
counting in Rust with Rc. However, because the reference count decrement for b does not cause
the count to reach zero, a pointer to the shared string value is added to an internal thread-local
ROOTS vector in order to be checked for potential cycles later.

it can be used as a drop-in replacement for Rc<T>. The key point to note is that once

a reference count is decremented via Cc’s drop method, if it does not cause a count to

reach zero, a pointer to the value is added to a ROOTS vector for later processing.

One can then manually trigger cycle reclamation by calling the collect_cycles function,

which performs a local trace over the values in the ROOTS worklist looking for Cc cycles.

In order to know how to trace an object’s fields looking for other Ccs, bacon-rajan-cc

provides a Trace trait, which must be implemented for T in order to be used in a Cc<T>.

For Cc<Node>, the Trace implemention would look like this:

1 impl Trace for Node {

2 fn trace(&self, tracer: &mut Tracer) {

3 // Tell the trace method it must traverse ‘next‘

4 // during cycle detection.

5 self.next.trace(tracer)

6 }

7 }

bacon-rajan-cc provides implementions of Trace for most standard library types,

including Option<T>, which makes Cc<Node> possible. This can then be used instead of

Rc to build cyclic data structures which do not leak. Listing 5.5 shows an example of a

cyclic graph using bacon-rajan-cc.

Unlike Alloy, bacon-rajan-cc is purely library based: it does not require any modifi-

cations to the Rust compiler to work. In addition, as a reference counted approach, it

has the advantages and disadvantages of reference counting over Alloy’s tracing GC –

except, of course, that it can collect cycles!



Chapter 5. Alloy: a conservative garbage collector for Rust 65

1 use bacon_rajan_cc::{collect_cycles, Cc, Trace, Tracer};
2 use std::cell::RefCell;
3

4 impl Trace for Node {
5 fn trace(&self, tracer: &mut Tracer) {
6 // Tell the trace method it must traverse ‘next‘
7 // during cycle detection.
8 self.next.trace(tracer)
9 }

10 }
11

12 struct Node {
13 name: &’static str,
14 next: RefCell<Option<Cc<Node>>>,
15 }
16

17 impl Drop for Node {
18 fn drop(&mut self) {
19 println!("Dropping {}", self.name)
20 }
21 }
22

23 fn main() {
24 let a = Cc::new(Node {
25 name: "a",
26 next: RefCell::new(None),
27 });
28

29 let b = Cc::new(Node {
30 name: "b",
31 next: RefCell::new(None),
32 });
33

34 // Create cyclic references between nodes ‘a‘ and ‘b‘.
35 *a.next.borrow_mut() = Some(b);
36 *a.next.borrow_mut().as_ref().unwrap().next.borrow_mut() = Some(Cc::clone(&a));
37

38 drop(a);
39 collect_cycles(); // Prints:
40 // "Dropping b"
41 // "Dropping a"
42 }

Listing 5.5: An example of creating and then reclaiming a small cyclic graph without leaks using
bacon-rajan-cc. This example creates two nodes, a and b, before creating cyclic references
between them using interior mutability (lines 35-36). The trait Trace is implemented for Node,
informing bacon-rajan-cc that it must traverse the next field during cycle collection (lines 4-10).
Later, the explicit call to drop (line 38) decrements a’s reference count, but it is not deallocated
because the cycle prevents the count reaching zero. It is only after the collect_cycles call (line
39) that both a and b are dropped and then deallocated.
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1 fn main() {
2 // The underlying ‘GcBox‘ containing the string has a root count of 1.
3 let a = Gc::new(String::from("Hello"));
4

5 // Create a new gc pointer, the ‘GcBox‘ root count is 2.
6 let b = a.clone();
7

8 // Put the cloned gc pointer into a heap vector, the root count is
9 // unchanged.

10 let mut c = Vec::new();
11 c.push(b);
12

13 // Create a new GC object, ‘a‘ is unrooted, and ‘d‘ becomes the root
14 // instead.
15 let d = Gc::new(a);
16 }

Listing 5.6: An example showing what values are considered roots for garbage collection in
Rust-GC.

However, there are two limitations unique to bacon-rajan-cc. First, it does not support

multi-threading (though a concurrent cycle detection algorithm is possible [Bacon and

Rajan, 2001]). Second, cycle reclamation must be manually triggered by the mutator,

which could lead out-of-memory problems if cyclic garbage reaches a certain size and is

not collected. However, one can imagine a threshold-based approach to cycle collection

where cycle detection happens once ROOTS reaches a certain size. For example, the size of

ROOTS could be checked when new values are inserted, preventing the need for the mutator

to trigger collection.

Rust-GC

Rust-GC [Goregaokar, 2015] is library for Rust which provides optional single-threaded

mark-sweep GC with the Gc<T> type. The API for Rust-GC is similar to Alloy, with

the notable exception that Gc in Rust-GC does not implement the Copy trait. This

means that in order to obtain additional pointers to garbage-collected objects, the Gc

must be cloned.

Rust-GC is implemented as a hybrid form of reference counting and tracing GC. There

is no mechanism for scanning the stack for roots as in traditional GC, so roots are tracked

using reference counting, with a mark-sweep then performed from these roots. Like

Alloy, Gc references in Rust-GC point to an underlying GcBox. However, in Rust-GC,

this GcBox maintains a count of all of its roots. Listing 5.6 shows how this count is updated

as references are used.
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1 #[derive(Trace)]
2 struct S<T> {
3 a: Gc<T>,
4 // ‘U‘ never points to a ‘Gc‘, so we can avoid tracing
5 // it entirely.
6 #[unsafe_no_trace]
7 b: U,
8 }
9

10 struct U {
11 a: u64,
12 b: String,
13 }

Listing 5.7: An example using the unsafe_no_trace annotation. There is no Gc reachable from
the struct U, so it can be excluded from the derived Trace implementation (line 1) with the
annotation on line 6. This annotation is unsafe because if U is later modified to include a field of
type Gc, it would not be traced, and the collector would miss a reference.

During a collection, the GcBox’s on the heap are enumerated, and those with a non-zero

root count are used as roots to begin marking. Like bacon-rajan-cc, Rust-GC traces

through objects by requiring types used in Gc to implement a Trace trait, which has a

trace method called during marking to traverse and mark objects during a collection.

Rust-GC makes implementing Trace easy by providing a macro implemention, where

types can be annotated with #[derive(Trace)] and have it implemented automatically.

It also provides an optimisation on tracing where if the programmer is certain that a

field does not contain a reference (transitively or directly) to another Gc type, they can

annotate that field with #[unsafe_no_trace] to opt-out of tracing (shown in Listing 5.7).

Listing 5.8 shows an example of a cyclic data structure implemented in Rust-GC. It uses

its own type, GcCell in order to support interior mutability (Section 4.2.1) as a RefCell

cannot be used with Rust-GC. The GcCell provides additional support for rooting and

unrooting objects across a borrow as they are mutated inside the Gc. It provides a similar

API to the user as RefCell.

Unlike Alloy, objects are finalised by implementing a special Finalize trait. This reduces

much of the complexity that Alloy needed in order to support calling T::drop from a

finaliser or destructor context, which was a major implementation challenge (discussed

in Chapter 6). However, Rust-GC requires the programmer to ensure that a finaliser

implementation is present for any type that may need to call Drop on any of its component

types. It is not easy to know which of these component types may need dropping, and

forgetting to do so can cause memory leaks.
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1 use gc::{Finalize, Gc, Trace, GcCell};
2

3 #[derive(Trace)]
4 struct Node {
5 name: &’static str,
6 next: GcCell<Option<Gc<Node>>>,
7 }
8

9 // Types inside ‘Gc<T>‘ cannot have a ‘Drop‘ implementation.
10 impl Finalize for Node {
11 fn finalize(&self) {
12 println!("Finalizing {}", self.name)
13 }
14 }
15

16 fn main() {
17 let a = Gc::new(Node {
18 name: "a",
19 next: GcCell::new(None),
20 });
21 let b = Gc::new(Node {
22 name: "b",
23 next: GcCell::new(None),
24 });
25

26 *a.next.borrow_mut() = Some(b);
27 *a.next.borrow_mut().as_ref().unwrap().next.borrow_mut() = Some(Gc::clone(&a));
28 } // Prints:
29 // "Finalizing b"
30 // "Finalizing a"

Listing 5.8: An example of creating a small cyclic graph using Rust-GC. This example creates
two nodes, a and b, before creating cyclic references between them using interior mutability
(lines 26-27). The trait Trace is automatically derived for Node (line 3), informing Rust-GC
that it must traverse the next field during a collection. In addition, deriving Trace implements
an empty Drop trait on Node to prevent users from providing their own Drop implementation
on types used inside a Gc. For “drop”-like behaviour to be run when a value is collected, we
must instead implement the Finalize trait (lines 10-14). Before the program exits, Rust-GC
explicitly triggers a collection, causing the objects pointed to by a and b to be collected and the
finalisers to be run.
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1 fn make_vec() -> Vec<GcRef<u64>> {
2 let mut v = Vec::new();
3 for i in 0..12 {
4 v.push(GcRef::new(i));
5 }
6 v
7 }
8

9 fn main() {
10 let v = make_vec();
11

12 // Create a new ‘GcRef‘, which will invoke a collection due to
13 // allocation pressure. Bronze will not consider ‘v‘ a root which
14 // transitively points to managed objects.
15 let gc = GcRef::new(String::from("Hello World"));
16

17 // The following causes a use-after-free.
18 // The managed object pointed to by the ‘GcRef‘ at ‘v[1]‘ was GC’d.
19 println!("Vec[1]: {}", v[1])
20 }

Listing 5.9: An example of unsoundness using Bronze because it does not trace GC objects which
are pointed to transitively via other objects. In this example, a vector v is created containing
many garbage collected references to u64s. The u64s are allocated on the heap and managed
by the Bronze collector. A collection in Bronze is triggered in GcRef::new when the Bronze
allocation threshold reaches a certain size (in bytes). This is artificially triggered by the allocation
on line 15, as we filled v with enough GcRefs to come just under the threshold. Later, when trying
to access a value from inside v on line 19, we violate memory safety in the form of a use-after-free.

The Bronze collector

The Bronze collector is an optional GC implementation for Rust which was designed

address usability concerns with Rust’s borrow semantics [Coblenz et al., 2022]. It was

designed alongside an empirical study which measured how long it took students to

complete a variety of Rust tasks by using standalone Rust, and Rust with Bronze for

managing memory.

Bronze bases much of its implementation on Rust-GC but with two key differences. First,

it tracks roots to GC objects by using a modified version of the Rust compiler. Bronze’s

rustgc implementation inserts calls to LLVM’s gc.root intrinsic at function entries in order

to generate stackmaps. When a GC call is requested, Bronze iterates over the stackmaps

generated its current call stack in order to locate the roots for garbage collection. However,

Bronze does not implement this for transitive references from arbitrary objects. In other

words, if a Gc<T> exists as a field inside another object instead of directly on the stack, it

would not be tracked as a root for garbage collection, shown in Listing 5.9.

The second major difference between Rust-GC and Bronze is that Bronze’s Gc<T> type

allows the programmer to dereference its underlying type T mutably more than once.
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1 fn main() {
2 let mut gr1 = GcRef::new(vec![1u16,2,3]);
3 let mut gr2 = gr1.clone();
4

5 let ref1 = gr1.as_mut();
6 let ref2 = gr2.as_mut();
7

8 // ref1 and ref2 now reference the same object:
9 ref1.push(4);

10 ref2.push(5);
11 ref1.push(6);
12

13 let ref1elem0 = ref1.get_mut(0).unwrap();
14 // Force reallocation of the underlying vec
15 ref2.resize(1024, 0);
16 // Now this writes to deallocated memory
17 *ref1elem0 = 42;
18 }

Listing 5.10: An example of unsoundness in Bronze based on its ability to allow aliased
mutable references. Here, we obtain two mutable references to the same underlying vector (lines
5-6), before using the second reference to resize the vector, which forces its backing store to
be reallocated in memory (line 15). Later, when we try to access an element through the first
reference, it no longer points to valid memory (line 15).

Coblenz et al. [2022] describes this as beneficial, because it makes it easier to use than other

Rust shared ownership. However, this is fundamentally unsound, and allows programs

which violate memory safety to be written in safe Rust using Bronze. Listing 5.10 shows

an example of how this can violate memory safety by causing a write from deallocated

memory.

Shifgrethor

Shifgrethor [withoutboats, 2018] is an experimental GC API for Rust which investigated

a way for potential GC implemenations to precisely identify and trace roots to GC’d

objects. Shifgrethor is therefore not a GC, but instead an experimental design for

how a GC could interface with the language.

The basic idea is that in order to create a Gc object, it must be created by, and exist

alongside a corresponding Root<’root> type on the stack. The Root<’root> can then dish

out references to the underlying Gc which are tied to Root<’root>’s lifetime. This is similar

in nature to how handle scopes work in V8 (Section 3.2).
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GC arena

gc-arena [West, 2019] is another experimental approach at sound GC design in Rust.

It was originally developed as part of the luster VM [West, 2018]: an experimental Lua

VM written in Rust. Unlike Alloy and the other approaches to GC in Rust seen so

far, gc-arena does not retrofit Rust with a GC. Instead, it provides limited garbage

collection in isolated garbage collected arenas. Arenas carefully guard mutator access to

their objects through closures, which, when executing, prevent the collector from running.

This solves the difficult problem of finding roots which reside on the stack: when an arena

is closed to the mutator, no stack roots exist, so a collection can be safely scheduled. A

single arena may contain several garbage collected objects, but they cannot be transferred

between other arenas.

Because gc-arena is so different in nature to the other GCs described in this chapter, it

is difficult to compare it ergonomically to other approaches.



Chapter 6

Finalisation in Alloy

A major challenge for Alloy is to ensure that finalisers are both sound and perform

well. This chapter first explains some of the implementation problems that any GC with

finalisers must consider, before explaining considerations that are unique to Rust. I then

explore the different ways that finalisers could be implemented in Alloy, and why I

decided on the approach that was used.

This chapter is structured as follows. Section 6.1 explains some of the common pitfalls and

of implementing finalisers. In Section 6.2 I explain in detail how Rust’s existing destructors

work. Section 6.4 introduces Alloy’s approach to finalisation. Finally, Section 6.5 to

Section 6.8 are part of the main contributions in this thesis. They explain how Alloy

deals with the various soundness and performance problems caused by finalisers in a Rust

GC.

6.1 Finalisers background

Finalisers are a common component of most tracing GCs which are used to run code

for cleanup once an object dies (e.g. closing a file handle or a database connection).

Unfortunately, finalisation is fraught with problems, many of which are subtle and

difficult to detect. In this section, I outline these general issues across languages and

implementations, and how existing GCs have mitigated them. This is necessary to

understand the design decisions that Alloy has made to ensure that its own finalisers

are sound.

72
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1 class Count {
2 public static Count globalCount = null;
3 int count = 0;
4

5 @Override
6 protected void finalize() {
7 // Resurrect object by keeping a reference to it alive
8 globalCount = this;
9 }

10 }

Listing 6.1: An example of a Java program with object resurrection. The finaliser for Count
places a reference to its instance in a static, causing the collector to keep it alive (line 8). If Java
allowed finalise to be called more than once, this object would never be reclaimed, as it would
keep being resurrected.

6.1.1 Finalisers are not guaranteed to run

Most GC specifications are usually cautious about making guarantees about finaliser

behaviour, often for correctness reasons. In fact, in any GC, finalisers are never guaranteed

to be called at all. While this is true for destructors in languages such as C++ and

Rust too, its more likely to happen with finalisers for several reasons. First, the window

between when an object is last used by the mutator and when it is finalised is greater, so

the opportunity for missed finalisers is greater if the program exits within this window.

Second, a program may accidentally hold onto a reference to an object which the

programmer expects to be freed, thus preventing its finaliser from being called. In some

cases, this type of memory leak can be due to programmer error, and is not a problem

exclusive to finalisers. However, because a GC can over-approximate the root-set when

marking, this can happen by means outside of the programmer’s control. For example, a

conservative GC may retain objects from a previous collection (known as floating garbage)

because of a lingering reference in a disused stack slot. This would prevent those objects’

finalisers from ever being called.

Finally, note that in Section 6.1.3, a GC which guarantees finalisation order will not

finalise objects with finalisation cycles because it cannot determine a safe order in which

to run them.

6.1.2 Object resurrection

Object resurrection is where a finaliser method stores a reference to its object in a global

data structure or the field of another object, preventing it from being reclaimed. Object

resurrection can lead to objects being kept alive longer than expected and is often difficult
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Figure 6.1: An example of ordered finalisation where the finalisers reference their inner objects.
This object graph will be finalised in order from the outermost layer (A) to the innermost (D).
Finalising this object graph requires four finalisation cycles because each inner object is reachable
from the outer layer.
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finaliser

B

finaliser

(a) Original order

A

finaliser
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finaliser

(b) Refactored to handle cycles

Figure 6.2: An example from Jones et al. [2016, p. 218] which shows how objects can be
restructured to force finalisation order in cyclic object graphs.

to detect. If an object’s finaliser could run more than once, a resurrected object would be

re-finalised and thus resurrected again ad infinitum (Listing 6.1). To prevent this, most

GC’d languages such as Java and C# guarantee that an object’s finaliser will be run at

most once. This is also true of Alloy.

6.1.3 Finaliser ordering

A language implementation has a choice as to whether to guarantee that finalisers will

run in a certain order. Some GCs implementations guarantee a finalisation order, because

for some applications, this is important if one resource must be cleaned up before another.

For example, consider the objects in Figure 6.1. The finalisers for the “outer” objects all

reference the object in the layer to the right of them, so they must be finalised “outside-in”.

However, this guaranteed finalisation order has two disadvantages. First, finalising all the

objects in a chain of floating garbage happens over multiple finalisation cycles because

an object can only be finalised if it is not reachable from other unreachable objects.

In Figure 6.1, this would require four finalisation cycles before the floating garbage is

reclaimed. Such a delay in the eventual reclamation of objects can cause heap drag, where

unreachable objects are kept alive longer than necessary.
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Second, and most significantly, this approach is not able to finalise cycles of objects

where more than one object needs finalising, which can lead to resource leaks. This is

because the collector cannot know which (if any) object is safe to finalise first: if an

object references another object which has already been finalised, this is unsound. Boehm

proposes a workaround for this where programmers can refactor the objects in order to

break the finalisation cycle [Boehm, 2003] (Figure 6.2 from Jones et al. [2016, p. 218]).

Another workaround is to allow users to use weak references to break cycles (similar

to breaking reference count cycles). Unfortunately this is often difficult to implement

correctly [Jones et al., 2016].

Some GCs such as Blink’s Oilpan GC [Ager et al., 2013] do not specify a finalisation

order. This permits the GC to finalise cycles of objects where more than one object needs

finalising with an important restriction placed on the programmer: an object’s finaliser

must not reference any other object. This caveat is necessary to prevent dereferencing an

already finalised object. This approach is used in V8: finalisers are not able to dereference

through to other JavaScript objects. In the rare cases where this is too restrictive, Oilpan

also has pre-finalisers, which are run during the GC’s stop-the-world pause, and allow

object fields to be dereferenced [Ager et al., 2013]. The compromise here is performance:

pre-finalisers increase the mutator pause time and cannot be enqueued to run later.

6.1.4 Finalisers and deadlocks

It is common in many languages for finalisers to access fields from other objects or even

global state. Since an object’s finaliser is run at some unknown point in time once it

is considered unreachable by the collector, it must be able to safely access such state

without racing with the mutator.

It is common in many languages for finalisers to access fields from other objects or even

global state. Since an object’s finaliser is run at some unknown point in time once it is

considered unreachable by the collector, it must be able to safely access such state without

racing with the mutator. If a finaliser runs on a separate thread to the mutator, it is

clear that data accessed from a finaliser must be performed in a way which is thread-safe.

However, what is less obvious is that for correctness reasons, finalisers cannot be scheduled

to run on the mutator thread.

Listing 6.2 shows how finalisers run on the same thread as the mutator can cause a

deadlock. When the finaliser for an instance of Counter is called, it tries to acquire the

lock for the object’s count member. If this happens while the mutator already holds the

lock, the program will deadlock. While one might consider using re-entrant locks to solve

this problem, it can in fact worsen the problem by turning an obvious failure into a race
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1 class X {
2 Count count;
3

4 @Override
5 protected void finalize() {
6 count.increment();
7 }
8

9 public static void main(String[] args) {
10 Count count = new Count();
11 X x = new X(count);
12

13 ...
14

15 count.increment();
16 }
17

18 class Count {
19 Mutex mutex = new Mutex();
20 int count = 0;
21

22 public void increment() {
23 try {
24 mutex.acquire();
25 count++;
26 }
27 catch (InterruptedException e) {
28 e.printStackTrace();
29 } finally {
30 mutex.release();
31 }
32 }
33 }

Listing 6.2: An example Java program showing how a finaliser could deadlock if run from the
same thread as the mutator. The Count object has a method increment which acquires a mutex
(line 22). A new instance of Count is created and a reference to it passed to a new instance
of X (lines 10-11). If the collector decided to invoke X.finalize() while the mutator executes
count.increment() on line 15, then the program will deadlock as they both try to acquire the
mutex on the same thread. This can be solved by ensuring that finalisers run on a separate thread
to the mutator: the finaliser thread would simply spin or sleep while it waits for the mutator to
release the mutex.

where two logically separate operations mutate data in a way which should be performed

atomically. This can cause intermittent incorrect execution [Boehm, 2003].

For this reason, most languages run finalisers on a separate thread from the muta-

tor [Boehm, 2003]. Though programmers must still ensure they access shared state via

some form of synchronisation such as mutexes, they are able to spin or sleep when blocked,

allowing the mutator to progress without deadlocking.
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6.1.5 Finalisers can run earlier than expected

Unlike RAII-like destructors found in languages such as C++ and Rust, finalisers are

called by a garbage collector non-deterministically. They can run at the collector’s leisure;

often this means that they run later than desired, however, in rare cases, an object can be

finalised while it is still being used by the mutator! This is because compiler optimisations

– unaware of the presence of a GC – can remove the single reference to an object which is

keeping it alive. An outer object can therefore be considered unreachable while its inner

object is still in use. An unfortunately timed GC cycle could end up finalising the outer

object, and run its finaliser. This can lead to subtle races in programs where the finaliser

interleaves execution with the mutator.

For this reason, VM specifications do not commit to running finalisers at a specific time.

This includes allowing an object’s finaliser to be run while the mutator is potentially still

using it. For the reasons outlined in Section 6.1.4, GC implementations must synchronise

access to objects inside a finaliser. Jones et al. [2016, p .218] suggests this can be used

to defer finalisation until later if a finaliser attempts to acquire an object lock which is

already held by the mutator.

More generally, however, the fundamental problem is that the compiler optimises away the

reference to the object too soon. C#’s .NET runtime provides a gc.KeepAlive function as

a solution to this. gc.KeepAlive is an opaque empty function which the compiler cannot

optimise away. The idea is that a reference to an object can be passed to gc.KeepAlive,

ensuring it lives long enough so that the collector does not deem it unreachable and

finalise it too soon. This mitigation is limited, however, as it is up to the user to call

gc.KeepAlive when they require it.
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6.2 Rust destructors

To understand the design decisions that Alloy makes surrounding finalisation, some

background is needed on Rust’s destructors.

Destructors in Rust were briefly introduced in Section 4.1.1 as a way of running cleanup

code when an initialized variable or temporary goes out of scope. A destructor is run

automatically at the end of the scope for values which implement the Drop trait. Consider

the following example, which uses a Rust destructor to close a file descriptor:

1 struct FileDescriptor {

2 fd: u64

3 }

4

5 impl Drop for FileDescriptor {

6 fn drop(&mut self) {

7 self.close();

8 }

9 }

10

11 fn main() {

12 let f = FileDescriptor { fd: 1 };

13 } // FileDescriptor::drop called.

The file descriptor f is destructed (or dropped) at the end of the main function, where it

is no longer in scope. The ability to drop objects is a key component of Rust’s ownership

semantics, and is used extensively in the standard library.

A struct which has a drop implementation may have fields which also need dropping. For

example, consider a FileBuffer, which has a field of type FileDescriptor:

1 struct FileBuffer {

2 descriptor: FileDescriptor,

3 }

4

5 impl Drop for FileBuffer {

6 fn drop(&mut self) {

7 self.flush();

8 }

9 }

Here, both the FileBuffer and its field FileDescriptor have drop methods which need

running. Rust will automatically insert calls to drop them both when a FileBuffer value
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goes out of scope. In Rust terminology, a value is considered dropped once its drop

method, and all drop methods belonging to its fields, have been dropped.

Rust drop order

Drop methods are used by Rust programmers for situations such as releasing locks. In

such cases, the order in which values are dropped is vital for program correctness.

Variables and temporaries are dropped in reverse declaration order. For example:

1 fn main() {

2 let s1 = String::from("s1");

3 let s2 = String::from("s2");

4 let s3 = String::from("s3");

5 }

At the end of main, s3 would be dropped first, followed by s2, and finally s1.

Rust specifies that fields are dropped in declaration order. For example, consider the

following struct definition:

1 impl Drop for S {

2 fn drop(&mut self) {

3 println!("Dropping S");

4 }

5 }

6

7 struct S {

8 a: String,

9 b: u64, // u64 does not implement the ‘Drop‘ trait.

10 c: Vec<bool>,

11 }

S contains two fields (a and c) which also need dropping. Rust will drop S first, followed

by the field a, and then the field c.

If any component of a type implements Drop, Rust will drop them when they go out

of scope. For example, consider an enum E (a tagged union), where one variant needs

dropping:

1 enum E {

2 A(String),

3 B(bool),

4 }
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Even though E does not have a drop method, when it goes out of scope, Rust will still

insert a drop call because the variant E::A contains a droppable type, String. It is not

possible to know at runtime which variant of the enum is active, so Rust inserts some

additional code which checks dynamically which variant (if any) to drop.

Since Rust ensures that drop methods are called automatically, it is not possible to call

the drop method for a value (or any of its fields) directly. This ensures that a value is

only dropped once, an important protection against double-freeing resources. This can

be restrictive, because sometimes it is useful to drop a value earlier than at the end of

its scope. Consider a common example, where a Mutex’s lock is released from its drop

method:

1 fn main() {

2 let mutex = Mutex::new(123); // A mutex which guards a u64 value.

3 let data = mutex.lock().unwrap();

4 println("locked value: {}", data);

5

6 // Code that shouldn’t belong in the critical section

7 ...

8 } // lock is released as part of drop.

By unlocking the mutex at the end of main, sometimes we can execute more code than

is necessary in the critical section. Rust provides a standard library helper function,

std::mem::drop which can accept values of any type in order to drop them early:

1 fn main() {

2 let mutex = Mutex::new(123); // A mutex which guards a u64 value.

3 let data = mutex.lock().unwrap();

4 println("locked value: {}", data);

5

6 // Release the lock early

7 std::mem::drop(data);

8

9 // Code that shouldn’t belong in the critical section

10 ...

11 } // lock is released as part of drop.

std::main::drop is implemented as an empty function. Since ownership of data is trans-

ferred (line 7), Rust will insert a call to data’s drop method immediately afterwards.



Chapter 6. Finalisation in Alloy 81

Drop methods are not guaranteed to run

Destructors in Rust are guaranteed to run at most once — but they may not be run at

all. This is for three reasons.

First, consider the example back in Chapter 4 (Listing 4.7) where a cycle is created

between two Rc values. A reference cycle such as this introduces a memory leak and thus

the values in this data structure are never dropped.

Second, values are only dropped if they are initialized. It is not always possible to know

whether a value is initialised so Rust can sometimes end up performing dynamic checks

to know whether a value should be dropped. The details of this are not relevant to the

rest of the thesis.

Third, one can explicitly prevent a value from being dropped by passing it to the

std::mem::forget<T> function. This is commonly used when the underlying resource

originated from non-Rust code, and therefore destruction of it should happen outside of

Rust.

What types can be dropped?

In short, Rust will automatically call drop for any type which implements the Drop trait

when it goes out of scope. However, copiable types (those which implement the Copy trait,

mostly primitive types such as bools, chars, numeric types and so on) cannot implement

Drop because doing so would mean that when values are copied they would be dropped

multiple times. This would violate Rust’s guarantee that drop is called at most once.

Rust also supports C-like union types, which in contrast to enums do not use runtime

tags to denote the active variant. Union types are not automatically dropped because

there is no way for Rust to know which variant to insert a drop method for.

6.3 Design choices for finalisers in Rust

Before explaining finalisation in Alloy, we should ask an over-arching design question:

what should a finaliser in a Rust GC look like? Other approaches to GC in Rust, such as

Rust-GC and Bronze, define a custom Finalize trait, which types can implement to

specify finaliser behaviour when they are used in a Gc (shown in Listing 6.3).

The benefit of this approach is that it creates a logical separation between destructors

expected to run in an RAII based context, and GC finalisers. This allows finalisers, which
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1 struct S;
2

3 impl Drop for S {
4 fn drop(&mut self) {
5 println!("Dropping S");
6 }
7 }
8

9 impl Finalize for S {
10 // Run before collection when value used in a ‘Gc‘.
11 fn finalize(&mut self) {
12 println!("Finalizing S");
13 }
14 }
15

16 fn main() {
17 let s1 = S;
18 let s2 = S;
19

20 let gc1 = Gc::new(s2);
21 } // Dropping s1

Listing 6.3: An example from Rust-GC, where a custom Finalize trait is used for finalisation
semantics. In this scenario, before s2 is collected, Rust-GC calls S’s finalize method (line 11).

have subtly different rules to destructors, to be correctly specified by the user (as we will

see in Section 6.5, there are specific restrictions that need to be placed on finalisers in

Rust in order to guarantee soundness).

Alloy takes a different approach, however, as separating destruction and finalisation

in this way has unfortunate consequences. First, for most types that already implement

Drop, their destruction logic must be duplicated in a finaliser. This is, at least, significant

extra effort; it also offers many opportunities for copy and paste errors.

Second, a separate Finalize trait has as a major ergonomic cost because it is not possible

to implement Finalize on code from external libraries. This is because Rust enforces

trait coherence, a property in the language which ensures that every type has at most

one implementation of a given trait. This coherence rule is fundamental to the language,

because it removes ambiguity in trait method resolution, ensuring there is only one

implementation of a trait method to choose from.

Trait coherence is a problem for programs that use external compilation units known as

crates (roughly speaking, ‘libraries’), because if two unrelated crates provide separate

implementations for the same trait, then those crates cannot be imported together.

To address this, traits in Rust must adhere to something called the orphan rule. The

rule is simple: it is not possible to implement a trait for a type where both the trait
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1 use a::{MyType, MyTrait};
2

3 impl MyTrait for MyType {
4 fn method1() {
5 ...
6 }
7

8 fn method2() {
9 ...

10 }
11 }

(a) Invalid trait implementations

1 error[E0117]: only traits defined in the current
2 crate can be implemented for types
3 defined outside of the crate
4 --> src/lib.rs:3:1
5 3 | impl MyTrait for MyType {}
6 | ^^^^^^^^^^^^^^^^^------
7 | | |
8 | | ‘MyType‘ is not defined in
9 | | the current crate

10 | impl doesn’t use only types from inside the
11 | current crate

(b) Compiler error

Listing 6.4: Here, we try to provide an implementation of the externally defined trait, MyTrait
for the externally defined type, MyType. This results in a compile error in Rust because it violates
the orphan rule.

and the type are defined in separate crates. This prevents multiple conflicting trait

implementations from existing across crates. Listing 6.4 shows how the orphan rule is

enforced at compile-time in Rust.

The problem with the orphan rule is that it would become a major source of ergonomic

frustration for Alloy if it defined a separate Finalize trait. It would not be possible to

implement Finalize for any type which was not defined in the user’s current crate. If

types from external crates do not provide their own implementations for Finalize, then

those types may cause resource leaks when used in a Gc.

A workaround for the orphan rule is to use the new-type idiom, where the current crate

defines a wrapper type for an external type. Unfortunately, this workaround can be

cumbersome to write and makes types in Rust harder to read. Listing 6.5 shows how the

new-type idiom can be used to add a finaliser to a type defined outside of the current

crate. This can be used in other GC designs for Rust which use a separate Finalize trait

such as Rust-GC.

6.4 Finalisers in Alloy

Alloy takes a novel approach to finalisation compared to previous Rust GCs in that it

uses existing drop methods as garbage collection finalisers, saving users the potentially

error-prone task of manually writing both desctructor and finaliser methods for GC

managed objects. Despite this, Rust’s semantics do not expect GC, so Alloy must also

consider soundness issues that other GC’d languagess have not had to face. In the rest of

this chapter, I explain how Alloy addresses these issues. Finally, as destructors in Rust

are used frequently, methods are pervasive in Rust, this implies that finalisers must also
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1 use a::MyType;
2

3 struct Wrapper(MyType);
4

5 impl Finalize for Wrapper {
6 fn finalize(&mut self) {
7 println!("Finalizing MyType via Wrapper");
8 }
9 }

10

11 fn main() {
12 let a = Gc::new(Wrapper(MyType::new()));
13 }

Listing 6.5: A workaround the orphan rule using the new type idiom. Here, a new Wrapper type
is defined for which we define a finaliser. To garbage collected MyType objects, one could then
use Gc<Wrapper> instead of Gc<MyType> to ensure that its finaliser is called.

be pervasive. Since finalisers impose significant performance costs, one only wants to run

them when strictly necessary. Alloy thus introduces a number of static analyses that

are able to remove most finalisers at compile-time.

In Alloy, a Gc<T> will call T::drop when T’s value is unreachable. For example:

1 struct S;

2

3 impl Drop for S {

4 fn drop(&mut self) {

5 println!("Dropping S");

6 }

7 }

8

9 fn main() {

10 let s1 = S;

11 let s2 = S;

12

13 let gc = Gc::new(s2);

14 } // Dropping s1

Two values of type S are created; s1 is dropped normally at the end of main. s2, however

is moved inside a Gc, so in order for its drop method to be called, Alloy finalises it once

it becomes unreachable. Consider another example, where a Gc box stores an owning

reference to other, non-GC’d values on the heap:

1 let a = Box::new(String::from("Hello"));

2 let b = Gc::new(a);
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The sole owning reference to the heap allocation Box<String> is moved into Gc::new, which

creates a Gc object containing the reference to the Box<String>. This has the following

representation in memory:

Gc<Box<String>>

Pointer from b on stack 

finaliser
Box::drop();
String::drop();

GcBox Box String

Not managed by Alloy

"hello"

When the Gc’s underlying allocation (called GcBox) becomes unreachable, Alloy will

call its finaliser, which means that drop is called on all the component types (in the

same way that Rust automatically calls drop in Section 6.2). If, for whatever reason, the

finaliser is not run, then the allocations for the Box and the String will leak (i.e. their

heap allocation will never be reclaimed). I thus define a finaliser in Alloy as calling

drop on the contents of a Gc (including its field types). Therefore a type Gc<T> has a

finaliser if type T needs dropping.

6.4.1 Omitting finalisers

Finalisation is not always desirable. For example, consider a FileDescriptor which uses

its drop method to close the descriptor:

1 struct FileDescriptor {

2 fd: u64

3 }

4

5 impl Drop for FileDescriptor {

6 fn drop(&mut self) {

7 self.close();

8 }

9 }

Here, objects of type Gc<FileDescriptor> would use a finaliser to call the FileDescriptor’s

drop method. However, if we were to close the descriptor in the mutator once we are

finished with the object, the finaliser is no longer necessary:

1 let stdout = FileDescriptor { fd: 1 };

2 let descriptor = Gc::new(stdout);

3 ...

4 descriptor.close()



Chapter 6. Finalisation in Alloy 86

To allow for this, Alloy provides a special wrapper type, NonFinalizable<T>, which can

be used to create a Gc which omits finalisers on an individual basis:

1 let descriptor = Gc::new(NonFinalizable::new(stdout));

Here, when the Gc<NonFinalizable<FileDescriptor>> is collected, it will not be finalised.

The NonFinalizable<T> type has no additional storage costs, and at runtime is represented

as a bare FileDescriptor.

This is only intended to be used in exceptional circumstances where performance is a

concern: It can easily lead to resources leaks if not used carefully.

6.5 Safely finalising objects off-thread

In Section 6.1.4, I explained that running finalisers on the same thread as the mutator

can cause deadlocks. Listing 6.6 shows how this could happen in a hypothetical version

of Alloy where finalisers are scheduled to run from the mutator thread.

As with any GC, Alloy can finalise objects at its leisure, with no way for the programmer

to know when this will happen. Rust does not prevent users from writing code which

deadlocks, but it does not make the situation worse. However, if Alloy were to perform

on-thread finalisation, it would open the possibility of previously non-deadlocking code

deadlocking.

One possible solution might seem to be to prohibit finalisers from acquiring locks, however

this can cause race-like bugs because of how finalisers can interleave asynchronously with

the mutator [Matsakis, 2013].

6.5.1 Off-thread finalisation

Alloy finalises unreachable objects on a separate finalisation thread. This means that

finalisers cannot deadlock simply by acquiring a lock held by the mutator: the finalisation

thread will simply wait and attempt to re-acquire the lock later. However, this now

means that shared data, or other objects accessed from a finaliser must be done in a

thread-safe way. The problem with this is that in Alloy, a finaliser calls a type’s existing

drop methods. Since Drop was not originally defined in expectation of being called on a

separate thread, it does not guarantee thread safety.

The most obvious solution to this is to ensure that only thread-safe types can be used

inside a garbage collected container. In other words, a type T could not be placed inside a
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1 use std::gc::Gc;
2 use std::rc::Rc;
3 use std::sync::Mutex;
4

5 struct CounterWrapper {
6 value: Rc<Mutex<usize>>
7 }
8

9 impl Drop for CounterWrapper {
10 fn drop(&mut self) {
11 let mut count = self.value.lock().unwrap();
12 *count += 1;
13 }
14 }
15

16 fn main() {
17 // Create a reference counted counter object protected by a mutex.
18 let counter = Rc::new(Mutex::new(0));
19

20 {
21 // Create a new garbage collected object which contains a reference
22 // counted pointer to the counter. When this object is collected, the
23 // drop methods for ‘CounterWrapper‘ and ‘Rc‘ will be called as
24 // finalizers.
25 let gc = Gc::new(CounterWrapper { value: Rc::clone(&counter) });
26 }
27

28 // Assume GC can happen here because ‘gc‘ is unreachable.
29

30 // If the finalizer for the ‘Gc<CounterWrapper>‘ is asynchronously called
31 // while ‘counter.lock()‘ below is already acquired, a deadlock will occur.
32 let lock = counter.lock().unwrap();
33 ...
34

35 assert_eq!(*counter, 0);
36 }

Listing 6.6: An example showing how a potential deadlock can be caused if finalisers are run on
the mutator thread. A shared counter is created using a reference counted container (line 18), a
reference to this is then placed inside a garbage collected container (line 25). This is potentially
short-lived, as it is only reachable by the gc variable until the end of the inner scope (line 26). If
Alloy decides to schedule a collection after this (e.g. on line 28) then the CounterWrapper could
be considered garbage, where a finaliser would run its drop method (line 10). If this happens
while the main mutator thread already holds counter.lock() (line 32-36) then this program can
deadlock. When finalisers are run on the same thread, there is nothing the programmer can do
in this situation to guarantee that this kind of deadlock does not occur.
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1 use std::cell::Cell;
2 use std::gc::Gc;
3 use std::thread;
4

5 struct Counter(Cell<usize>);
6

7 // ‘Counter‘ is not ‘Sync‘ by default because it contains a ‘Cell‘. However,
8 // it doesn’t have a drop method, so it’s safe to use inside a ‘Gc‘. In order to
9 // do this, we must explicitly mark it as ‘Sync‘ so that ‘Gc‘ accepts it.

10 unsafe impl Sync for Counter {}
11

12 fn main() {
13 let gc = Gc::new(Counter(Cell::new(0)));
14 let gc2 = gc;
15

16

17 // By explicitly implementing ‘Sync‘ for ‘Counter‘, we’ve accidentally
18 // allowed it to be used across threads in ways unrelated to finalisers
19 // which are not thread-safe. E.g. the following can race, as the counts are
20 // not updated atomically.
21 thread::spawn(move || {
22 for i in 0..1000 {
23 gc2.0.set(gc.0.get() + 1);
24 }
25 });
26

27 for i in 0..1000 {
28 gc.0.set(gc.0.get() + 1);
29 }
30 }

Listing 6.7: An example of the Send + Sync dilemma if Alloy required T: Send + Sync for
Gc<T> to provide finaliser safety. Such a restriction on T is overly strict, and could lead to users
explicitly marking types as Send or Sync so Alloy considers them safe for finalisation. This
example shows how this can lead to inadvertantly bypassing Rust’s concurrency safety when such
types are used elsewhere. By default, Counter cannot be used inside a Gc because it contains a
field Cell which does not implement Sync. To allow the construction of Gc<Counter>, Sync can
be explicitly implemented on Counter (line 10). However, this now allows objects of this type
to be used across threads without any synchronisation (lines 21-29), which can cause surprising
races.

Gc unless T implements both Send and Sync – Rust’s builtin traits for concurrency safety

(see Section 5.2.5). This solution would prevent programs from compiling if an object

without synchronisation is placed inside a Gc container. While this would ensure that

finalisers are thread-safe, it is less than ideal for two reasons.

First, it would restrict a Gc from managing many valid types: a non-Send and non-Sync

type would be prevented from being used in a Gc even if it does not have a drop method

(and therefore, never needed finalising in the first place!).

Second, for T to be Send and Sync, all of T’s component types must be Send and Sync too.

This presents a dilemma: either every field of T must be thread-safe (even those which
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1 use std::rc::Rc;
2 use std::gc::Gc;
3

4 fn main() {
5 let rc1 = Rc::new(123);
6 let rc2 = Rc::clone(&rc1);
7 let gc1 = Gc::new(rc2);
8 }

error: ‘rc2‘ cannot be safely finalized.
--> src/main.rs:9:22
|

9 | let gc = Gc::new(rc2);
| ^^^ has a drop method
| which cannot be
| safely finalized.
|

::: /rust/library/alloc/src/rc.rs:1559:13
|

1559 | self.inner().dec_strong();
| ------------
| |
| caused by the expression in
| ‘fn drop(&mut)‘ here because
| it uses a type which is not
| safe to use in a finalizer.
|
= help: ‘Gc‘ runs finalizers on a separate
| thread, so drop methods must only use values
| whose types implement ‘FinalizerSafe‘.

Listing 6.8: A Gc object stores a reference counted integer (Rc<u64>). The drop method of
an Rc decrements the underlying object’s reference count, which is called as a finaliser before
collecting the Gc<Rc<u64>> object. This is not thread-safe because decrementing a reference
count in Rc is non-atomic, and the finaliser will be run on a separate thread, which would race if
the finaliser ran while the mutator also updated the count. FSA detects this, and prevent the
program from compiling, with the error message in (b) displaying the exact line of code that
FSA rejected. In this example, as is often the case in practice, the offending line is not in the
finaliser but is called by the finaliser.

are never used in a finaliser); or, the user, certain in the knowledge that T’s drop method

is thread-safe, forcibly unsafe implements Send and Sync on T. In the case of the latter

approach, T can then be accidentally be used in concurrency contexts unrelated to garbage

collection, bypassing an important part of the type system in order to keep Alloy happy.

Listing 6.7 shows how this could cause a leaky abstraction which introduces bugs in

non-GC related code.

6.5.2 Finaliser safety analysis

Alloy uses a novel technique to ensure that finalisers are sound called Finaliser Safety

Analysis (FSA). The basic idea is to encode finalisation rules into Rust’s type system,

and then perform a conservative static analysis to ensure a type’s drop method does not

use any types which would be non-thread safe in a finaliser. Listing 6.8 shows how this

can prevent a potential race condition due to thread-unsafety.
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FSA permits a Gc to contain values with non-thread-safe fields provided they are not used

in the drop method. Consider the following example:

1 struct Wrapper(RefCell<String>);

2

3 impl Drop for Wrapper {

4 fn drop(&mut self) {

5 println!("Dropping Wrapper");

6 }

7 }

8

9 impl Wrapper {

10 fn swap_string(&self) {

11 *self.0.borrow_mut() = String::from("b");

12 }

13 }

14

15 fn main() {

16 let gc = Gc::new(Wrapper(RefCell::new(String::from("a"))));

17 gc.swap_string();

18 }

The Wrapper uses a RefCell to swap the value of underlying string (line 11). A RefCell

provides a form of interior mutability which is not thread-safe (because its borrow() /

borrow_mut() methods are non-atomic). In this example, a Wrapper can safely be placed

inside a Gc, because the RefCell is not used in Wrapper’s finaliser (line 4). This is checked

by FSA at compile-time.

Automating finaliser safety analysis

Finaliser safety analysis is performed automatically without needing to do anything

manually. First, I introduce a new auto trait used as a marker for finaliser safety called

FinalizerSafe (an introduction to auto traits is provided in Section 5.2.5). As an auto

trait, FinaliserSafe is implemented for all types by default in Rust, so in the Rust

standard library, I explicitly remove the implementation of FinalizerSafe from types

which do not already implement Send and Sync.

The Rust compiler is then extended to perform FSA. The basic idea is that whenever a

type is used in a Gc, that type’s drop method needs to be checked to ensure it doesn’t

access a field which is not FinalizerSafe. Performing this check only when such types

are used in Gc is important as it prevents FSA from breaking existing Rust programs:
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drop methods with unsound finalisation behaviour are not a problem if they are never

used in a Gc.

Implementation

The Rust compiler pipeline lowers a Rust program into various different intermediate

representations (IR) which it performs its analysis on. FSA is performed on Rust’s

mid-level IR (MIR), which represents a control-flow graph of a Rust program. MIR

represents a Rust program as a collection of MIR bodies, which map to a single Rust

function. A MIR body consists of a set of basic blocks connected by edges known as

terminators. Basic blocks represent a list of straight-line statements, where terminators

represent the control flow in the program.

FSA is a flow-sensitive analysis, so MIR is the most natural representation of a Rust

program to perform its analysis on. FSA is implemented as a new MIR pass – a traversal

over the MIR where each MIR body can be individually processed. We describe the

algorithm for FSA in stages using pseudocode as follows.

The first stage of FSA is to identify calls to Gc::new:1

function FinaliserSafetyAnalysis(prog)
for each mir_body ∈ prog do

for each basic_blocks ∈ mir_body do
for each block ∈ basic_blocks do

if IsCallToGcConstructor(block.terminator) then
CheckCallsiteForDropImpl(block.terminator)

This checks every statement in the MIR for a call to Gc<T>::new constructor. If found, we

check if T implements Drop. If it does, then Gc<T> needs finalising, so the MIR body for

T’s drop method is checked for soundness violations. FSA only considers a drop method

sound if fields which are dereferenced implement the FinalizerSafe trait. In Rust’s MIR

terminology, such a field access would constitute a place projection, where a place is a

memory location (or lvalue), and a projection is a field access. A single MIR statement

can contain more than one field projection (e.g. self.foo.bar.baz).

1In Alloy, a Gc object can only be created through the Gc::new constructor. We mark the definition
of this function with a special label, known as a diagnostic label, so that it can be easily referred to
during the FSA phase of Rust compilation.
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This part of the analysis happens in the CheckCallsite function:

function CheckCallsiteForDropImpl(callsite)
arg_ty ← GetTypeOfFirstArg(callsite)
if not Impls(arg_ty, Drop) then

return
drop_body ← GetDropMirBody(arg_ty)
for each basic_blocks ∈ drop_body do

for each block ∈ basic_blocks do
for each statement ∈ block do

if HasPlaceProjection(statement) then
for each projection ∈ statement do

CheckProjection(projection)

If a projection is found, its type is checked for an implementation of the FinalizerSafe

trait:

function CheckProjection(projection) ▷ A projection elem is the RHS of a field
access.

projection_ty ← GetType(projection.elem)
if not Impls(arg_ty, FinalizerSafe) then

return Error

If CheckProjection discovers a field access of a field which does not implement FinalizerSafe,

it will throw a compiler error. This does not halt the analysis, so multiple lines in drop

methods which perform unsound field accesses will be caught in a single FSA pass.

Limitations

As with any static analysis, FSA is inherently conservative: some drop methods are

impossible to analyse at compile-time so in these cases Alloy will err on the side of

caution and reject potentially safe programs. This is most likely to happen in two

situations.

First, a drop method may contain a call to an opaque (i.e. externally linked) function

for which the compiler does not have the MIR. If a reference to a field which would be

unsafe to use in a finaliser is passed to this function, then FSA would reject the program.

This function call could be safe, but FSA has no way of knowing, and will reject it.

Second, if a finaliser is used on a trait object which is called using dynamic dispatch in

Rust. At compile-time, it is not possible to know the concrete type of a trait object, so

FSA does not know which drop method to check.

In both cases, the user has the option of explicitly informing the compiler that a particular

drop method is safe to use as a finaliser. We observe that this is rare in practice.
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1 struct Wrapper<’a>(&’a u64);
2

3 impl<’a> Drop for Wrapper<’a> {
4 fn drop(&mut self) {
5 println!("Dropping {}", self.0);
6 }
7 }
8

9 fn main() {
10 {
11 let b = Box::new(123);
12 let gc1 = Gc::new(Wrapper(b.as_ref()));
13 } // b is dropped
14

15 // GC happens here, calling ‘Wrapper::drop‘ as a finaliser.
16 // This causes a use-after-free.
17 }

Listing 6.9: The Gc now stores a reference to the boxed u64 using an intermediate Wrapper
struct which has a drop method which will be run as a finaliser (line 4). The boxed u64, and
the Gc are created in an inner scope. At the end of this scope, b is dropped. Later, when the
Gc<Wrapper> is collected (e.g. at line 16) a use-after-free will occur because its finaliser (line 4)
dereferences a reference to a value which was already dropped (at line 14).

6.6 Finalisers and Rust references

Like other smart pointers in Rust, Alloy’s Gc container can store ordinary Rust references.

Without finalisers, this is perfectly safe, because Rust’s borrow rules prevent the references

from outliving their referent. Consider the following Rust program:

1 fn main() {

2 let b = Box::new(123);

3 let gc1: Gc<&u64> = Gc::new(b.as_ref());

4

5 foo(b);

6 // println!("Boxed value: {}" gc1); // ERROR: use-after-move

7 }

8

9 fn foo(b: Box<u64>) {}

A u64 is boxed on the heap, and an immutable reference to it is stored in a Gc. This is

valid as long as gc1 does not outlive b. If line 6 is uncommented, this program would not

compile, because Rust identifies that printing the gc1 would try to dereference the boxed

u64 after it has been moved (line 5). This would seem to suggest that Rust’s borrow rules

are enough to allow references to be used inside Gc soundly.

Unfortunately, using references stored in a Gc from a finaliser can be unsound. The

collector is free to schedule a finaliser to run at any point after a garbage collected
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1 use std::gc::Gc;
2 use std::sync::Arc;
3

4 struct Wrapper<’a>(Arc<&’a u64>);
5

6 impl<’a> Drop for Wrapper<’a> {
7 fn drop(&mut self) {
8 println!("Dropping {}", self.0);
9 }

10 }
11

12 fn main() {
13

14 {
15 let val = 0;
16 let a = Arc::new(&val); // Arc ref count = 1
17 let gc = Gc::new(Wrapper(Arc::clone(&a))); // Arc ref count = 2
18 } // ‘a‘ dropped, Arc ref count = 1
19

20 // GC happens here, calling ‘Wrapper::drop‘ as a finaliser.
21 // This is unsound, because ‘Wrapper‘’s ‘Arc‘ keeps the ‘&’a u64‘ alive,
22 // but not the data it points to.
23

24 }

Listing 6.10: A reference to val is stored in an Arc, which is then shared inside a Gc. While
both the Gc and Arc go out of scope at the same time as the referent val, the finaliser for Wrapper
can be called at some pointer later, each in lines commented below (20-22), causing a dangling
pointer dereference when &u64 is invalid.

object is unreachable, which could mean running after a value it references is dropped.

Listing 6.9 shows how a program which uses a Rust reference can cause a use-after-free.

To make matters worse, even references reachable from other shared ownership types are

unsafe to access from a finaliser. Consider a slightly modified example in Listing 6.10,

where instead of storing a &u64 reference directly, the Gc contains an atomic reference

counted field (Arc), which stores a &u64 reference.

6.6.1 Preventing dangling references with the borrow-or-finalise rule

For a Gc<T> with a finaliser to be sound, it cannot be used with an object which contains

ordinary Rust references. To guarantee this, Alloy imposes a restriction called the

borrow-or-finalise rule. This rule states that that a type T cannot be placed in a Gc if

both of the following conditions are true:

Condition 1. T (or any component type of T) is of some type &U or &mut U.

Condition 2. T has a finaliser. In other words, T (or any component type of T) has a

drop method.
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1 struct S<’a> {
2 a: &’a str
3 }
4

5 struct T<’a> {
6 a: u64,
7 b: S<’a>,
8 }
9

10 enum U<’a> {
11 A(u64),
12 B(String),
13 C(S<’a>)
14 }

Listing 6.11: We assume each definition has a drop implementation. Values of the first struct S
cannot be passed to a Gc because its field, a contains an immutable reference to a string literal
(&str). The struct T cannot be passed to a Gc either because it contains a transitive reference,
through field b.

Finally, an object of type Gc<U> is not possible because the U::C variant contains a
reference. The active variant cannot be known statically, so Alloy disallows it entirely.

As with references, this same unsoundness can be caused by storing raw pointers inside a

Gc (either immutable *const or mutable *mut) and then dereferencing them in a finaliser.

However, Alloy is sound even without enforcing this rule for raw pointers because

dereferencing raw pointers is already not possible in safe Rust code, and programmers

must ensure the reference is valid for each dereference anyway. Listing 6.11 shows an

example of some types which do not adhere to the borrow-or-finalise rule.

Automating the borrow-or-finalise rule

Alloy checks that programs adhere to the borrow-or-finalise rule at compile-time,

throwing an error for those programs which violate it. Attempting to compile the earlier

example would result in the following error message:

1 error: ‘Wrapper(b.as_ref())‘ cannot be safely constructed.

2 --> src/main.rs:19:26

3 |

4 19 | let gc = Gc::new(Wrapper(b.as_ref()));

5 | --------^^^^^^^^^^^^^^^^^^^-

6 | | |

7 | | contains a reference (&) which may no longer

8 be valid when it is finalized.

9 | ‘Gc::new‘ requires that a type is reference free.

10

11 warning: ‘ref_soundness‘ (bin "ref_soundness") generated 1 warning
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1 struct Wrapper<’a>(&’a u64);
2

3 impl<’a> Drop for Wrapper<’a> {
4 fn drop(&mut self) {
5 println!("Dropping Wrapper");
6 }
7 }
8

9 fn main() {
10 {
11 let a = 123;
12 let gc = Gc::new(Wrapper(&a));
13 } // a is no longer in scope
14

15 // GC happens here, calling ‘Wrapper::drop‘ as a finaliser.
16 // ‘Wrapper‘’s drop method does not deref the box pointer,
17 // so it does not violate the properties we care about,
18 // but it does violate the borrow-or-finalise rule.
19 }

Listing 6.12: A Gc is created, storing a reference to a inside a Wrapper whose drop method gives
it a finaliser. This does not compile, since it violates the borrow-or-finalise rule. However, the
drop method for Wrapper (line 4) does not use the reference &a at all, which makes it perfectly
safe.

To check whether a type passed to Gc contains a reference, Alloy defines a marker trait

with no methods called ReferenceFree which is used by the compiler to indicate that a

value of a type does not contain references.

ReferenceFree is defined as an auto trait (see Section 5.2.5), so it is implemented on

every type in Rust by default. Alloy then explicitly unimplements ReferenceFree on all

reference types:

1 impl !ReferenceFree for &T {}

2 impl !ReferenceFree for &mut T {}

This means that if a type contains a &T or a &mut T for any T in one of its component

types, then it will not implement ReferenceFree either.

Whether or not a type implements ReferenceFree can then be checked at compile-time:

if T implements ReferenceFree, then it is safe to use inside a Gc. If T does not implement

ReferenceFree, and T has a drop method, then it cannot be used inside a Gc. This is

implemented with an extension to finaliser safety analysis, where the type of T is checked

for an implementation of ReferenceFree if it has a finaliser during the CheckCallsite

phase.
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Limitations

The borrow-or-finalise rule can be restrictive: in particular, a Gc<T> object which both

contains references and has a finaliser, but where the finaliser never uses the reference

would be deemed invalid, even though it is sound. Listing 6.12 shows an example program

which is sound, but fails to compile due to the borrow-or-finalise rule.

To allow the program in Listing 6.12 to compile, one can explicitly implement ReferenceFree

on Wrapper:

1 unsafe impl<’a> ReferenceFree for Wrapper<’a> {}

This will now compile and Gc<Wrapper> will be finalised before collection. However, it is

unsafe as the onus is now on the programmer to ensure Wrapper’s drop method never uses

&a.

6.6.2 Finalisation order

In Section 6.1.3 I explained how a GC can guarantee ordering on finalising floating

garbage. The main disadvantage of this approach is that objects with finalisation cycles

will not be finalised. The alternative is for the collector to not specify any order. This

allows objects with cycles to be finalised but with a heavy constraint: they must not

reference other objects from inside their finalisers. For many GCs, this is too restrictive.

Boehm [2003] makes the case that in languages such as Java, the usefulness of finalisers

depends on them being able to interact with other objects. As such, it is common to see

VMs for managed languages such as Java and .NET specify an ordering for finalisers.

However, our requirements for GC are unique in this respect: Alloy is not intended

to replace Rust’s RAII approach to memory management, instead, it provides optional

GC for objects where the RAII approach is difficult or impossible. It is not uncommon

to see Rust programs which use Alloy with a mix of GC’d and non-GC’d objects. In

such cases, it is safe for a finaliser to access a field of a non-GC’d object because there

is no danger of them being finalised already. Listing 6.13 shows an example of how

dereferencing another Gc can be unsound, with Figure 6.3 showing its representation in

memory.

In addition, one of Alloy’s main goals is to make it easier to work with data structures

that have cycles in Rust. It is suggested that finalisation cycles are rare in GC’d

languages [Jones et al., 2016]. However, this is different for Alloy, since destructors in

Rust are common, and mapping them to finalisers means that it is not uncommon to see

finalisation cycles in Rust programs using Alloy.
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1 impl Drop for Node {
2 fn drop(&mut self) {
3 // println!("Dropping {}", self.a) // Unsound when ‘Node‘ used in Gc!
4 println!("Dropping {}", self.b)
5 }
6 }
7

8 struct Node {
9 a: Gc<u64>,

10 b: Box<u64>,
11 }
12

13 let gc1 = Gc::new(Node{ a: Gc::new(1), b: Box::new(2) });

Listing 6.13: Here, it is safe for Node’s finaliser to reference its field a (line 4) because it points
to an non-GC’d object. In contrast, if line 3 was uncommented this program would be unsound.
Unlike in languages such as Java, where every object is managed, the restriction of dereferencing
through fields of other GC’d objects is less of an issue because non-GC’d objects can still be
accessed.

Gc<Node>

Pointer from gc1 on stack 

finaliser
Node::drop()
Box::drop();

GcBox

Node Box GcBox

Not managed by Alloy

1 
(u64)

2 
(u64)

Figure 6.3: Listing 6.13 representation in memory.

For these reasons, I decided that by default, Alloy does not guarantee a finalisation

order. This allows cyclic data managed by Alloy to be finalised, preventing potential

resource leaks. In Section 6.6.2 I describe how this is made sound by preventing a Gc’s

finaliser from dereferencing a field to another Gc.

Forcing ordered finalisation

If users find the constraint this imposes on finalisers too restrictive, they may in-

stead choose to build Alloy with ordered finalisation. This can be done with the

-DENABLE_TOPOLOGICAL_FINALIZATION build flag, which uses the BDWGC’s topological final-

isation order. In this configuration, cyclic data structures such as that shown in Figure 6.4

would not finalise, leading to a memory leak.
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1 use std::gc::Gc;
2 use std::sync::Mutex;
3

4 struct Node {
5 name: String,
6 next: Option<Gc<Mutex<Node>>>,
7 }
8

9 impl Drop for Node {
10 fn drop(&mut self) {
11 println!("Dropping {}", self.name);
12 }
13 }
14

15 fn main() {
16 let a = Gc::new(Mutex::new(Node {
17 name: String::from("a"),
18 next: None,
19 }));
20

21 let b = Gc::new(Mutex::new(Node {
22 name: String::from("b"),
23 next: None,
24 }));
25

26 a.lock().unwrap().next.insert(b);
27 b.lock().unwrap().next.insert(a);
28 }

Figure 6.4: An example of a small cyclic graph using Alloy. This example creates two nodes,
a and b, before creating cyclic references between them (lines 26-27). If Alloy used ordered
finalization, then neither a nor b would be finalised. This would cause a memory leak, because
Node.name contains an owned String. A String’s drop method is used to deallocate its backing
store, which never be called.

Alloy can therefore only represent this cyclic data structure without memory leaks if
it runs finalisers without a specified ordering. This way, the collector can decide at its leisure
whether to finalise a or b first.

While ordered finalisation would allow finalisers to dereference fields to other Gc’s, they

must still only access fields which use the FinalizerSafe trait for the soundness reasons

explained in Section 6.5.1.

Soundness issues with unordered finalisation

The problem with finalising Gcs in an unspecified order is that any other Gc object which

they reference may have already been freed. Consider the example in Figure 6.5, which

allocates Gcs which reference each other in a cycle. A cycle such as this one will always

lead to unsoundess with finalisers which access other Gc objects. This is also a problem for
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1 struct Node {
2 name: String,
3 next: Option<Gc<Mutex<Node>>>,
4 }
5

6 impl Drop for Node {
7 fn drop(&mut self) {
8 match self.next {
9 Some(n) => {

10 println!("The next node is {}", self.next.unwrap());
11 },
12 None => println!("No next node!"),
13 }
14 println!("Dropping {:?}", self.next);
15 }
16 }
17

18 fn main() {
19 let a = Gc::new(Mutex::new(Node {
20 name: String::from("a"),
21 next: None,
22 }));
23

24 let b = Gc::new(Mutex::new(Node {
25 name: String::from("a"),
26 next: None,
27 }));
28

29 a.lock().unwrap().next.insert(b);
30 }

Figure 6.5: An example of a potentially unsound Rust program. Two Gc<Mutex<Node>> objects
(a and b) are created where a contains a reference to b. When these objects are garbage collected,
Alloy will schedule their finalisers to run in a non-specified order. If b is finalised before a, then
a’s drop method will access a dropped value.

non-cyclic data structures in Alloy’s non-ordered configuration as there is no guarantee

that non-cyclic data structures will be finalised ‘outside-in’.

Making unordered finalisation sound

When Alloy is compiled with unordered finalisation, it prevents drop methods from

dereferencing fields which point to other Gc objects. Listing 6.14 shows the error message

that is displayed when the example in Figure 6.5 is compiled. It has identified that the

user is trying to access field b, which contains a Gc type. I extend Alloy’s finaliser safety

analysis (described in Section 6.5.2) to detect this.

This is implemented by first adding a negative implementation of FinalizerSafe to the

Gc<T> type:
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1 error: ‘Mutex::new(Node {
2 name: String::from("a"),
3 next: None,
4 })‘ cannot be safely finalized.
5 --> src/main.rs:30:21
6 |
7 15 | Some(n) => {
8 | -
9 | |

10 | caused by the expression here in ‘fn drop(&mut)‘ because
11 | it uses another ‘Gc‘ type.
12 ...
13 30 | let b = Gc::new(Mutex::new(Node {
14 | _____________________^
15 31 | | name: String::from("a"),
16 32 | | next: None,
17 33 | | }));
18 | |______^ has a drop method which cannot be safely finalized.
19 |
20 = help: ‘Gc‘ finalizers are unordered, so this field may have already been dropped.
21 It is not safe to dereference.

Listing 6.14: The compile-time error message shown when attempting to compile the example
in Figure 6.5. FSA identifies that another Gc is being dereferenced inside a finaliser. This is
unsound when Alloy does not use ordered finalisation as it may have already been collected.

1 impl<T> !FinalizerSafe for Gc<T> {}

FSA then uses this to identify the specific field which was unsafely dereferenced and will

generates an error message different from those to do with thread-safety.

However, as explained in Section 6.5.2, FSA is not complete. It is possible that a drop

method could dereference a Gc field in a way that FSA could not detect, e.g. by doing so

behind an opaque function call. In such cases where the MIR for the entire drop method

cannot be checked, FSA will err on the side of caution, favouring soundness by refusing

to compile the program. Figure 6.6 shows an example of this in practice.

Unordered finalisation and the borrow-or-finalise rule

Alloy’s Gc<T> type provides an as_ref function for obtaining a reference to the underlying

type (&T). This allows the Gc<T> to be used in Rust code which does not care about how

the value is stored, but instead just expects a Rust reference to it (&T). Unfortunately,

this creates a backdoor where a reference to another Gc object could be used in a finaliser.

In such a case, FSA can not tell that dereferencing a &T accesses memory in another Gc

object, because the “Gc” part of the type has been omitted. Listing 6.15 shows a potential

example of a raw reference can leak into a finaliser.



Chapter 6. Finalisation in Alloy 102

1 use std::gc::Gc;
2

3 extern "C" {
4 // A printer function written in "C" that is externally linked.
5 // The compiler cannot see the contents of this function.
6 fn node_printer(value: &Node);
7 }
8

9 struct Node {
10 name: String,
11 next: Option<Gc<Node>>,
12 }
13

14 impl Drop for Node {
15 fn drop(&mut self) {
16 unsafe {
17 node_printer(self);
18 }
19 }
20 }
21

22 fn main() {
23 let node = Gc::new(Node {
24 name: String::from("a"),
25 next: Some(Gc::new(Node {
26 name: String::from("b"),
27 next: None,
28 })),
29 });
30 }

Figure 6.6: An example program which is forbidden in Alloy. The drop method for Node
calls node_printer on its value. This function is written in C and is externally linked, so the
Rust compiler is unable to view its contents. Because of this, it cannot know whether or not
node_printer accesses the next field. Alloy thus conservatively rejects the program. If the
user is certain that node_printer does not access the next field, they can inform Alloy by
implementing the FinalizerSafe trait on Node.

Fortunately, this problem is solved by the borrow-or-finalise rule (Section 6.6.1), and the

example above would not compile with the error showing in Listing 6.16

6.7 Early finalisation

A fundamental assumption in Rust’s destructor semantics is that dropping a value is the

last thing to happen to it. The Rust compiler prevents using a value after it has been

dropped as this would cause unsoundness. For Gc values in Alloy, the same must be

true for finalisers. If a finaliser is able to run before the mutator has finished using it,

this would also be unsound.
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1 use std::gc::Gc;
2 use std::fmt::Debug;
3

4 struct Wrapper<T: Debug>(T);
5

6 impl<T: Debug> Drop for Wrapper<T> {
7 fn drop(&mut self) {
8 println!("Dropping {:?}", self.0);
9 }

10 }
11

12 fn main() {
13 let gc1 = Gc::new(123);
14 let r1 = gc1.as_ref();
15

16 // Pass a rust reference to ‘Wrapper‘, hiding the fact that it points to
17 // another GC object, which would be unsound to deref in the finaliser.
18 let gc2 = Gc::new(Wrapper(r1));
19 }

Listing 6.15: A reference to the Gc object on line 13 is passed as a Rust reference to another
Gc (line 18). The drop method for Wrapper dereferences this, which is unsound because if the
finalisation order is unspecified.

1 error: ‘Wrapper(r1)‘ cannot be safely constructed.
2 --> src/main.rs:18:23
3 |
4 18 | let gc2 = Gc::new(Wrapper(r1));
5 | --------^^^^^^^^^^^-
6 | | |
7 | | contains a reference (&) which may no longer be
8 | | valid when it is finalized.
9 | ‘Gc::new‘ requires that a type is reference free.

10

11 error: could not compile ‘bin‘ due to previous error; 1 warning emitted

Listing 6.16: Compiler error for Listing 6.15 when run with Alloy.

In Section 6.1.5, I explain how finalisers can run earlier than expected because compiler

optimisations – unaware of the presence of a GC – can cause GC objects to become

unreachable earlier than expected. If this is paired with an unfortunately timed GC cycle,

the object’s finaliser could run while the object is still in use by the mutator. Rust and

Alloy is no different: the Rust compiler is allowed to perform any optimisation that

does not change the observable behaviour of the program, and such optimisations are not

aware of the retro-fitted collector.

A finaliser which runs early can cause finalisation code to interleave unexpectedly with

the mutator [Boehm, 2003]. But, even worse, in Alloy early finalisation can even lead to
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a memory safety violation. Consider the following example, which shows how a finaliser

which runs early could cause a use-after-free:

1 fn main() {

2 let a = Gc::new(Box::new(123));

3 let box_ptr: &usize = &**a;

4

5 ...

6

7 // Gc happens here causing

8 // a’s finaliser to drop the box.

9

10 println!("{}", box_ptr); // Potential use-after-free!

11 }

Assuming that the compiler clobbers the reference the Gc stored in variable a, this program

can be represented as follows:

Gc<Box>

Clobbered by compiler 
optimisation as it's no
longer used in main().

finaliser

Box::drop();

GcBox Box
&u64

From box_ref on stack.
This does not keep the 
GcBox alive.

123
(u64)

In this program, semantically, both a and box_ptr live until the end of main. However, the

compiler may decide to reuse the register holding the reference at a any time after line 3

as it is no longer used. An unfortunately timed GC cycle which happens immediately

afterwards would consider the Gc object unreachable. Its finaliser will then be run, freeing

the Box. This would happen even though there is still a reference (box_ptr) to the

inner Box value. This reference is now a dangling reference, and its use on line 10 would

constitute a use-after-free.

The possibility of early finalisation has led many VMs to specify that finalisers can happen

at any time – even earlier than when an object becomes unreachable (see Section 6.1.5).

One way of preventing early finalisation in Alloy would be to prevent Gc objects from

owning non garbage collected objects, but this would render Alloy almost unusable.

Fortunately, we can do better.
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6.7.1 Early finaliser prevention in Alloy

To understand how early finaliser prevention works in Alloy, lets revisit the example

from the previous section:

1 fn main() {

2 let a = Gc::new(Box::new(123));

3 let box_ptr: &usize = &**a;

4

5 ...

6

7 // Gc happens here causing

8 // a’s finaliser to drop the box.

9

10 println!("{}", box_ptr); // Potential use-after-free!

11 }

The problem is that the normal Rust compiler is not aware that a conservative GC exists,

and that line 8 is dependent on the reference at a still being reachable.

To fix this, Alloy needs to ensure that the reference at a exists for the entire duration

of main. The basis of a solution is to realise that inserting a compiler barrier – which

prevents reads and writes of specified variables from being reordered before/after the

barrier – at the end of main, followed by an artificial read of a keeps references around

sufficiently long.

In other words, Alloy wants to convert the example above to look roughly as follows:

1 fn main() {

2 let a = Gc::new(Box::new(123));

3 ...

4

5 COMPILER_BARRIER(a)

6 *a;

7 }

Using drop to insert Compiler barriers

Alloy takes advantage of two observations: Rust already inserts calls to drop at the

same point in a function where we want to insert compiler barriers; and we only need to

insert barriers for variables of type Gc. However, since Gc is a Copy type, Rust prevents us

from adding a drop method to Gc.
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Fortunately, since Alloy already alters the Rust compiler, it is easy to add a further

modification. I thus modify the Rust compiler to allow for simultaneous implementation

of Copy and Drop for Gc types only, with the following drop implementation:

1 impl<T: ?Sized> Drop for Gc<T> {

2 fn drop(&mut self) {

3 unsafe {

4 COMPILER_BARRIER(self)

5 }

6 }

7 }

The COMPILER_BARRIER(a) includes inline assembly using Rust’s asm! macro to create a

read of the Gc’s self reference after a compiler barrier. This is platform specific: for x86

it translates to the following:

1 asm("":::"memory")

Although the compiler barrier does not contain platform instructions, its format is still

platform dependent: other platforms such as AArch64 may require a slightly different

asm statement.

However, the compiler barrier by definition prevents the compiler from performing some

of its normal optimisations — it is an expensive solution to a rare problem. In our

performance analysis, this had roughly a 2-3% slowdown. In Section 6.9 I describe how I

optimise this approach, removing barriers where it can be statically determined that they

are unnecessary.

6.8 Optimising finalisers

6.8.1 Finaliser elision

For performance reasons, many GC’d languages discourage programmers from using

finalisers. In Rust, since drop is ubiquitous, mapping drop methods to finalisers therefore

has a high performance overhead.

To claw back this performance hit, I implement a new optimisation called finaliser elision.

This optimisation is based on the observation that sometimes only the top-most object in

a Gc graph needs to have a finaliser. Consider the following example:

1 let a = Box::new(123);

2 let b = Gc::new(a);
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Here a refers to a boxed integer on the heap which is not managed by the collector. It is

placed inside a Gc, which has the following representation in memory:

Gc<Box>

finaliser

Box::drop();

GcBox Box

From b on stack.

123
(u64)

Before the Gc referenced by b is collected, its finaliser is called, which calls drop on the

non-GC’d box:

Gc<Box>

finaliser

Box::drop();

GcBox Box

From b on stack.

123
(u64)

deallocates

This is inefficient because the collector would have later reclaimed the Box, since all

references to it would be lost. In other words, neither a’s finaliser nor b’s drop method

need to be called for the memory to be reclaimed.

Since sweeping is cheaper than finalisation, finaliser elision aims to identify other cases

where finalisation can be avoided. It is a powerful optimisation, but not applicable

everywhere as this example shows:

1 struct HasDrop(u64);

2

3 impl Drop for HasDrop {

4 fn drop(&mut self) {

5 println!("Dropping HasDrop");

6 }

7 }

8

9 let a = Gc::new(HasDrop(123));

Here a refers to a Gc containing an integer, which has the following representation in

memory:
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Gc<HasDrop>

finaliser

HasDrop::drop();

GcBox<HasDrop>

From a on stack.
123

We are not able to elide the finaliser for this Gc because, unlike the previous example,

the drop method does more than just drop another heap object in this case printing to

stdout.

When can a finaliser be elided?

The foundation of finaliser elision lies with the FinalizerOptional trait, which is used to

determine if a type needs finalising. If a type T implements Drop, but also implements

FinalizerOptional, then Gc<T> will not be finalised. For example we can adjust our earlier

example as follows:

1 struct HasDrop;

2

3 impl Drop for HasDrop {

4 fn drop(&mut self) {

5 println!("Dropping HasDrop");

6 }

7 }

8

9 unsafe impl FinalizerOptional for HasDrop {}

10

11 let a = Gc::new(HasDrop(123));

This informs Alloy that HasDrop does not need a finaliser when placed inside a Gc, even

though HasDrop implements the Drop trait. When a Gc is constructed with a value of this

type, it no longer has a finaliser:

Gc<HasDrop>

GcBox<HasDrop>

From a on stack.
123

FinalizerOptional is particularly powerful when used with container types. For example,

consider the standard Rust Box<T> type. Its heap memory can be automatically reclaimed



Chapter 6. Finalisation in Alloy 109

by the allocator, but depending on the type T, we may need to call a finaliser. Thus we

cannot simply always remove a Box’s finaliser. Fortunately we can easily tell Rust’s type

system that we want to make Box<T> be FinalizerOptional if T is also FinalizerOptional

with:

1 unsafe impl<T> FinalizerOptional for Box<T> {}

This tells Alloy that it is safe to elide the finaliser for Box<T> if T does not need finalising.

When Alloy discovers a type which implements FinalizerOptional, it will treat it as if

it does not implement Drop, but continue on checking all its component types.

Alloy implements FinalizerOptional on the following heap allocating standard library

types: Box<T>, Vec<T>, RawVec<T>, HashMap<T>. This is enough to elide a significant amount

of finalisers without any extra effort required by the user (see Section 7.4). If the user

defines their own heap allocating types which use drop to deallocate, they can implement

FinalizerOptional on it so that it can also benefit from finaliser elision.

Finaliser elision algorithm

The exact algorithm for finaliser elision detection is defined as follows:

function NeedsFinaliser(type)
if Impls(type, Drop) and not Impls(type, FinalizerOptional) then

return true
for each component ∈ type do

if NeedsFinaliser(component) then
return true

return false

Figure 6.7 shows various examples of when finaliser elision can remove a finaliser, and when

it cannot. What is important to note here is that if a type T is marked FinalizerOptional,

but has fields which need finalising, then T will still be finalised.

The algorithm for finaliser elision is implemented as a compiler intrinsic, needs_finalizer<T>()

which returns true if Gc<T> needs a finaliser. This intrinsic is then called during the

construction of new Gc objects (inside Gc::new):
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Box<u64>

123

GcBox

(a) Gc<Box<u64>>

Box<...> Box<u64>

123

GcBox

(b) Gc<Box<Box<u64>>>

finaliser
Box<HasDrop>::drop();
HasDrop::drop();

GcBox Box<HasDrop>

123

(c) Gc<Box<HasDrop>>

finaliser
Box<HasDrop>::drop();
Box<Box<HasDrop>>::drop();
HasDrop::drop();

GcBox Box<...> Box<HasDrop>

123

(d) Gc<Box<Box<HasDrop>>>

Figure 6.7: The memory layout of various Gc types. (a) and (b) do not need a finaliser because
the Box implements FinalizerOptional and u64 does not need finalising. (c) and (d) do need a
finaliser because in each example, a Box contains a HasDrop, which needs finalising because it
has a drop method. Notice that for (c) and (d), the finaliser calls the drop methods for each
component type – even the boxes which are marked FinalizerOptional. This is because finaliser
elision does not do partial elision of finalisers.

1 impl Gc<T> {

2 pub fn new(value: T) -> Self {

3 ...

4 if needs_finalizer::<T>() {

5 Gc<T>::new_with_finalizer(value)

6 } else {

7 Gc<T>::new_without_finalizer(value)

8 }

9 ...

10 }

11 }

needs_finalizer<T> is marked as a special type of Rust function, called a const function,

which means that it is evaluated at compile time, this means that the conditional on line

4 has no runtime cost.

Sweeping objects with elided finalisers

Once an object’s finaliser has been elided, Alloy needs to be responsible for managing

its memory. This is achieved with a modification to the global allocator in Rust. Every

heap allocation in Rust programs compiled with Alloy is allocated using BDWGC’s

GC_malloc function — even those which are not part of a Gc. For values which are allocated

using Rust’s RAII approach, they are manually deallocated with calls to GC_free. For

non-GC’d heap allocations, this is semantically equivalent to a regular malloc call: there
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will always be a reference preventing them from being collected, and RAII ensures that

the corresponding GC_free is called the moment they go out of scope. However, when

such allocations are owned by a Gc, they will be freed by the collector along with the Gc.

6.9 Optimising early finaliser prevention

Early finalisation prevention (Section 6.7.1) overapproximates the places where early

finalisation can happen, which can have a significant impact on performance. Fortunately,

the finaliser elision optimisation in Section 6.8.1 shows that many finalisers never need to

be called, at which point we also no longer have to worry early finalisation! Where this is

the case, we are able to remove the drop method for the Gc<T> pointers which contain

compiler barriers during compilation.

All Gc values have drop methods with barriers by default. During compilation, barriers

which we can prove are unnecessary are removed. This is done once the Rust compiler

has generated its mid-level IR (MIR). Like finaliser safety analysis (Section 6.5.2), we

perform an in-order traversal on the control flow graph represented by the MIR for each

function with the following algorithm:

function BarrierRemoval(callsite)
for each mir_body ∈ prog do

for each basic_blocks ∈ mir_body do
for each block ∈ basic_blocks do

if CallsDrop(block.terminator) then
arg ← GetFirstArg(block.terminator)
arg_ty ← GetType(arg)
if IsGC(arg_ty) then

if not NeedsFinaliser(arg_ty) then
RemoveDrop(projection)

This iterates over all drop methods in the entire program, identifying those which belong

to a Gc<T>. If found, the drop call is removed if the Gc reference points to an object which

does not need finalising. The drop method is removed by patching the terminator of the

block which calls drop with the terminator at the end of the drop body:

function RemoveDrop(block)
drop_mir ← GetDropMirBody(block.terminator)
last_block ← GetLastBlock(drop_mir)
block.terminator ← last_block.terminator

After this pass, we call the Rust compiler’s existing simplify mir pass, which tidies up

the control flow graph by removing the empty blocks which were created as a result of

drop removal.
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Alloy performance evaluation

This chapter examines the performance characteristics of Alloy. To do this, I present

five performance studies:

1. An evaluation of the wall-clock time and memory usage of Alloy as a candidate

for use in a single-threaded VM. This compares Alloy with Rust’s single-threaded

reference counting library on the SOM benchmark suite [Marr et al., 2016] when

used to manage objects in the somrs VM (Section 7.2.1).

2. An evaluation of the wall-clock time and memory usage of Alloy as a candidate

for use in a multi-threaded VM. This compares Alloy with Rust’s atomic reference

counting library using the WLambda VM (Section 7.2.2).

3. An evaluation of the effectiveness of the finaliser elision optimisation. This uses two

configurations of the yksom VM – with and without finaliser elision – to measure

its performance impact using the SOM benchmark suite (Section 7.3).

4. An evaluation of the slowdown introduced by the early finaliser prevention mecha-

nism in Alloy (Section 7.4).

5. A comparison between Alloy and other GC implementations in Rust on the Binary

Trees benchmark (Section 7.5).

7.1 Generic benchmarking methodology

The four performance studies share a common benchmarking methodology. All experi-

ments were run on a Xeon E3-1240v6 3.7GHz with 4 CPU cores. Each core has an L1

and L2 cache size of 256KB and 1MB respectively. The 8MB L3 cache is shared between

112
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cores. The benchmarking machine has 32GB of RAM and runs Debian 8. I disabled turbo

boost and hyper-threading in the BIOS and set Linux’s CPU governor to performance

mode. I observed the dmesg after each experiment and did not observe any oddities such

as the machine overheating.

For Alloy I use an initial heapsize of 64KB and the heap is always expanded when

the collector encounters insufficient space for an allocation. A collection is triggered

whenever more than heap_size / 6 bytes of allocation have taken place. This is the

default behaviour in the BDWGC.

7.2 Alloy for language implementation

One of Alloy’s main goals is to be usable for implementing other languages VMs. In

order to evaluate the effectiveness of this, this section aims to answer the following two

questions:

1. How much slower is a language VM written in Rust when using Alloy compared

to Rust’s reference counting library?

2. How much memory does a language VM written in Rust when using Alloy use

when compared to Rust’s reference counting library?

To answer these questions I conduct two studies, where I retrofit Alloy to two separate

language VMs:

somrs A VM written in Rust for the SOM language (a cut down Smalltalk language)

which uses Rust’s single threaded reference counting library (Rc) to manage SOM

objects.

WLambda A VM written in Rust for the WLambda language: a multi-threaded

JavaScript-like scripting language which uses Rust’s atomic reference counting

library (Arc) to manage SOM objects.

This allows a performance comparison between VMs which use Alloy and both forms

of reference counting in otherwise identical language implementations. The following

subsections outline the methodology and results of each experiment.
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Figure 7.1: Results from the perf experiment, where the SOM benchmark suite is run with
both configurations: somrs-rc, and somrs-gc. The vertical bars represent the wall-clock time
of somrs-gc, normalised to the wall-clock time of somrs-rc. The dashed grey line shows the
geometric mean of the slowdown of somrs-gc across all benchmarks (1.12×). Each benchmark
is run for 30 process executions, where the error bars represent 99% confidence intervals.

7.2.1 First study: the somrs VM

Methodology

The first study is a performance and memory comparison using somrs [Polomack, 2020] –

a Rust implementation for the SOM language (a cut down version of Smalltalk). somrs

does not support Just-in-Time (JIT) compilation and is a medium sized interpreter with

roughly 10KLoC. I build two configurations of somrs as follows:

somrs-rc the standard implementation, where SOM objects are managed using Rc

(Rust’s single-threaded reference counting mechanism).

somrs-gc where somrs is modified so that SOM objects are managed using Alloy.

This required changing 62 lines of code, most of which was replacing instances of

Rc with Alloy’s Gc. Both configurations are otherwise identical.

I use the SOM language’s existing suite of synthetic benchmarks, adapted from the

are-we-fast-yet benchmark suite [Marr et al., 2016]. The benchmarks are written using

idiomatic SOM code.

The study is divided into two sub-experiments which measure performance and memory

separately:
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perf In the performance experiment, I compare the performance between somrs-rc,

and somrs-gc using the Rebench benchmarking suite [Marr, 2018]. Each SOM

benchmark is run for 30 process executions, where each VM is closed down and

started again. Rebench randomises the order in which each VM implementation

is run after each process execution and records wall-clock times using Python’s

time() function.

mem In the memory experiment, memory usage from both configurations is measured

by running each benchmark individually while sampling the process’s resident set

size every 10 milliseconds as this was the smallest value where there were noticable

differences between samples. From this, I present the peak and average real ( i.e.

physical, not virtual) memory usage for each benchmark as well as plotting the

usage over time.

Results

Figure 7.1 shows the performance results for the perf experiment. On average, somrs-gc

performs 12% worse, when taking the geometric mean across all benchmarks. The worst

performing benchmarks are Loop, Recurse, and Richards which each have a slowdown of

1.24×. One possible explanation for this is that for these benchmarks in particular, many

of the allocated objects have a lifetime which extends for the duration of the benchmark.

This means that frequent GC pauses by Alloy free little memory but end up increasing

the total wall-clock time of the benchmark. For example, during the Richards benchmark,

a GC collection cycle was scheduled an average of 24,800 times for each iteration.

Table 7.1 shows the memory usage results from the mem experiment. For most benchmarks,

somrs-gc consumes slightly more memory. Though Alloy will use additional memory

for its internal data structures for bookkeeping and during collection, this does not

sufficiently account for the additional memory used by somrs-gc. It is more likely that

objects in somrs-gc are being retained for longer than in somrs-rc. It is not clear

why this is the case, but one possible reason is that somrs uses a third party hash map

implementation internally for locals and method storage, and once references are removed,

they may not be properly zeroed, causing stale pointers to keep objects alive. Figure 7.2

highlights two cases in particular, PageRank and GraphSearch, where memory usage

in somrs-gc is unusually high. The graphs showing memory usage over time for all

benchmarks can be found in Appendix A.

However, Alloy’s advantage of being able to cope with objects with cyclic references is

shown clearly in Figure 7.3. DeltaBlue and JsonSmall when run with somrs-rc leak

memory because these benchmarks contain objects with cycles. For these benchmarks,
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Benchmark Peak memory usage (MB) Average memory usage (MB)

Reference Counting Alloy Reference Counting Alloy

Bounce 3.94 4.50 3.94 4.50
BubbleSort 3.94 4.50 3.94 4.50
DeltaBlue 22.88 11.81 13.76 11.07
Dispatch 3.75 4.12 3.75 4.12
Fannkuch 3.94 4.50 3.94 4.46
Fibonacci 3.94 4.12 3.94 4.12
FieldLoop 3.75 4.12 3.75 4.12
GraphSearch 15.64 50.18 14.86 45.16
IntegerLoop 3.94 4.12 3.94 4.12
JsonSmall 520.12 8.25 261.40 8.17
List 3.94 4.50 3.94 4.50
Loop 3.75 4.31 3.75 4.31
Mandelbrot 3.75 4.31 3.75 4.31
NBody 4.12 4.50 4.12 4.50
PageRank 5.68 35.31 5.68 29.08
Permute 3.94 4.31 3.94 4.31
Queens 3.94 4.31 3.94 4.31
QuickSort 4.12 7.69 4.12 7.61
Recurse 3.94 4.31 3.94 4.31
Richards 4.31 4.69 4.14 4.60
Sieve 4.12 6.80 4.12 6.76
Storage 5.25 9.19 5.21 9.01
Sum 3.94 4.12 3.94 4.12
Towers 3.94 4.50 3.94 4.50
TreeSort 4.31 5.25 4.30 5.23
WhileLoop 3.94 4.12 3.94 4.12

Table 7.1: Peak and average memory usage (in megabytes) of each SOM benchmark for both
som-rs configurations.

somrs-rc leaks memory so severely that they would cause cause out-of-memory errors if

ran for just a few minutes, while somrs-gc maintains a steady heap profile over time.
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Figure 7.2: Real memory usage of the PageRank and GraphSearch benchmarks over time. In
both of these benchmarks, somrs-gc uses significantly more memory. While this suggests there
is a memory leak somewhere in somrs-gc, it is not yet clear why. One likely explanation which I
have come across before during development is that during allocation heavy tight loops, stale
references to heap objects may still exist in not-yet-overwritten stack slots which are then traced
conservatively during marking.

Figure 7.3: Real memory usage of the DeltaBlue and JsonSmall benchmarks over time. Both of
these benchmarks allocate objects containing reference cycles, which somrs-rc is unable to free
due to its use of reference counting. The resulting leak causes somrs-rc’s real memory usage to
grow continously over time. somrs-gc does not have this problem because Alloy is a tracing
garbage collector.
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7.2.2 Second study: the WLambda VM

The second study is a performance and memory comparison using WLambda [WeirdCon-

structor, 2019] – a Rust VM for an embeddable perl-like scripting language. WLambda

is a medium-sized VM with approximately 30KLoC. It supports prototype based object

orientation, and most WLambda objects are built upon vector and map data structures.

Unlike somrs, WLambda is multi-threaded, so it allows for a comparison of a VM

using Alloy and atomic reference counting. I build two configurations of WLambda as

follows:

WLambda-arc the standard implementation, where VM objects are managed using

Arc (Rust’s atomic reference counting mechanism).

WLambda-alloy where WLambda is modified so that VM objects are managed

using Alloy. This required changing roughly 700 lines of code, most of which

was replacing instances of Rc with Alloy’s Gc. WLambda makes use of Rust’s

trait-based dynamic dispatch, so each trait was manually audited to see whether it

could be marked FinalizerSafe to satisfy FSA (Section 6.5.2), or FinalizerOptional

to use finaliser elision (Section 6.8.1). Both configurations are otherwise identical.

WLambda comes with four benchmarks which I use to test each configuration: Pattern

Matching, which stresses comparisons performed on objects; Fibonacci, which stresses

function call overhead and recursion; Vec Iter, which creates and manipulates large lists

and maps; and Box, which allocates many objects and stresses read and write operations.

Like the first somrs study, this study is also divided into two sub-experiments to measure

performance and memory separately:

perf In the performance experiment, I compare the performance between WLambda-

arc, and WLambda-alloy using the multitime tool: a Unix time utility extension

which allows commands to be run multiple times for comparison [Tratt, 2014]. I run

benchmarks for each configuration for 30 process executions. multitime randomises

the order in which each benchmark and VM configuration is run, and records

wall-clock time. I report the mean wall-clock time of each benchmark with 99%

confidence intervals.

mem Similar to the yksom experiment, the memory usage is of both configurations

is measured by running each benchmark individually while sampling the process’s

resident set size every 10 milliseconds as this was the smallest value where there

were noticable differences between samples.
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Figure 7.4: Results from the perf experiment, where the WLambda benchmarks are run
with both configurations: WLambda-arc, and WLambda-alloy. The vertical bars represent
the wall-clock time of WLambda-alloy, normalised to the wall-clock time of WLambda-arc.
Each benchmark is run for 30 process executions, where the error bars represent 99% confidence
intervals.

Results

Figure 7.4 shows the performance results for the perf experiment. The range in perfor-

mance on this suite is large, with WLambda-alloy performing 18% better on Pattern

Matching but 45% slower on Box.

Table 7.2 shows the memory usage results from the mem experiment while Figure 7.5 shows

the memory usage of each benchmark over time. In all benchmarks, WLambda-alloy

uses more memory. This is particularly apparent in the Box benchmark, where on average

WLambda-alloy requires 4MB of additional memory suggesting that WLambda-alloy

has a prominent memory leak for this benchmark. In the perf experiment, this is also

the worst performing benchmark. Box allocates a total of 450,027,871 objects which

results in 30% of the runtime spent in marking when profiling the benchmark in perf.

7.3 Measuring finaliser overhead

In my third study, I evaluate the effectiveness of Alloy’s finaliser elision with a straight-

forward comparison between Alloy with and without finaliser elision. I use yksom: a
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Benchmark Peak memory usage (MB) Average memory usage (MB)

Atomic RC Alloy Atomic RC Alloy

Pattern Matching 10.94 11.49 10.94 11.49
Fibonacci 11.12 11.68 11.12 11.68
Vec Iter 10.94 11.68 10.94 11.65
Box 10.93 15.44 10.93 14.93

Table 7.2: Peak and average memory usage (in megabytes) of each WLambda benchmark for
both configurations.

Figure 7.5: Real memory usage of the WLambda benchmarks over time.
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another SOM interpreter written in Rust which uses Alloy to manage SOM objects.

yksom is a lightweight interpreter with approximately 5700KLoC. It is suitable for

measuring the impact of finaliser overhead because it makes frequent use of drop methods

inside the VM. I build two configurations of yksom as follows:

YKSOMFinaliserElision The standard Alloy build which enables finaliser elision

optimisation (Section 6.8.1).

YKSOMNaive An otherwise identical build but with Alloy’s finaliser elision optimi-

sation disabled.

I use the SOM benchmark suite using Rebench benchmarking suite using two versions of

yksom for each Alloy variant. I run each SOM benchmark for 30 process executions,

where each instance of yksom is closed down and started again. Rebench records wall-clock

times using Python’s time() function. I also run each SOM benchmark and record the

number of finalisers that were executed for each Alloy variant.

7.3.1 Results

Table 7.3 shows the performance results for this study. Finaliser elision is able to remove

over 99% of finalisers on every benchmark, leading to a 14.87% improvement in runtime

speed when taking the geometric mean across all benchmarks. Such an improvement

is clear in part due to yksom’s internal VM object representation: yksom objects use

Strings and HashMaps internally, which are allocated on the Rust heap and thus, without

finaliser elision, require tens of thousands of calls to drop in order to deallocate.

However, despite significant improvements in wall-clock time on nearly every benchmark,

FieldLoop regresses by 10.59%. The reason for this became clear once I recorded the

peak memory usage of YKSOMNaive (3.25MB) and YKSOMFinaliserElision (4.31MB).

The finalisers for 606,385 objects are elided, meaning that those objects become the

responsibility of Alloy to GC. Therefore, based on the higher memory usage, the most

likely reason for the resulting slowdown is that those objects are being erroneously kept

alive. After analysing the program in perf, almost all the excess runtime is spent in

marking.
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Benchmark YKSOMNaive YKSOMFinaliserElision

Runtime (ms) Finaliser count Runtime (ms) Finaliser count Runtime slowdown Finalisers elided

Bounce 224.329 ± 0.2697 1770542 178.654 ± 0.2646 853 -20.36% 99.95%
BubbleSort 95.525 ± 0.1243 795517 79.956 ± 0.1423 894 -16.30% 99.89%
DeltaBlue 1609.086 ± 18.9061 12381013 1369.114 ± 12.5874 1817 -14.91% 99.99%
Dispatch 81.540 ± 0.0874 601406 67.245 ± 0.0722 762 -17.53% 99.87%
Fannkuch 13.350 ± 0.0836 109721 11.363 ± 0.0884 821 -14.88% 99.25%
Fibonacci 80.245 ± 0.1068 876916 63.837 ± 0.0896 767 -20.45% 99.91%
FieldLoop 205.160 ± 0.1370 601385 226.884 ± 0.1300 791 10.59% 99.87%
GraphSearch 1077.769 ± 11.8820 7170437 1024.444 ± 18.6056 1062 -4.95% 99.99%
IntegerLoop 300.491 ± 0.1138 2401644 251.242 ± 0.2050 761 -16.39% 99.97%
JsonSmall 3135.514 ± 17.0954 18609339 2885.890 ± 29.5012 540483 -7.96% 97.10%
List 244.949 ± 0.2017 1784997 217.742 ± 0.2453 803 -11.11% 99.96%
Loop 196.561 ± 0.1462 1581627 161.965 ± 0.1405 771 -17.60% 99.95%
Mandelbrot 565.439 ± 0.1513 5191571 496.384 ± 0.3128 804 -12.21% 99.98%
NBody 5869.196 ± 4.0206 47102081 5301.500 ± 3.2877 1066 -9.67% 100.00%
PageRank 204.388 ± 0.2031 1703836 173.393 ± 0.7059 6037 -15.16% 99.65%
Permute 273.491 ± 0.2795 1649632 236.447 ± 0.1688 776 -13.54% 99.95%
Queens 217.204 ± 0.0963 1376985 191.803 ± 0.1144 794 -11.69% 99.94%
QuickSort 166.488 ± 0.1343 1235682 139.955 ± 0.1858 912 -15.94% 99.93%
Recurse 249.443 ± 0.1334 1967290 212.140 ± 0.1147 766 -14.95% 99.96%
Richards 4511.721 ± 4.1691 35824587 3803.452 ± 3.5815 1299 -15.70% 100.00%
Sieve 400.462 ± 0.5388 3118040 337.759 ± 0.6396 773 -15.66% 99.98%
Storage 90.836 ± 1.2021 779531 78.436 ± 1.3190 823 -13.65% 99.89%
Sum 152.987 ± 0.1092 1202148 123.737 ± 0.1181 763 -19.12% 99.96%
Towers 271.376 ± 0.1319 2296825 232.203 ± 0.1956 813 -14.43% 99.95%
TreeSort 179.148 ± 0.5050 1806430 142.640 ± 0.2324 928 -20.38% 99.95%
WhileLoop 358.626 ± 0.1872 2013973 320.426 ± 0.2700 766 -10.65% 99.96%

Geometric mean 298.406 257.122 -14.87%

Table 7.3: Results from my finaliser elision experiment, where I evaluate the performance of yksom using two configurations: naive finalisation, and Alloy’s
finaliser elision optimisation. Each configuration is compared using a subset of benchmarks on the Rebench benchmarking suite for 30 process executions,
where I report 99% confidence intervals. I also count the number of finalisers which were run for each benchmark for a single process execution.
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Benchmark BarriersNone BarriersAll BarriersOpt

Runtime (ms) Runtime (ms) Slowdown Runtime (ms) Slowdown

Bounce 177.685 ± 0.5710 200.267 ± 0.8618 12.71% 174.867 ± 0.6087 -1.59%
BubbleSort 76.489 ± 0.4761 88.817 ± 0.3675 16.12% 78.764 ± 0.3020 2.97%
DeltaBlue 1332.107 ± 31.0046 1492.094 ± 37.7451 12.01% 1419.885 ± 23.2784 6.59%
Dispatch 68.006 ± 0.1652 76.597 ± 0.1439 12.63% 69.342 ± 0.1457 1.96%
Fannkuch 11.196 ± 0.1818 12.764 ± 0.2088 14.01% 11.344 ± 0.2270 1.32%
Fibonacci 62.955 ± 0.1439 71.017 ± 0.2969 12.81% 61.234 ± 0.3129 -2.73%
FieldLoop 191.046 ± 0.2221 246.352 ± 0.1694 28.95% 198.393 ± 0.1252 3.85%
GraphSearch 983.338 ± 32.7477 1261.518 ± 57.6965 28.29% 987.944 ± 36.9464 0.47%
IntegerLoop 254.676 ± 0.3206 288.371 ± 0.3495 13.23% 250.040 ± 0.2444 -1.82%
JsonSmall 2846.510 ± 5.7309 3004.179 ± 88.3440 5.54% 3015.966 ± 63.0982 5.95%
List 212.349 ± 0.3258 247.745 ± 0.3761 16.67% 212.127 ± 0.2569 -0.10%
Loop 171.301 ± 0.2056 188.520 ± 0.1256 10.05% 163.770 ± 0.3270 -4.40%
Mandelbrot 471.427 ± 0.4220 508.122 ± 0.3002 7.78% 498.200 ± 0.4006 5.68%
NBody 5075.057 ± 4.4648 5529.958 ± 6.9342 8.96% 5149.974 ± 3.2279 1.48%
PageRank 164.693 ± 2.6170 185.957 ± 0.8159 12.91% 162.454 ± 0.3700 -1.36%
Permute 233.861 ± 0.5195 266.001 ± 0.3781 13.74% 236.824 ± 0.2042 1.27%
Queens 186.806 ± 0.2976 217.072 ± 0.3082 16.20% 191.837 ± 0.3830 2.69%
QuickSort 140.766 ± 0.4320 153.391 ± 0.5466 8.97% 141.896 ± 0.4044 0.80%
Recurse 203.637 ± 0.2076 234.638 ± 0.1775 15.22% 207.555 ± 0.3163 1.92%
Richards 3579.761 ± 3.1664 4240.377 ± 2.7827 18.45% 3626.458 ± 4.7520 1.30%
Sieve 327.594 ± 1.0237 378.351 ± 2.1365 15.49% 335.019 ± 0.7508 2.27%
Storage 80.075 ± 3.1399 86.691 ± 3.8760 8.26% 78.496 ± 2.9225 -1.97%
Sum 127.385 ± 0.2532 143.214 ± 0.1238 12.43% 122.600 ± 0.3598 -3.76%
Towers 230.223 ± 0.6778 265.052 ± 0.7693 15.13% 234.641 ± 0.3364 1.92%
TreeSort 143.269 ± 2.3865 158.499 ± 0.6312 10.63% 142.932 ± 0.6975 -0.24%
WhileLoop 298.890 ± 0.7961 414.810 ± 0.2913 38.78% 308.436 ± 0.6255 3.19%

Table 7.4: Results from my early finaliser prevention experiment, where I evaluate the per-
formance of yksom using three configurations: BarriersNone, where there are no compiler
barriers (which is unsound); BarriersAll, where every single Gc reference has a corresponding
barrier; and BarriersOpt, where barriers can be optimised away where Alloy is certain they
are unnecessary. Each configuration is compared using a subset of benchmarks on the Rebench
benchmarking suite for 30 process executions, where I report 99% confidence intervals. The
slowdown of BarriersOpt and BarriersAll is shown when compared with BarriersNone.

7.4 Early finaliser prevention

My fourth study aims to understand the performance impact of the early finaliser

prevention technique Alloy uses to ensure finalisers are sound. I aim to answer two

questions:

1. What is the impact of the compiler barriers that Alloy uses to prevent early

finalisation?

2. How effective is the optimisation that alloy uses to remove barriers where it can

guarantee they are unnecessary?

As with the previous study in Section 7.3, I use yksom to perform this evaluation. I

build three configurations of yksom as follows:
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BarriersNone This compiles yksom with a version of Alloy with no compiler

barriers to prevent possible early finalisation. This is unsound.

BarriersAll This compiles yksom with a version of Alloy which inserts a compiler

barrier for every single Gc reference.

BarriersOpt This compiles yksom with a version of Alloy which inserts a compiler

barrier Gc reference which cannot be optimised away with the approach described

in Section 6.9.

I use the SOM benchmark suite using Rebench benchmarking suite using two versions of

yksom for each Alloy variant. I run each SOM benchmark for 30 process executions,

where each instance of yksom is closed down and started again. Rebench records wall-clock

times using Python’s time() function. I also run each SOM benchmark and record the

number of finalisers that were executed for each Alloy variant.

7.4.1 Results

Table 7.4 shows the performance results for this study. As one would expect, inserting

barriers for every GC reference causes a slowdown on every benchmark. However,

perhaps surprisingly, while slower on several benchmarks, BarriersOpt is faster than

BarriersNone on the Bounce, Fibonacci, IntegerLoop, Loop, and Sum benchmarks

(and statistically insignificant on List, PageRank, Storage, and TreeSort). While I am not

certain why this is the case, I believe the most likely reason for this is that sometimes,

barriers can be inserted in such a way that they keep GC objects alive for the duration of

the shorter running benchmarks, thus preventing finalisation for those objects entirely.

Furthermore, when I disable the scheduling of finalisers entirely for the BarriersOpt

configuration, each previously of these benchmarks regressed from between 0.83% to

3.32%

7.5 Comparison between other GCs

My fifth and final experiment aims to understand the performance costs of Alloy against

other garbage collected approaches in Rust.

The overall question I would like this experiment to answer is: how fast is Alloy when

compared with the other garbage collected options available in Rust? While I have

been able to provide a more detailed assessment of Alloy’s performance when used to

implement other languages, I am only able to provide a limited comparison of Alloy’s
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typed-arena Alloy Rust-GC Rc

3.839 ±0.0037 9.190 ± 0.0315 60.448 ± 0.143 9.748 ±0.0216

Table 7.5: Results from my experiment comparing Alloy against three other garbage collection
configurations on the Binary Trees benchmark for 30 process executions, where I report 99%
confidence intervals. This clearly shows that except for the index-arena (which deallocates all its
memory at once) Alloy is the fastest configuration.

performance relative to other collectors: converting benchmarks to Luster’s unusual

approach was prohibitively difficult; and Bronze crashed with many benchmarks. In

addition, I had difficultly finding suitable Rust programs which were practical enough

to modify to use the various tracing GC implementations while also performing enough

heap allocations to be useful. Fortunately, and despite these restrictions, this experiment

is still able to provide valuable insights.

In this experiment, I compare the performance of Alloy against three different approaches

to managing memory: using a indexed-arena, Rust-GC (Section 5.5), and Rust’s standard

reference counting library. I run each configuration on the Binary Trees benchmark from

the Computer Language Benchmark Game for 30 process executions. The wall-clock

times are recorded before and after each process execution using the multitime tool.

7.5.1 Results

Table 7.5 shows the results for this experiment. The results shows that for Binary Trees

(an allocation heavy benchmark) Typed-arena was the fastest as it never performs any

deallocation during the benchmark run, it simply deallocates all memory at the end.

Rust-GC performs poorly for two reasons. First, it uses a form of reference counting to

track the roots for each garbage collected object. Second, it has a naive implementation

of the mark-sweep algorithm and does not use parallel collector threads.
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Conclusions

8.1 Summary

In this thesis, I first converted around half of the V8 JavaScript VM to use conservative

GC so that direct references to garbage-collected heap objects can be used instead of

handles. I also introduced Alloy, an extension of the Rust language with optional

tracing garbage collection. A key difficulty in retrofitting GC to an existing language is

how one ensures finalisers are both sound and perform well. A major contribution of

this thesis are the techniques I offer on how one overcomes these issues: finaliser safety

analysis, early finaliser prevention, and finaliser elision. A more detailed summary is as

follows.

In Chapter 3 I show that conservative GC can be used to make the VM code of an

industrial strength GC more ergonomic. By this I mean that conservative GC allows the

VM to be written using direct references to heap objects instead of via handles. This has

the following ergonomic advantages: first, it reduces code size by removing handle scopes;

second, it allows for more idiomatic usage of pointers in C++; and third, object reference

lifetimes are now tied to lexical scope, making them easier to reason about. I show some

of the practical concerns involved in migrating from handles to direct references, and

offer a migration strategy that I hope other VM authors can learn from when converting

industrial strength VMs of similar size.

I then showed that this undertaking has a promising impact on performance: while only

around half of V8 was converted, there was a performance improvement of 1-10% in

10 of the benchmarks, while 5 regressed by 2-6%. Moreover, due to the considerable

engineering effort involved, I have so far only migrated around half of V8’s 1.75MLoc.

This bodes well for a full migration since the current state can be considered the worst

126
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of both worlds: we must still keep some handle related GC code around; and there are

performance bottlenecks around the boundaries where code is converted between handles

and direct references.

Chapter 4 provides an overview of Rust and, in particular, its approach to memory

management. It highlights that one of the main problems with Rust’s affine type system

is how difficult it is to implement cyclic data structures. This problem has motivated an

active research area in retrofitting a form of opt-in tracing garbage collection for Rust.

In Chapter 5, I discuss some of the existing approaches to opt-in tracing GC in Rust, and

introduce Alloy, which attempts to address some of their shortcomings. I show how

conservative GC can be retrofit onto a modern systems programming language, and that

one of the major lessons in this endevour is the difficulty in ensuring that finalisation is

sound and offers reasonable performance.

In Chapter 6, I offer solutions to these problems. I first introduce a novel form of static

analysis, known as finaliser safety analysis (FSA) – one of my main contributions. FSA

allows for sound GC finalisation to be retrofit to Rust by preventing programs which

have potentially unsafe finalisers from compiling. I show that FSA can help make Alloy

much easier to use, because it even allows Rust objects with unsafe fields to be garbage

collected provided those fields are never dereferenced inside the finaliser.

A lesson learned when developing Alloy is that if GC is naively retrofit to Rust, finalisers

will be pervasive so that they can call the destructors of other, non-GC’d objects. This

can be a major source of slowdown in programs which use Alloy, so I developed an

optimisation for reducing the number of finalisers that need running in an Alloy program,

known as finaliser elision. Finaliser elision identifies which finalisers are used solely to

deallocate non-GC’d objects, and then promotes those objects to be managed by the GC

instead. In my evaluation I found that this can improve the runtime performance of a

program by around 14%.

In Chapter 7, I undertake a detailed performance evalutation of Alloy. I pay particular

attention to the performance and memory costs of Alloy when compared with Rust’s

reference counting library. This is done with two separate studies where Alloy is used

in reasonably complex languages VMs: somrs, and WLambda. A key insight is that

although somrs is on average 1.12x slower when using Alloy, somrs had previously

leaked memory in two of the benchmarks when using reference counting. Alloy, on the

other hand, is able to correctly manage the cyclic data structures in these benchmarks.
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8.2 Future Work

8.2.1 V8

In Chapter 3 I explain how because of the considerable engineering effort required, only

around half of V8’s codebase was migrated to use direct references. A full migration

would offer a more convincing picture of both the ergonomic benefits of using direct

references as well as the overall performance impact. As of the writing of this thesis, this

work is currently underway.

8.2.2 Alloy

Conservatively scanning through objects is slow. The ideal scenario would be for Alloy

to use semi-conservative GC similar to V8, where heap objects are precisely traced

during marking. While this would constitute a significant engineering effort, a possible

intermediate solution would be to avoid tracing through objects which can statically be

guaranteed not to contain pointers. This could be achieved by marking such types with a

trait (e.g. NoTrace). When values of such types are allocated, the BDWGC could use the

GC_malloc_atomic call to allocate such objects in a separate, non-tracing pool. I believe

this could help improve the performance of Alloy by reducing marking time when many

objects are allocated.

Alloy does not currently perform partial finaliser elision. This is where a Gc<T> will only

elide drop methods for fields in T which are marked FinalizerOptional, but still finalise

others. Consider an example of this where a struct contains two fields, one of which could

be elided:

1 struct Mixed {

2 a: Arc<u64>,

3 b: Box<u64>,

4 }

5

6 let a = Mixed { a: Arc::new(123), b: Box::new(456) };

7 let b = Gc::new(a);

Here, the object is finalised in its entirety. The object Gc<Mixed> (line 7) has the following

memory representation:
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Gc<Mixed>

Pointer from gc1 on stack 

finaliser
Arc::drop()
Box::drop();

GcBox

Mixed Box Arc

123 
(u64)

1 
(ref count)

456 
(u64)

The field b is a Box type, which implements FinalizerOptional. However, a’s type (Arc)

does not, as it is not the sole owner of the integer managed by the Arc. If the collector

elided its finaliser then it would not decrement its reference count when the Gc becomes

unreachable.

Support for partial finaliser elision would mean that before the Gc is collected, only the

Arc is finalised. This would further reduce the number of finalisers that need running

before a collection, improving Alloy’s performance.

To implement partial finalisation, the Rust compiler would need to be extended to

conditionally remove drop calls of a value’s fields depending on whether it is being

finalised, or dropped regularly as part of RAII. I have not yet come up with a suitable

way to implement this.

8.3 Extending finaliser safety analysis

Finaliser safety analysis does not currently perform def-use analysis on references so it

cannot identify whether they came from the self reference on an object, or a reference

to another field. An extension to FSA which provides this would allow the borrow-or-

finalise rule to be relaxed and the drop method checked in the same way that it is for

FinalizerSafe types.

While some of the individual soundness issues that FSA seeks to address are unique to

Rust, the fundamental idea of FSA is not. Future work could explore whether FSA can

be applied to retrofitting GC to other non-managed languages such as C++. The FSA

analysis phase could be performed on the LLVM IR of a finaliser written in C++.
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Appendix A

Alloy memory usage for the somrs

study

The following graphs show the memory usage over time for each benchmark in the somrs

perf study from Section 7.2.1.
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Appendix B

Finaliser safety analysis algorithm

The following shows the full finaliser safety analysis algorithm, implemented as a MIR

transform pass in Alloy’s modified version of the Rust compiler.

1 use crate::MirPass;

2 use rustc_hir::lang_items::LangItem;

3 use rustc_middle::mir::visit::PlaceContext;

4 use rustc_middle::mir::visit::Visitor;

5 use rustc_middle::mir::*;

6 use rustc_middle::ty::subst::InternalSubsts;

7 use rustc_middle::ty::{self, ParamEnv, Subst, Ty, TyCtxt};

8 use rustc_span::symbol::sym;

9 use rustc_span::{Span, DUMMY_SP};

10 use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};

11

12 #[derive(PartialEq)]

13 pub struct CheckFinalizers;

14

15 impl<’tcx> MirPass<’tcx> for CheckFinalizers {

16 fn run_pass(&self, tcx: TyCtxt<’tcx>, body: &mut Body<’tcx>) {

17 let ctor = tcx.get_diagnostic_item(sym::gc_ctor);

18

19 if ctor.is_none() {

20 return;

21 }

22

23 let ctor_did = ctor.unwrap();

24 let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id());

25

26 for block in body.basic_blocks() {

27 match &block.terminator {

28 Some(Terminator { kind: TerminatorKind::Call { func, args, .. }, source_info }) => {

29 let func_ty = func.ty(body, tcx);

143
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30 if let ty::FnDef(fn_did, ..) = func_ty.kind() {

31 if *fn_did == ctor_did {

32 let arg = match &args[0] {

33 Operand::Copy(place) | Operand::Move(place) => {

34 body.local_decls()[place.local].source_info.span

35 }

36 Operand::Constant(con) => con.span,

37 };

38 let arg_ty = args[0].ty(body, tcx);

39 let mut finalizer_cx =

40 FinalizationCtxt { ctor: source_info.span, arg, tcx, param_env };

41 finalizer_cx.check(arg_ty);

42 }

43 }

44 }

45 _ => {}

46 }

47 }

48 }

49 }

50

51 struct FinalizationCtxt<’tcx> {

52 ctor: Span,

53 arg: Span,

54 tcx: TyCtxt<’tcx>,

55 param_env: ParamEnv<’tcx>,

56 }

57

58 impl<’tcx> FinalizationCtxt<’tcx> {

59 fn check(&mut self, ty: Ty<’tcx>) {

60 if self.is_finalizer_safe(ty) || !self.tcx.needs_finalizer_raw(self.param_env.and(ty)) {

61 return;

62 }

63

64 // We must now recurse through the ‘Ty‘’s component types and search for

65 // all the ‘Drop‘ impls. If we find any, we have to check that there are

66 // no unsound projections into fields in their drop method body. More

67 // specifically: if one of the drop methods dereferences a field which

68 // is !FinalizerSafe, we must throw an error.

69 match ty.kind() {

70 ty::Infer(ty::FreshIntTy(_))

71 | ty::Infer(ty::FreshFloatTy(_))

72 | ty::Bool

73 | ty::Int(_)

74 | ty::Uint(_)

75 | ty::Float(_)

76 | ty::Never
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77 | ty::FnDef(..)

78 | ty::FnPtr(_)

79 | ty::Char

80 | ty::GeneratorWitness(..)

81 | ty::RawPtr(_)

82 | ty::Ref(..)

83 | ty::Str

84 | ty::Foreign(..) => {

85 // None of these types can implement Drop.

86 return;

87 }

88 ty::Dynamic(..) | ty::Error(..) => {

89 // Dropping a trait object uses a virtual call, so we can’t

90 // work out which drop method to look at compile-time. This

91 // means we must be more conservative and bail with an error

92 // here, even if the drop impl itself would have been safe.

93 self.emit_err();

94 }

95 ty::Slice(ty) => self.check(*ty),

96 ty::Array(elem_ty, ..) => {

97 self.check(*elem_ty);

98 }

99 ty::Tuple(fields) => {

100 // Each tuple field must be individually checked for a ‘Drop‘

101 // impl.

102 fields.iter().for_each(|f_ty| self.check(f_ty));

103 }

104 ty::Adt(def, substs) if !self.is_copy(ty) => {

105 if def.has_dtor(self.tcx) {

106 if def.is_box() {

107 // This is a special case because Box has an empty drop

108 // method which is filled in later by the compiler.

109 self.emit_err();

110 }

111

112 let drop_trait = self.tcx.require_lang_item(LangItem::Drop, None);

113 let drop_fn = self.tcx.associated_item_def_ids(drop_trait)[0];

114 let substs = self.tcx.mk_substs_trait(ty, substs);

115 let instance = ty::Instance::resolve(self.tcx, self.param_env, drop_fn, substs)

116 .unwrap()

117 .unwrap();

118 let mir = self.tcx.instance_mir(instance.def);

119 let mut checker = ProjectionChecker { cx: self, body: mir };

120 checker.visit_body(&mir);

121 }

122

123 for field in def.all_fields() {
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124 let field_ty = self.tcx.bound_type_of(field.did).subst(self.tcx, substs);

125 self.check(field_ty);

126 }

127 }

128 _ => (),

129 }

130 }

131

132 fn is_finalizer_safe(&self, ty: Ty<’tcx>) -> bool {

133 self.tcx.infer_ctxt().enter(|infcx| {

134 self.tcx.get_diagnostic_item(sym::FinalizerSafe).map(|t| {

135 infcx

136 .type_implements_trait(t, ty, InternalSubsts::empty(), self.param_env)

137 .may_apply()

138 }) == Some(true)

139 })

140 }

141

142 fn is_copy(&self, ty: Ty<’tcx>) -> bool {

143 ty.is_copy_modulo_regions(self.tcx.at(DUMMY_SP), self.param_env)

144 }

145

146 fn is_gc(&self, ty: Ty<’tcx>) -> bool {

147 if let ty::Adt(def, ..) = ty.kind() {

148 if def.did() == self.tcx.get_diagnostic_item(sym::gc).unwrap() {

149 return true;

150 }

151 }

152 return false;

153 }

154

155 fn emit_err(&self) {

156 let arg = self.tcx.sess.source_map().span_to_snippet(self.arg).unwrap();

157 let mut err = self

158 .tcx

159 .sess

160 .struct_span_err(self.arg, format!("‘{arg}‘ cannot be safely finalized.",));

161 err.span_label(self.arg, "has a drop method which cannot be safely finalized.");

162 err.span_label(

163 self.ctor,

164 format!("‘Gc::new‘ requires that it implements the ‘FinalizeSafe‘ trait.",),

165 );

166 err.help(format!("‘Gc‘ runs finalizers on a separate thread, so ‘{arg}‘ must implement ‘FinalizeSafe‘ in order to be safely dropped.",));

167 err.emit();

168 }

169 }

170
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171 struct ProjectionChecker<’a, ’tcx> {

172 cx: &’a FinalizationCtxt<’tcx>,

173 body: &’a Body<’tcx>,

174 }

175

176 impl<’a, ’tcx> ProjectionChecker<’a, ’tcx> {

177 fn emit_err(&self, ty: Ty<’tcx>, span: Span) {

178 let arg = self.cx.tcx.sess.source_map().span_to_snippet(self.cx.arg).unwrap();

179 let mut err = self

180 .cx

181 .tcx

182 .sess

183 .struct_span_err(self.cx.arg, format!("‘{arg}‘ cannot be safely finalized.",));

184 if self.cx.is_gc(ty) {

185 err.span_label(self.cx.arg, "has a drop method which cannot be safely finalized.");

186 err.span_label(span, "caused by the expression here in ‘fn drop(&mut)‘ because");

187 err.span_label(span, "it uses another ‘Gc‘ type.");

188 err.help("‘Gc‘ finalizers are unordered, so this field may have already been dropped. It is not safe to dereference.");

189 } else {

190 err.span_label(self.cx.arg, "has a drop method which cannot be safely finalized.");

191 err.span_label(span, "caused by the expression in ‘fn drop(&mut)‘ here because");

192 err.span_label(span, "it uses a type which is not safe to use in a finalizer.");

193 err.help("‘Gc‘ runs finalizers on a separate thread, so drop methods\nmust only use values whose types implement ‘Send + Sync‘ or ‘FinalizerSafe‘.");

194 }

195 err.emit();

196 }

197 }

198

199 impl<’a, ’tcx> Visitor<’tcx> for ProjectionChecker<’a, ’tcx> {

200 fn visit_projection(

201 &mut self,

202 place_ref: PlaceRef<’tcx>,

203 context: PlaceContext,

204 location: Location,

205 ) {

206 for (_, proj) in place_ref.iter_projections() {

207 match proj {

208 ProjectionElem::Field(_, ty) => {

209 if !self.cx.is_finalizer_safe(ty) {

210 let span = self.body.source_info(location).span;

211 self.emit_err(ty, span);

212 }

213 }

214 _ => (),

215 }

216 }

217 self.super_projection(place_ref, context, location);
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218 }

219

220 fn visit_terminator(&mut self, terminator: &Terminator<’tcx>, location: Location) {

221 if let TerminatorKind::Call { ref args, .. } = terminator.kind {

222 for caller_arg in self.body.args_iter() {

223 let recv_ty = self.body.local_decls()[caller_arg].ty;

224 for arg in args.iter() {

225 let arg_ty = arg.ty(self.body, self.cx.tcx);

226 if arg_ty == recv_ty {

227 // Currently, we do not recurse into function calls

228 // to see whether they access ‘!FinalizerSafe‘

229 // fields, so we must throw an error in ‘drop‘

230 // methods which call other functions and pass

231 // ‘self‘ as an argument.

232 //

233 // Here, we throw an error if ‘drop(&mut self)‘

234 // calls a function with an argument that has the

235 // same type as the drop receiver (e.g. foo(x:

236 // &Self)). This approximation will always prevent

237 // unsound ‘drop‘ methods, however, it is overly

238 // conservative and will prevent correct examples

239 // like below from compiling:

240 //

241 // ‘‘‘

242 // fn drop(&mut self) {

243 // let x = Self { ... };

244 // x.foo();

245 // }

246 // ‘‘‘

247 //

248 // This example is sound, because ‘x‘ is a local

249 // that was instantiated on the finalizer thread, so

250 // its fields are always safe to access from inside

251 // this drop method.

252 //

253 // However, this will not compile, because the

254 // receiver for ‘x.foo()‘ is the same type as the

255 // ‘self‘ reference. To fix this, we would need to

256 // do a def-use analysis on the self reference to

257 // find every MIR local which refers to it that ends

258 // up being passed to a call terminator. This is not

259 // trivial to do at the moment.

260 let span = self.body.source_info(location).span;

261 self.emit_err(arg_ty, span);

262 }

263 }

264 }
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265 }

266 }

267 }



Appendix C

Early finaliser prevention

optimisation

The following shows the full early finaliser prevention optimisation, which removes compiler

barriers which we can guarantee are unneeded. It is implemented as a MIR transform

pass in Alloy’s modified version of the Rust compiler.

1 use crate::MirPass;

2 use rustc_middle::mir::*;

3 use rustc_middle::ty::{self, TyCtxt};

4 use rustc_span::sym;

5

6 use super::simplify::simplify_cfg;

7

8 pub struct RemoveGcDrops;

9

10 impl<’tcx> MirPass<’tcx> for RemoveGcDrops {

11 fn run_pass(&self, tcx: TyCtxt<’tcx>, body: &mut Body<’tcx>) {

12 trace!("Running RemoveGcDrops on {:?}", body.source);

13

14 let is_gc_crate = tcx

15 .get_diagnostic_item(sym::gc)

16 .map_or(false, |gc| gc.krate == body.source.def_id().krate);

17

18 let did = body.source.def_id();

19 let param_env = tcx.param_env_reveal_all_normalized(did);

20 let mut should_simplify = false;

21

22 for block in body.basic_blocks.as_mut() {

23 let terminator = block.terminator_mut();

24 if let TerminatorKind::Drop { place, target, .. } = terminator.kind {

25 let ty = place.ty(&body.local_decls, tcx).ty;
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26 let decl = &body.local_decls[place.local];

27 if !ty.is_gc(tcx) {

28 continue;

29 }

30

31 if let ty::Adt(_, substs) = ty.kind() {

32 if !tcx.sess.opts.unstable_opts.gc_no_early_finalizers

33 || is_gc_crate

34 || !decl.is_user_variable()

35 || !substs.type_at(0).needs_finalizer(tcx, param_env)

36 {

37 terminator.kind = TerminatorKind::Goto { target };

38 should_simplify = true;

39 }

40 }

41 }

42 }

43 // if we applied optimizations, we potentially have some cfg to cleanup to

44 // make it easier for further passes

45 if should_simplify {

46 simplify_cfg(tcx, body);

47 }

48 }

49 }
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