# Proofs for Observable Propagation 

Jacob Dunefsky

## 1 Proof of Theorem 1

Theorem 1. Define $f(x ; n)=n \cdot \operatorname{LayerNorm}(x)$. Define

$$
\theta(x ; n)=\arccos \left(\frac{n \cdot \nabla_{x} f(x ; n)}{\|n\|\left\|\nabla_{x} f(x ; n)\right\|}\right)
$$

- that is, $\theta(x ; n)$ is the angle between $n$ and $\nabla_{x} f(x ; n)$. Then if $x$ and $n$ are i.i.d. $\mathcal{N}(0, I)$ in $\mathbb{R}^{d}$, and $d \geq 8$ then

$$
\mathbb{E}[\theta(x ; n)]<2 \arccos \left(\sqrt{1-\frac{1}{d-1}}\right)
$$

To prove this, we will introduce a lemma:
Lemma 1. Let $y$ be an arbitrary vector. Let $A=I-\frac{v v^{T}}{\|v\|^{2}}$ be the orthogonal projection onto the hyperplane normal to $v$. Then the cosine similarity between $y$ and $A y$ is given by $\sqrt{1-\cos (\theta)^{2}}$, where $\cos (\theta)$ is the cosine similarity between $y$ and $v$.

Proof. Assume without loss of generality that $y$ is a unit vector. (Otherwise, we could rescale it without affecting the angle between $y$ and $v$, or the angle between $y$ and $A y$.)

We have $A y=y-\frac{y \cdot v}{\|v\|^{2}} v$. Then,

$$
\begin{aligned}
y \cdot A y & =y \cdot\left(y-\frac{y \cdot v}{\|v\|^{2}} v\right) \\
& =\|y\|^{2}-\frac{(y \cdot v)^{2}}{\|v\|^{2}} \\
& =1-\frac{(y \cdot v)^{2}}{\|v\|^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\|A y\|^{2} & =\left(y-\frac{y \cdot v}{\|v\|^{2}} v\right) \cdot\left(y-\frac{y \cdot v}{\|v\|^{2}} v\right) \\
& =y \cdot\left(y-\frac{y \cdot v}{\|v\|^{2}} v\right)-\frac{y \cdot v}{\|v\|^{2}} v \cdot\left(y-\frac{y \cdot v}{\|v\|^{2}} v\right) \\
& =y \cdot A y-\frac{y \cdot v}{\|v\|^{2}} v \cdot\left(y-\frac{y \cdot v}{\|v\|^{2}} v\right) \\
& =y \cdot A y-\frac{(y \cdot v)^{2}}{\|v\|^{2}}+\left\|\frac{y \cdot v}{\|v\|^{2}} v\right\|^{2} \\
& =y \cdot A y-\frac{(y \cdot v)^{2}}{\|v\|^{2}}+\frac{(y \cdot v)^{2}}{\|v\|^{4}}\|v\|^{2} \\
& =y \cdot A y-\frac{(y \cdot v)^{2}}{\|v\|^{2}}+\frac{(y \cdot v)^{2}}{\|v\|^{2}} \\
& =y \cdot A y
\end{aligned}
$$

Now, the cosine similarity between $y$ and $A y$ is given by

$$
\begin{aligned}
\frac{y \cdot A y}{\|y\|\|A y\|} & =\frac{y \cdot A y}{\|A y\|} \\
& =\frac{\|A y\|^{2}}{\|A y\|} \\
& =\|A y\|
\end{aligned}
$$

At this point, note that $\|A y\|=\sqrt{y \cdot A y}=\sqrt{1-\frac{(y \cdot v)^{2}}{\|v\|^{2}}}$. But $\frac{y \cdot v}{\|v\|}$ is just the cosine similarity between $y$ and $v$. Now, if we denote the angle between $y$ and $v$ by $\theta$, we thus have

$$
\|A y\|=\sqrt{1-\frac{(y \cdot v)^{2}}{\|v\|^{2}}}=\sqrt{1-\cos (\theta)^{2}}
$$

Now, we are ready to prove Theorem 1.
Proof. First, observe that LayerNorm $(x)=\frac{P x}{\|P x\|}$, where $P=I-\frac{1}{d} \overrightarrow{1}^{T}$ is the orthogonal projection onto the hyperplane normal to $\overrightarrow{1}$, the vector of all ones. Thus, we have

$$
f(x ; n)=n^{T}\left(\frac{P x}{\|P x\|}\right)
$$

Using the multivariate chain rule along with the rule that the derivative of $\frac{x}{\|x\|}$ is given by $\frac{I}{\|x\|}-\frac{x x^{T}}{\|x\|^{3}}$ (see section 2.6.1 of The Matrix Cookbook), we thus have that

$$
\begin{aligned}
\nabla_{x} f(x ; n) & =\left(n^{T}\left(\frac{I}{\|P x\|}-\frac{(P x)(P x)^{T}}{\|P x\|^{3}}\right) P\right)^{T} \\
& =\left(\frac{1}{\|P x\|} n^{T}\left(I-\frac{(P x)(P x)^{T}}{\|P x\|^{2}}\right) P\right)^{T} \\
& =\frac{1}{\|P x\|} P\left(I-\frac{(P x)(P x)^{T}}{\|P x\|^{2}}\right) n \quad \text { because } P \text { is symmetric }
\end{aligned}
$$

Denote $Q=I-\frac{(P x)(P x)^{T}}{\|P x\|^{2}}$. Note that this is an orthogonal projection onto the hyperplane normal to $P x$. We now have that $\nabla_{x} f(x ; n)=\frac{1}{\|P x\|} P Q n$. Because we only care about the angle between $n$ and $\nabla_{x} f(x ; n)$, it suffices to look at the angle between $n$ and $P Q n$, ignoring the $\frac{1}{\|P x\|}$ term.

Denote the angle between $n$ and $P Q n$ as $\theta(x, n)$. (Note that $\theta$ is also a function of $x$ because $Q$ is a function of $x$.) Then if $\theta_{Q}(x, n)$ is the angle between $n$ and $Q n$, and $\theta_{P}(x, n)$ is the angle between $Q n$ and $P Q n$, then $\theta(x, n) \leq$ $\theta_{Q}(x, n)+\theta_{P}(x, n)$, so $\mathbb{E}[\theta(x, n)] \leq \mathbb{E}\left[\theta_{Q}(x, n)\right]+\mathbb{E}\left[\theta_{P}(x, n)\right]$.

Using Lemma 1, we have that $\theta_{Q}(x, n)=\arccos \left(\sqrt{1-\cos (\phi(n, P x))^{2}}\right)$, where $\phi(n, P x)$ is the angle between $n$ and $P x$. Now, because $n \sim \mathcal{N}(0, I)$, we have $\mathbb{E}\left[\cos (\phi(n, P x))^{2}\right]=1 / d$, using the well-known fact that the expected squared dot product between a uniformly distributed unit vector in $\mathbb{R}^{d}$ and a given unit vector in $\mathbb{R}^{d}$ is $1 / d$.

At this point, define $g(t)=\arccos (\sqrt{1-t}), h(t)=g^{\prime}\left(\frac{1}{d-1}\right)\left(t-\frac{1}{d-1}\right)+$ $g\left(\frac{1}{d-1}\right)$. Then if $\frac{1}{d-1}<c$, where $c$ is the least solution to $g^{\prime}(c)=\frac{\pi-2 g(c)}{2(1-c)}$, then $h(t) \geq g(t)$. (Note that $g(t)$ is convex on $(0,0.5]$ and concave on $[0.5,1)$. Therefore, there are exactly two solutions to $g^{\prime}(c)=\frac{\pi-2 g(c)}{2(1-c)}$. The lesser of the two solutions is the value at which $g^{\prime}(c)$ equals the slope of the line between $(c, g(c))$ and $(1, \pi / 2)$ - the latter point being the maximum of $g$ - at the same time that $g^{\prime \prime}(c) \geq 0$.) One can compute $c \approx 0.155241 \ldots$, so if $d \geq 8$, then $1 /(d-1)<c$ is satisfied, so $h(t) \geq g(t)$. Thus, we have the following inequality:

$$
\begin{aligned}
h(1 /(d-1)) & >h(1 / d) \\
& =h\left(\mathbb{E}\left[\cos (\phi(n, P x))^{2}\right]\right) \\
& =\mathbb{E}\left[h\left(\cos (\phi(n, P x))^{2}\right)\right] \text { due to linearity } \\
& \geq \mathbb{E}\left[g\left(\cos (\phi(n, P x))^{2}\right)\right] \text { because } h(t) \geq g(t) \text { for all } t \\
& =\mathbb{E}\left[\theta_{Q}(x, n)\right]
\end{aligned}
$$

Now, $h(1 /(d-1))=g(1 /(d-1))=\arccos \left(\sqrt{1-\frac{1}{d-1}}\right)$. Thus, we have that $\arccos \left(\sqrt{1-\frac{1}{d-1}}\right)>\mathbb{E}\left[\theta_{Q}(x, n)\right]$.

The next step is to determine an upper bound for $\mathbb{E}\left[\theta_{P}(x, n)\right]$. By Lemma 1, we have that $\theta_{P}(x, n)=\arccos \left(\sqrt{1-\cos (\phi(Q n, \overrightarrow{1}))^{2}}\right)$. Now, note that because $n \sim \mathcal{N}(0, I)$, then $Q n$ is distributed according to a unit Gaussian in $\operatorname{Im} Q$, the $(d-1)$-dimensional hyperplane orthogonal to $P x$. Note that because $\overrightarrow{1}$ is orthogonal to $P x$ (by the definition of $P$ ) and $P x$ is orthogonal to $\operatorname{Im} Q$, this means that $\overrightarrow{1} \in \operatorname{Im} Q$. Now, let us apply the same fact from earlier: that the expected squared dot product between a uniformly distributed unit vector in $\mathbb{R}^{d-1}$ and a given unit vector in $\mathbb{R}^{d-1}$ is $1 /(d-1)$. Thus, we have that $\mathbb{E}\left[\cos (\phi(Q n, \overrightarrow{1}))^{2}\right]=1 /(d-1)$.

From this, by the same logic as in the previous case, $\arccos \left(\sqrt{1-\frac{1}{d-1}}\right) \geq$ $\mathbb{E}\left[\theta_{P}(x, n)\right]$.

Adding this inequality to the inequality for $\mathbb{E}\left[\theta_{Q}(x, n)\right]$, we have

$$
2 \arccos \left(\sqrt{1-\frac{1}{d-1}}\right)>\mathbb{E}\left[\theta_{Q}(x, n)\right]+\mathbb{E}\left[\theta_{P}(x, n)\right] \geq \mathbb{E}[\theta(x, n)]
$$

## 2 Proof of Theorem 2

Theorem 2. Let $y_{1}, y_{2} \in \mathbb{R}^{d}$. Let $x$ be uniformly distributed on the hypersphere defined by the constraints $\|x\|=s$ and $x \cdot y_{1}=k$. Then we have

$$
\mathbb{E}\left[x \cdot y_{2}\right]=k \frac{y_{1} \cdot y_{2}}{\left\|y_{1}\right\|^{2}}
$$

and the maximum and minimum values of $x \cdot y_{2}$ are given by

$$
\frac{\left\|y_{2}\right\|}{\left\|y_{1}\right\|}\left(k \cos (\theta) \pm \sin (\theta) \sqrt{s^{2}\left\|y_{1}\right\|^{2}-k^{2}}\right)
$$

where $\theta$ is the angle between $y_{1}$ and $y_{2}$.
Before proving Theorem 2, we will prove a quick lemma.
Lemma 2. Let $\mathcal{S}$ be a hypersphere with radius $r$ and center $c$. Then for a given vector $y$, the mean squared distance from $y$ to the sphere, $\mathbb{E}_{s \in \mathcal{S}}\left[\|y-c\|^{2}\right]$, is given by $\|y-c\|^{2}+r^{2}$.

Proof. Without loss of generality, assume that $\mathcal{S}$ is centered at the origin (so $\|y-c\|^{2}=\|y\|^{2}$ ). Induct on the dimension of the $\mathcal{S}$. As our base case, let $\mathcal{S}$ be the 0 -sphere consisting of a point in $\mathbb{R}^{1}$ at $-r$ and a point at $r$. Then $\mathbb{E}_{s \in \mathcal{S}}\left[|y-s|^{2}\right]=\frac{(y-r)^{2}+(y-(-r))^{2}}{2}=y^{2}+r^{2}$.

For our inductive step, assume the inductive hypothesis for spheres of dimension $d-2$; we will prove the theorem of spheres of dimension $d-1$ in an ambient space of dimension $d$. Without loss of generality, let $y$ lie on the x-axis,
so that we have $y=\left[\begin{array}{llll}y_{1} & 0 & 0 & \ldots\end{array}\right]^{T}$. Next, divide $\mathcal{S}$ into slices along the x-axis. Denote the slice at position $x=x_{0}$ as $\mathcal{S}_{x_{0}}$. Then $\mathcal{S}_{x_{0}}$ is a $(d-2)$-sphere centered at $\left[\begin{array}{llll}x_{0} & 0 & 0 & \ldots\end{array}\right]^{T}$, and has radius $\sqrt{r^{2}-x_{0}^{2}}$. Now, by the law of total expectation, $\mathbb{E}_{s \in \mathcal{S}}\left[\|y-s\|^{2}\right]=\mathbb{E}_{-r \leq x \leq r}\left[\mathbb{E}_{s^{\prime} \in \mathcal{S}_{x}}\left[\left\|y-s^{\prime}\right\|^{2}\right]\right]$. We then have that

$$
\begin{aligned}
\mathbb{E}_{s^{\prime} \in \mathcal{S}_{x}}\left[\left\|y-s^{\prime}\right\|^{2}\right] & =\mathbb{E}\left[\left(y_{1}-x\right)^{2}+s_{2}^{2}+s_{3}^{2}+\cdots\right] \\
& =\left(y_{1}-x\right)^{2}+\mathbb{E}\left[s_{2}^{2}+s_{3}^{2}+\cdots\right]
\end{aligned}
$$

Once again, $\mathcal{S}_{x}$ is a $(d-2)$-sphere defined by $s_{2}^{2}+s_{3}^{2}+\cdots=r^{2}-x^{2}$. This means that by the inductive hypothesis, we have $\mathbb{E}\left[s_{2}^{2}+s_{3}^{2}+\cdots\right]=r^{2}-x^{2}$. Thus, we have

$$
\begin{aligned}
\mathbb{E}_{s^{\prime} \in \mathcal{S}_{x}}\left[\left\|y-s^{\prime}\right\|^{2}\right] & =\left(y_{1}-x\right)^{2}+r^{2}-x^{2} \\
\mathbb{E}_{s^{\prime} \in \mathcal{S}_{x}}\left[\left\|y-s^{\prime}\right\|^{2}\right] & =\left(y_{1}-x\right)^{2}+r^{2}-x^{2} \\
\mathbb{E}_{s \in \mathcal{S}}\left[\|y-s\|^{2}\right] & =\mathbb{E}_{-r \leq x \leq r}\left[\left(y_{1}-x\right)^{2}+r^{2}-x^{2}\right] \\
& =\frac{1}{2 r} \int_{-r}^{r}\left(y_{1}-x\right)^{2}+r^{2}-x^{2} d x \\
& =r^{2}+y_{1}^{2}
\end{aligned}
$$

We are now ready to begin the main proof.
Proof. First, assume that $\|x\|=1$. Now, the intersection of the $(d-1)$-sphere defined by $\|x\|=1$ and the hyperplane $x \cdot y_{1}=k$ is a unit hypersphere of dimension $(d-2)$, oriented in the hyperplane $x \cdot y_{1}=k$, and centered at $c_{1} y_{1}$ where $c_{1}=k /\left\|y_{1}\right\|^{2}$. Denote this $(d-2)$-sphere as $\mathcal{S}$, and denote its radius by $r$.

Next, define $c_{2}=\frac{k}{y_{2} \cdot y_{1}}$. Then $c y_{2} \cdot y_{1}=k$, so $c_{2} y_{2}$ lies in the same hyperplane as $\mathcal{S}$. Additionally, because $c_{1} y_{1}$ is in this hyperplane, and $c_{1} y_{1}$ is also the normal vector for this hyperplane, we have that the vectors $c_{1} y_{1}, c_{2} y_{2}$, and $c_{1} y_{1}-c_{2} y_{2}$ form a right triangle, where $c_{2} y_{2}$ is the hypotenuse and $c_{1} y_{1}-c_{2} y_{2}$ is the leg opposite of the angle $\theta$ between $y_{1}$ and $y_{2}$. As such, we have that $\left\|c_{1} y_{1}-c_{2} y_{2}\right\|=\sin (\theta)\left\|c_{2} y_{2}\right\|$.

Furthermore, we have that $c_{1} y_{1} \cdot c_{2} y_{2}=\frac{k^{2}}{\left\|y_{1}\right\|^{2}}$, that $\left\|c_{1} y_{1}\right\|=\frac{|k|}{\left\|y_{1}\right\|^{2}}$, and that $\left\|c_{2} y_{2}\right\|=\frac{|k|}{\left\|y_{1}\right\||\cos \theta|}$

We will now begin to prove that the maximum and minimum values of $y_{2} \cdot x$ are given by $\frac{\left\|y_{2}\right\|}{\left\|y_{1}\right\|}\left(k \cos (\theta) \pm|\sin (\theta)| \sqrt{s^{2}\left\|y_{1}\right\|^{2}-k^{2}}\right)$.

To start, note that the nearest point on $\mathcal{S}$ to $c_{2} y_{2}$ and the farthest point on $\mathcal{S}$ from $c_{2} y_{2}$ are located at the intersection of $\mathcal{S}$ with the line between $c_{2} y_{2}$ and $c_{1} y_{1}$.

To see this, let $x_{+}$be the at the intersection of $\mathcal{S}$ and the line between $c_{2} y_{2}$ and $c_{1} y_{1}$. We will show that $x_{+}$is the nearest point on $\mathcal{S}$ to $c_{2} y_{2}$. Let $x_{+}^{\prime} \in \mathcal{S} \neq x_{+}$. Then we have the following cases:

- Case 1: $c_{2} y_{2}$ is outside of $\mathcal{S}$. Then $\left\|c_{2} y_{2}-c_{1} y_{1}\right\|=\left\|c_{2} y_{2}-x_{+}\right\|+$ $\left\|x_{+}-c_{1} y_{1}\right\|$, because $c_{2} y_{2}, x_{+}$, and $c_{1} y_{1}$ are collinear - so $\left\|c_{2} y_{2}-c_{1} y_{1}\right\|=$ $\left\|c_{2} y_{2}-x_{+}\right\|+r$ (because $x_{+} \in \mathcal{S}$ ). By the triangle inequality, we have $\left\|c_{2} y_{2}-c_{1} y_{1}\right\| \leq\left\|c_{2} y_{2}-x_{+}^{\prime}\right\|+\left\|x_{+}^{\prime}-c_{1} y_{1}\right\|=\left\|c_{2} y_{2}-x_{+}^{\prime}\right\|+r$. But this means that $\left\|c_{2} y_{2}-x_{+}\right\| \leq\left\|c_{2} y_{2}-x_{+}^{\prime}\right\|$.
- Case 2: $c_{2} y_{2}$ is inside of $\mathcal{S}$. Then $\left\|c_{2} y_{2}-c_{1} y_{1}\right\|=\left\|x_{+}-c_{1} y_{1}\right\|-\left\|c_{2} y_{2}-x_{+}\right\|$, because $c_{2} y_{2}, x_{+}$, and $c_{1} y_{1}$ are collinear - so $\left\|c_{2} y_{2}-c_{1} y_{1}\right\|=r-\left\|c_{2} y_{2}-x_{+}\right\|$. By the triangle inequality, we have $\left\|x_{+}^{\prime}-c_{1} y_{1}\right\| \leq\left\|c_{2} y_{2}-x_{+}^{\prime}\right\|+\left\|c_{2} y_{2}-c_{1} y_{1}\right\|$, so $\left\|x_{+}^{\prime}-c_{1} y_{1}\right\| \leq\left\|c_{2} y_{2}-x_{+}^{\prime}\right\|+r-\left\|c_{2} y_{2}-x_{+}\right\|$. But since $\left\|x_{+}^{\prime}-c_{1} y_{1}\right\|=$ $r$, this means that $\left\|c_{2} y_{2}-x_{+}\right\| \leq\left\|c_{2} y_{2}-x_{+}^{\prime}\right\|$.

A similar argument will show that $x_{-}$, the farthest point on $\mathcal{S}$ from $c_{2} y_{2}$, is also located at the intersection of $\mathcal{S}$ with the line between $c_{2} y_{2}$ and $c_{1} y_{1}$.

Now, let us find the values of $x_{+}$and $x_{-}$. The line between $c_{2} y_{2}$ and $c_{1} y_{1}$ can be parameterized by a scalar $t$ as $c_{1} y_{1}+t\left(c_{2} y_{2}-c_{1} y_{1}\right)$. Then $x_{+}$and $x_{-}$ are given by $c_{1} y_{1}+t^{*}\left(c_{2} y_{2}-c_{1} y_{1}\right)$, where $t^{*}$ are the solutions to the equation $\left\|c_{1} y_{1}+t\left(c_{2} y_{2}-c_{1} y_{1}\right)\right\|=1$.

We have the following:

$$
\begin{aligned}
1 & =\left\|c_{1} y_{1}+t\left(c_{2} y_{2}-c_{1} y_{1}\right)\right\| \\
& =\left\|c_{1} y_{1}\right\|^{2}+2 t\left(c_{1} y_{1} \cdot\left(c_{2} y_{2}-c_{1} y_{1}\right)\right)+t^{2}\left\|c_{2} y_{2}-c_{1} y_{1}\right\|^{2} \\
& =\left\|c_{1} y_{1}\right\|^{2}+2 t\left(\left(c_{1} y_{1} \cdot c_{2} y_{2}\right)-\left\|c_{1} y_{1}\right\|^{2}\right)+t^{2}\left\|c_{2} y_{2}\right\|^{2} \sin ^{2} \theta \\
& =\frac{k^{2}}{\left\|y_{1}\right\|^{2}}+2 t\left(\frac{k^{2}}{\left\|y_{1}\right\|^{2}}-\frac{k^{2}}{\left\|y_{1}\right\|^{2}}\right)+t^{2} \frac{k^{2}}{\left\|y_{1}\right\|^{2} \cos ^{2} \theta} \sin ^{2} \theta \\
& =\frac{k^{2}}{\left\|y_{1}\right\|^{2}}\left(t^{2} \tan ^{2} \theta+1\right)
\end{aligned}
$$

Thus, solving for $t$, we have that $t^{*}=\frac{ \pm \sqrt{\left\|y_{1}\right\|^{2}-k^{2}}}{|k| \tan \theta}$. Therefore, we have that

$$
\begin{aligned}
& x_{+}, x_{-}=c_{1} y_{1}+t^{*}\left(c_{2} y_{2}-c_{1} y_{1}\right) \\
& =c_{1} y_{1}+\left(\frac{k^{2}}{\left\|y_{1}\right\|^{2}}\left(t^{2} \tan ^{2} \theta+1\right)\right)\left(c_{2} y_{2}-c_{1} y_{1}\right) \\
& =\frac{k y_{1}}{\left\|y_{1}\right\|^{2}}+\left(\frac{ \pm \sqrt{\left\|y_{1}\right\|^{2}-k^{2}}}{|k| \tan \theta}\right)\left(\frac{k y_{2}}{y_{1} \cdot y_{2}}-\frac{k y_{1}}{\left\|y_{1}\right\|^{2}}\right) \\
& =k\left[\frac{y_{1}}{\left\|y_{1}\right\|^{2}} \pm\left(\frac{\sqrt{\left\|y_{1}\right\|^{2}-k^{2}}}{|k| \tan \theta}\right)\left(\frac{y_{2}}{y_{1} \cdot y_{2}}-\frac{y_{1}}{\left\|y_{1}\right\|^{2}}\right)\right] \\
& y_{2} \cdot x_{+}, y_{2} \cdot x_{-}=y_{2} \cdot k\left[\frac{y_{1}}{\left\|y_{1}\right\|^{2}} \pm\left(\frac{\sqrt{\left\|y_{1}\right\|^{2}-k^{2}}}{|k| \tan \theta}\right)\left(\frac{y_{2}}{y_{1} \cdot y_{2}}-\frac{y_{1}}{\left\|y_{1}\right\|^{2}}\right)\right] \\
& =\frac{k y_{1} \cdot y_{2}}{\left\|y_{1}\right\|^{2}} \pm\left(\cot \theta \sqrt{\left\|y_{1}\right\|^{2}-k^{2}}\right)\left(\frac{y_{2} \cdot y_{2}}{y_{1} \cdot y_{2}}-\frac{y_{1} \cdot y_{1}}{\left\|y_{1}\right\|^{2}}\right) \\
& =\frac{k y_{1} \cdot y_{2}}{\left\|y_{1}\right\|^{2}} \pm\left(\cot \theta \sqrt{\left\|y_{1}\right\|^{2}-k^{2}}\right)\left(\frac{\left\|y_{2}\right\|}{\left\|y_{1}\right\| \cos \theta}-\frac{\left\|y_{2}\right\| \cos \theta}{\left\|y_{1}\right\|}\right) \\
& =\left[\frac{k y_{1} \cdot y_{2}}{\left\|y_{1}\right\|^{2}} \pm\left(\cot \theta \sqrt{\left\|y_{1}\right\|^{2}-k^{2}}\right) \frac{\left\|y_{2}\right\|}{\left\|y_{1}\right\|}\left(\frac{1}{\cos \theta}-\cos \theta\right)\right] \\
& =\frac{k y_{1} \cdot y_{2}}{\left\|y_{1}\right\|^{2}} \pm\left(\cot \theta \sqrt{\left\|y_{1}\right\|^{2}-k^{2}}\right) \frac{\left\|y_{2}\right\|}{\left\|y_{1}\right\|} \sin \theta \tan \theta \\
& =\frac{k y_{1} \cdot y_{2}}{\left\|y_{1}\right\|^{2}} \pm \frac{\left\|y_{2}\right\|}{\left\|y_{1}\right\|} \sin \theta \sqrt{\left\|y_{1}\right\|^{2}-k^{2}} \\
& =\frac{\left\|y_{2}\right\|}{\left\|y_{1}\right\|}\left(k \cos (\theta) \pm \sin (\theta) \sqrt{\left\|y_{1}\right\|^{2}-k^{2}}\right)
\end{aligned}
$$

We will now prove that $\mathbb{E}\left[y_{2} \cdot x\right]=\frac{y_{1} \cdot y_{2}}{\left\|y_{1}\right\|^{2}}$. Before we do, note that we can also use our value of $t^{*}$ to determine the squared radius of $\mathcal{S}$. We have that the squared radius of $\mathcal{S}$ is given by

$$
\begin{aligned}
r^{2} & =\left\|t^{*}\left(c_{2} y_{2}-c_{1} y_{1}\right)\right\|^{2} \\
& =\left(t^{*}\right)^{2}\left\|\left(c_{2} y_{2}-c_{1} y_{1}\right)\right\|^{2} \\
& =\left(t^{*}\right)^{2} \sin ^{2} \theta\left\|c_{2} y_{2}\right\|^{2} \\
& =\frac{\sin ^{2}(\theta) k^{2} /\left(\left\|y_{1}\right\|^{2} \cos ^{2} \theta\right)}{k^{2} \tan \theta}\left(\left\|y_{1}\right\|^{2}-k^{2}\right) \\
& =1-\frac{k^{2}}{\left\|y_{1}\right\|^{2}}
\end{aligned}
$$

We will use this result soon. Now, on to the main event. Begin by noting that $y_{2} \cdot x=\left\|y_{2}\right\|\|x\| \cos \left(y_{2}, x\right)=\left\|y_{2}\right\| \cos \left(y_{2}, x\right)$, where $\cos \left(y_{2}, x\right)$ is the cosine of the angle between $y_{2}$ and $x$. Now, $\cos \left(y_{2}, x\right)=\operatorname{signum}\left(c_{2}\right) \cos \left(c_{2} y_{2}, x\right)$. And we have that $\left\|x-c y_{2}\right\|^{2}=\|x\|^{2}+\left\|c y_{2}\right\|^{2}-2\|x\|\left\|c_{2} y_{2}\right\| \cos \left(c y_{2}, x\right)=1+\left\|c_{2} y_{2}\right\|^{2}-$ $2\left\|c_{2} y_{2}\right\| \cos \left(c_{2} y_{2}, x\right)$. Therefore, we have

$$
\begin{aligned}
\cos \left(y_{2}, x\right) & =\operatorname{signum}\left(c_{2}\right) \cos \left(c_{2} y_{2}, x\right) \\
& =\operatorname{signum}\left(c_{2}\right) \frac{\left\|x-c_{2} y_{2}\right\|^{2}-1-\left\|c_{2} y_{2}\right\|^{2}}{-2\left\|c_{2} y_{2}\right\|} \\
& =\operatorname{signum}\left(c_{2}\right) \frac{1+\left\|c_{2} y_{2}\right\|^{2}-\left\|x-c_{2} y_{2}\right\|^{2}}{2\left\|c_{2} y_{2}\right\|}
\end{aligned}
$$

$$
y_{2} \cdot x=\left\|y_{2}\right\| \cos \left(y_{2}, x\right)
$$

$$
=\operatorname{signum}\left(c_{2}\right)\left\|y_{2}\right\| \frac{1+\left\|c_{2} y_{2}\right\|^{2}-\left\|x-c_{2} y_{2}\right\|^{2}}{2\left\|c_{2} y_{2}\right\|}
$$

$$
\begin{aligned}
\mathbb{E}\left[y_{2} \cdot x\right] & =\mathbb{E}\left[\operatorname{signum}\left(c_{2}\right)\left\|y_{2}\right\| \frac{1+\left\|c_{2} y_{2}\right\|^{2}-\left\|x-c_{2} y_{2}\right\|^{2}}{2\left\|c_{2} y_{2}\right\|}\right] \\
& =\operatorname{signum}\left(c_{2}\right)\left\|y_{2}\right\| \frac{1+\left\|c_{2} y_{2}\right\|^{2}-\mathbb{E}\left[\left\|x-c_{2} y_{2}\right\|^{2}\right]}{2\left\|c_{2} y_{2}\right\|} \\
& =\operatorname{signum}\left(c_{2}\right)\left\|y_{2}\right\| \frac{1+\left\|c_{2} y_{2}\right\|^{2}-\left(1-\frac{k^{2}}{\left\|y_{1}\right\|^{2}}+\left\|c_{1} y_{1}-c_{2} y_{2}\right\|^{2}\right)}{2\left\|c_{2} y_{2}\right\|}
\end{aligned}
$$

This last line uses Lemma 2: $c_{1} y_{1}$ is the center of $\mathcal{S}$, so the expected squared distance between $c_{2} y_{2}$ and a point on $\mathcal{S}$ is given by $1-\frac{k^{2}}{\left\|y_{1}\right\|^{2}}+\left\|c_{1} y_{1}-c_{2} y_{2}\right\|^{2}$, where $1-\frac{k^{2}}{\left\|y_{1}\right\|^{2}}$ is the squared radius of $\mathcal{S}$ and $\left\|c_{1} y_{1}-c_{2} y_{2}\right\|^{2}$ is the squared distance from $c_{2} y_{2}$ to the center. We can use this lemma because $c_{2} y_{2}$ is in the same hyperplane as $\mathcal{S}$, so we can treat this situation as being set in a space of dimension $d-1$.

Now, continue to simplify:

$$
\begin{aligned}
\mathbb{E}\left[y_{2} \cdot x\right] & =\operatorname{signum}\left(c_{2}\right)\left\|y_{2}\right\| \frac{1+\left\|c_{2} y_{2}\right\|^{2}-\left(1-\frac{k^{2}}{\left\|y_{1}\right\|^{2}}+\left\|c_{1} y_{1}-c_{2} y_{2}\right\|^{2}\right)}{2\left\|c_{2} y_{2}\right\|} \\
& =\operatorname{signum}\left(c_{2}\right)\left\|y_{2}\right\| \frac{\left\|c_{2} y_{2}\right\|^{2}+\frac{k^{2}}{\left\|y_{1}\right\|^{2}}-\sin ^{2} \theta\left\|c_{2} y_{2}\right\|^{2}}{2\left\|c_{2} y_{2}\right\|} \\
& =\operatorname{signum}\left(c_{2}\right)\left\|y_{2}\right\| \frac{\left\|c_{2} y_{2}\right\|^{2} \cos ^{2} \theta+\frac{k^{2}}{\left\|y_{1}\right\|^{2}}}{2\left\|c_{2} y_{2}\right\|} \\
& =\operatorname{signum}\left(c_{2}\right)\left\|y_{2}\right\| \frac{1}{2}\left(\left\|c_{2} y_{2}\right\| \cos ^{2} \theta+\frac{|k| \cos \theta}{\left\|y_{1}\right\|}\right) \\
& =\operatorname{signum}\left(c_{2}\right)\left\|y_{2}\right\| \frac{1}{2}\left(\frac{|k||\cos \theta|}{\left\|y_{1}\right\|}+\frac{|k||\cos \theta|}{\left\|y_{1}\right\|}\right) \\
& =\operatorname{signum}\left(c_{2}\right)|k| \frac{\left\|y_{2}\right\|}{\left\|y_{1}\right\|}|\cos \theta| \\
& =k \frac{\left\|y_{2}\right\|}{\left\|y_{1}\right\|} \cos \theta \\
& =k \frac{y_{1} \cdot y_{2}}{\left\|y_{1}\right\|^{2}}
\end{aligned}
$$

The last thing to do is to note that the above formulas are only valid when $\|x\|=1$. But if $\|x\|=s$, this is equivalent to the case when $\|x\|=1$ if we scale $y_{1}$ and $y_{2}$ by $s$. Scaling those two vectors by $s$ gives us the final formulas in Theorem 2.

