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1 Proof of Theorem 1

Theorem 1. Define f(x;n) = n · LayerNorm(x). Define

θ(x;n) = arccos

(
n · ∇xf(x;n)

∥n∥ ∥∇xf(x;n)∥

)
– that is, θ(x;n) is the angle between n and ∇xf(x;n). Then if x and n are

i.i.d. N (0, I) in Rd, and d ≥ 8 then

E [θ(x;n)] < 2 arccos

(√
1− 1

d− 1

)
To prove this, we will introduce a lemma:

Lemma 1. Let y be an arbitrary vector. Let A = I − vvT

∥v∥2 be the orthogonal

projection onto the hyperplane normal to v. Then the cosine similarity between
y and Ay is given by

√
1− cos(θ)2, where cos(θ) is the cosine similarity between

y and v.

Proof. Assume without loss of generality that y is a unit vector. (Otherwise,
we could rescale it without affecting the angle between y and v, or the angle
between y and Ay.)

We have Ay = y − y·v
∥v∥2 v. Then,

y ·Ay = y · (y − y · v
∥v∥2

v)

= ∥y∥2 − (y · v)2

∥v∥2

= 1− (y · v)2

∥v∥2

and
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∥Ay∥2 = (y − y · v
∥v∥2

v) · (y − y · v
∥v∥2

v)

= y · (y − y · v
∥v∥2

v)− y · v
∥v∥2

v · (y − y · v
∥v∥2

v)

= y ·Ay − y · v
∥v∥2

v · (y − y · v
∥v∥2

v)

= y ·Ay − (y · v)2

∥v∥2
+

∥∥∥∥ y · v∥v∥2
v

∥∥∥∥2
= y ·Ay − (y · v)2

∥v∥2
+

(y · v)2

∥v∥4
∥v∥2

= y ·Ay − (y · v)2

∥v∥2
+

(y · v)2

∥v∥2

= y ·Ay

Now, the cosine similarity between y and Ay is given by

y ·Ay

∥y∥∥Ay∥
=

y ·Ay

∥Ay∥

=
∥Ay∥2

∥Ay∥
= ∥Ay∥

At this point, note that ∥Ay∥ =
√
y ·Ay =

√
1− (y·v)2

∥v∥2 . But y·v
∥v∥ is just the

cosine similarity between y and v. Now, if we denote the angle between y and
v by θ, we thus have

∥Ay∥ =

√
1− (y · v)2

∥v∥2
=
√

1− cos(θ)2.

Now, we are ready to prove Theorem 1.

Proof. First, observe that LayerNorm(x) = Px
∥Px∥ , where P = I − 1

d 1⃗⃗1
T is the

orthogonal projection onto the hyperplane normal to 1⃗, the vector of all ones.
Thus, we have

f(x;n) = nT

(
Px

∥Px∥

)
Using the multivariate chain rule along with the rule that the derivative of

x
∥x∥ is given by I

∥x∥ −
xxT

∥x∥3 (see section 2.6.1 of The Matrix Cookbook), we thus

have that
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∇xf(x;n) =

(
nT

(
I

∥Px∥
− (Px)(Px)T

∥Px∥3

)
P

)T

=

(
1

∥Px∥
nT

(
I − (Px)(Px)T

∥Px∥2

)
P

)T

=
1

∥Px∥
P

(
I − (Px)(Px)T

∥Px∥2

)
n because P is symmetric

Denote Q = I − (Px)(Px)T

∥Px∥2 . Note that this is an orthogonal projection

onto the hyperplane normal to Px. We now have that ∇xf(x;n) =
1

∥Px∥PQn.

Because we only care about the angle between n and ∇xf(x;n), it suffices to
look at the angle between n and PQn, ignoring the 1

∥Px∥ term.

Denote the angle between n and PQn as θ(x, n). (Note that θ is also a
function of x because Q is a function of x.) Then if θQ(x, n) is the angle between
n and Qn, and θP (x, n) is the angle between Qn and PQn, then θ(x, n) ≤
θQ(x, n) + θP (x, n), so E[θ(x, n)] ≤ E[θQ(x, n)] + E[θP (x, n)].

Using Lemma 1, we have that θQ(x, n) = arccos
(√

1− cos(ϕ(n, Px))2
)
,

where ϕ(n, Px) is the angle between n and Px. Now, because n ∼ N (0, I),
we have E[cos(ϕ(n, Px))2] = 1/d, using the well-known fact that the expected
squared dot product between a uniformly distributed unit vector in Rd and a
given unit vector in Rd is 1/d.

At this point, define g(t) = arccos
(√

1− t
)
, h(t) = g′

(
1

d−1

)(
t− 1

d−1

)
+

g
(

1
d−1

)
. Then if 1

d−1 < c, where c is the least solution to g′(c) = π−2g(c)
2(1−c) ,

then h(t) ≥ g(t). (Note that g(t) is convex on (0, 0.5] and concave on [0.5, 1).

Therefore, there are exactly two solutions to g′(c) = π−2g(c)
2(1−c) . The lesser of the

two solutions is the value at which g′(c) equals the slope of the line between
(c, g(c)) and (1, π/2) – the latter point being the maximum of g – at the same
time that g′′(c) ≥ 0.) One can compute c ≈ 0.155241 . . . , so if d ≥ 8, then
1/(d−1) < c is satisfied, so h(t) ≥ g(t). Thus, we have the following inequality:

h(1/(d− 1)) > h(1/d)

= h(E[cos(ϕ(n, Px))2])

= E[h(cos(ϕ(n, Px))2)] due to linearity

≥ E[g(cos(ϕ(n, Px))2)] because h(t) ≥ g(t) for all t

= E[θQ(x, n)]

Now, h(1/(d−1)) = g(1/(d−1)) = arccos
(√

1− 1
d−1

)
. Thus, we have that

arccos
(√

1− 1
d−1

)
> E[θQ(x, n)].
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The next step is to determine an upper bound for E[θP (x, n)]. By Lemma

1, we have that θP (x, n) = arccos

(√
1− cos(ϕ(Qn, 1⃗))2

)
. Now, note that

because n ∼ N (0, I), then Qn is distributed according to a unit Gaussian in
ImQ, the (d− 1)-dimensional hyperplane orthogonal to Px. Note that because
1⃗ is orthogonal to Px (by the definition of P ) and Px is orthogonal to ImQ,
this means that 1⃗ ∈ ImQ. Now, let us apply the same fact from earlier: that
the expected squared dot product between a uniformly distributed unit vector
in Rd−1 and a given unit vector in Rd−1 is 1/(d − 1). Thus, we have that
E[cos(ϕ(Qn, 1⃗))2] = 1/(d− 1).

From this, by the same logic as in the previous case, arccos
(√

1− 1
d−1

)
≥

E[θP (x, n)].
Adding this inequality to the inequality for E[θQ(x, n)], we have

2 arccos

(√
1− 1

d− 1

)
> E[θQ(x, n)] + E[θP (x, n)] ≥ E[θ(x, n)]

.

2 Proof of Theorem 2

Theorem 2. Let y1, y2 ∈ Rd. Let x be uniformly distributed on the hypersphere
defined by the constraints ∥x∥ = s and x · y1 = k. Then we have

E[x · y2] = k
y1 · y2
∥y1∥2

and the maximum and minimum values of x · y2 are given by

∥y2∥
∥y1∥

(
k cos(θ)± sin(θ)

√
s2∥y1∥2 − k2

)
where θ is the angle between y1 and y2.

Before proving Theorem 2, we will prove a quick lemma.

Lemma 2. Let S be a hypersphere with radius r and center c. Then for a given
vector y, the mean squared distance from y to the sphere, Es∈S [∥y − c∥2], is

given by ∥y − c∥2 + r2.

Proof. Without loss of generality, assume that S is centered at the origin (so

∥y − c∥2 = ∥y∥2). Induct on the dimension of the S. As our base case, let
S be the 0-sphere consisting of a point in R1 at −r and a point at r. Then

Es∈S [|y − s|2] = (y−r)2+(y−(−r))2

2 = y2 + r2.
For our inductive step, assume the inductive hypothesis for spheres of di-

mension d − 2; we will prove the theorem of spheres of dimension d − 1 in an
ambient space of dimension d. Without loss of generality, let y lie on the x-axis,
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so that we have y =
[
y1 0 0 . . .

]T
. Next, divide S into slices along the

x-axis. Denote the slice at position x = x0 as Sx0
. Then Sx0

is a (d− 2)-sphere

centered at
[
x0 0 0 . . .

]T
, and has radius

√
r2 − x2

0. Now, by the law of to-

tal expectation, Es∈S [∥y − s∥2] = E−r≤x≤r

[
Es′∈Sx

[
∥y − s′∥2

]]
. We then have

that

Es′∈Sx

[
∥y − s′∥2

]
= E

[
(y1 − x)2 + s22 + s23 + · · ·

]
= (y1 − x)2 + E

[
s22 + s23 + · · ·

]
Once again, Sx is a (d− 2)-sphere defined by s22 + s23 + · · · = r2 − x2. This

means that by the inductive hypothesis, we have E
[
s22 + s23 + · · ·

]
= r2 − x2.

Thus, we have

Es′∈Sx

[
∥y − s′∥2

]
= (y1 − x)2 + r2 − x2

Es′∈Sx

[
∥y − s′∥2

]
= (y1 − x)2 + r2 − x2

Es∈S [∥y − s∥2] = E−r≤x≤r

[
(y1 − x)2 + r2 − x2

]
=

1

2r

∫ r

−r

(y1 − x)2 + r2 − x2dx

= r2 + y21

We are now ready to begin the main proof.

Proof. First, assume that ∥x∥ = 1. Now, the intersection of the (d− 1)-sphere
defined by ∥x∥ = 1 and the hyperplane x · y1 = k is a unit hypersphere of
dimension (d − 2), oriented in the hyperplane x · y1 = k, and centered at c1y1
where c1 = k/ ∥y1∥2. Denote this (d− 2)-sphere as S, and denote its radius by
r.

Next, define c2 = k
y2·y1

. Then cy2 ·y1 = k, so c2y2 lies in the same hyperplane
as S. Additionally, because c1y1 is in this hyperplane, and c1y1 is also the
normal vector for this hyperplane, we have that the vectors c1y1, c2y2, and
c1y1 − c2y2 form a right triangle, where c2y2 is the hypotenuse and c1y1 − c2y2
is the leg opposite of the angle θ between y1 and y2. As such, we have that
∥c1y1 − c2y2∥ = sin(θ) ∥c2y2∥.

Furthermore, we have that c1y1 ·c2y2 = k2

∥y1∥2 , that ∥c1y1∥ = |k|
∥y1∥2 , and that

∥c2y2∥ = |k|
∥y1∥|cos θ|

We will now begin to prove that the maximum and minimum values of y2 ·x
are given by ∥y2∥

∥y1∥

(
k cos(θ)± | sin(θ)|

√
s2∥y1∥2 − k2

)
.
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To start, note that the nearest point on S to c2y2 and the farthest point on
S from c2y2 are located at the intersection of S with the line between c2y2 and
c1y1.

To see this, let x+ be the at the intersection of S and the line between
c2y2 and c1y1. We will show that x+ is the nearest point on S to c2y2. Let
x′
+ ∈ S ̸= x+. Then we have the following cases:

• Case 1: c2y2 is outside of S. Then ∥c2y2 − c1y1∥ = ∥c2y2 − x+∥ +
∥x+ − c1y1∥, because c2y2, x+, and c1y1 are collinear – so ∥c2y2 − c1y1∥ =
∥c2y2 − x+∥ + r (because x+ ∈ S). By the triangle inequality, we have
∥c2y2 − c1y1∥ ≤

∥∥c2y2 − x′
+

∥∥+ ∥∥x′
+ − c1y1

∥∥ =
∥∥c2y2 − x′

+

∥∥+ r. But this

means that ∥c2y2 − x+∥ ≤
∥∥c2y2 − x′

+

∥∥.
• Case 2: c2y2 is inside of S. Then ∥c2y2 − c1y1∥ = ∥x+ − c1y1∥−∥c2y2 − x+∥,
because c2y2, x+, and c1y1 are collinear – so ∥c2y2 − c1y1∥ = r−∥c2y2 − x+∥.
By the triangle inequality, we have

∥∥x′
+ − c1y1

∥∥ ≤
∥∥c2y2 − x′

+

∥∥+∥c2y2 − c1y1∥,
so
∥∥x′

+ − c1y1
∥∥ ≤

∥∥c2y2 − x′
+

∥∥+r−∥c2y2 − x+∥. But since
∥∥x′

+ − c1y1
∥∥ =

r, this means that ∥c2y2 − x+∥ ≤
∥∥c2y2 − x′

+

∥∥.
A similar argument will show that x−, the farthest point on S from c2y2, is

also located at the intersection of S with the line between c2y2 and c1y1.
Now, let us find the values of x+ and x−. The line between c2y2 and c1y1

can be parameterized by a scalar t as c1y1 + t(c2y2 − c1y1). Then x+ and x−
are given by c1y1 + t∗(c2y2 − c1y1), where t∗ are the solutions to the equation
∥c1y1 + t(c2y2 − c1y1)∥ = 1.

We have the following:

1 = ∥c1y1 + t(c2y2 − c1y1)∥

= ∥c1y1∥2 + 2t(c1y1 · (c2y2 − c1y1)) + t2 ∥c2y2 − c1y1∥2

= ∥c1y1∥2 + 2t((c1y1 · c2y2)− ∥c1y1∥2) + t2 ∥c2y2∥2 sin2 θ

=
k2

∥y1∥2
+ 2t

(
k2

∥y1∥2
− k2

∥y1∥2

)
+ t2

k2

∥y1∥2 cos2 θ
sin2 θ

=
k2

∥y1∥2
(t2 tan2 θ + 1)

Thus, solving for t, we have that t∗ =
±
√

∥y1∥2−k2

|k| tan θ . Therefore, we have that
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x+, x− = c1y1 + t∗(c2y2 − c1y1)

= c1y1 +

(
k2

∥y1∥2
(t2 tan2 θ + 1)

)
(c2y2 − c1y1)

=
ky1

∥y1∥2
+

±
√
∥y1∥2 − k2

|k| tan θ

( ky2
y1 · y2

− ky1

∥y1∥2

)

= k

 y1

∥y1∥2
±


√
∥y1∥2 − k2

|k| tan θ

( y2
y1 · y2

− y1

∥y1∥2

)
y2 · x+, y2 · x− = y2 · k

 y1

∥y1∥2
±


√
∥y1∥2 − k2

|k| tan θ

( y2
y1 · y2

− y1

∥y1∥2

)
=

ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)(
y2 · y2
y1 · y2

− y1 · y1
∥y1∥2

)

=
ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)(
∥y2∥

∥y1∥ cos θ
− ∥y2∥ cos θ

∥y1∥

)
=

[
ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)
∥y2∥
∥y1∥

(
1

cos θ
− cos θ

)]

=
ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)
∥y2∥
∥y1∥

sin θ tan θ

=
ky1 · y2
∥y1∥2

± ∥y2∥
∥y1∥

sin θ

√
∥y1∥2 − k2

=
∥y2∥
∥y1∥

(
k cos(θ)± sin(θ)

√
∥y1∥2 − k2

)
We will now prove that E [y2 · x] = y1·y2

∥y1∥2 . Before we do, note that we can

also use our value of t∗ to determine the squared radius of S. We have that the
squared radius of S is given by

r2 = ∥t∗(c2y2 − c1y1)∥2

= (t∗)2 ∥(c2y2 − c1y1)∥2

= (t∗)2 sin2 θ ∥c2y2∥2

=
sin2(θ)k2/

(
∥y1∥2 cos2 θ

)
k2 tan θ

(
∥y1∥2 − k2

)
= 1− k2

∥y1∥2
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We will use this result soon. Now, on to the main event. Begin by noting
that y2·x = ∥y2∥ ∥x∥ cos(y2, x) = ∥y2∥ cos(y2, x), where cos(y2, x) is the cosine of
the angle between y2 and x. Now, cos(y2, x) = signum(c2) cos(c2y2, x). And we

have that ∥x− cy2∥2 = ∥x∥2 + ∥cy2∥2 − 2 ∥x∥ ∥c2y2∥ cos(cy2, x) = 1+ ∥c2y2∥2 −
2 ∥c2y2∥ cos(c2y2, x). Therefore, we have

cos(y2, x) = signum(c2) cos(c2y2, x)

= signum(c2)
∥x− c2y2∥2 − 1− ∥c2y2∥2

−2 ∥c2y2∥

= signum(c2)
1 + ∥c2y2∥2 − ∥x− c2y2∥2

2 ∥c2y2∥

y2 · x = ∥y2∥ cos(y2, x)

= signum(c2) ∥y2∥
1 + ∥c2y2∥2 − ∥x− c2y2∥2

2 ∥c2y2∥

E [y2 · x] = E

[
signum(c2) ∥y2∥

1 + ∥c2y2∥2 − ∥x− c2y2∥2

2 ∥c2y2∥

]

= signum(c2) ∥y2∥
1 + ∥c2y2∥2 − E

[
∥x− c2y2∥2

]
2 ∥c2y2∥

= signum(c2) ∥y2∥
1 + ∥c2y2∥2 −

(
1− k2

∥y1∥2 + ∥c1y1 − c2y2∥2
)

2 ∥c2y2∥

This last line uses Lemma 2: c1y1 is the center of S, so the expected squared

distance between c2y2 and a point on S is given by 1− k2

∥y1∥2 + ∥c1y1 − c2y2∥2,
where 1 − k2

∥y1∥2 is the squared radius of S and ∥c1y1 − c2y2∥2 is the squared

distance from c2y2 to the center. We can use this lemma because c2y2 is in the
same hyperplane as S, so we can treat this situation as being set in a space of
dimension d− 1.

Now, continue to simplify:
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E [y2 · x] = signum(c2) ∥y2∥
1 + ∥c2y2∥2 −

(
1− k2

∥y1∥2 + ∥c1y1 − c2y2∥2
)

2 ∥c2y2∥

= signum(c2) ∥y2∥
∥c2y2∥2 + k2

∥y1∥2 − sin2 θ ∥c2y2∥2

2 ∥c2y2∥

= signum(c2) ∥y2∥
∥c2y2∥2 cos2 θ + k2

∥y1∥2

2 ∥c2y2∥

= signum(c2) ∥y2∥
1

2

(
∥c2y2∥ cos2 θ +

|k| cos θ
∥y1∥

)
= signum(c2) ∥y2∥

1

2

(
|k| |cos θ|
∥y1∥

+
|k| |cos θ|
∥y1∥

)
= signum(c2) |k|

∥y2∥
∥y1∥

|cos θ|

= k
∥y2∥
∥y1∥

cos θ

= k
y1 · y2
∥y1∥2

The last thing to do is to note that the above formulas are only valid when
∥x∥ = 1. But if ∥x∥ = s, this is equivalent to the case when ∥x∥ = 1 if we scale
y1 and y2 by s. Scaling those two vectors by s gives us the final formulas in
Theorem 2.
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