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Abstract

A new 128-bit block cipher called CRYPTON is proposed as a candidate algorithm for the
Advanced Encryption Standard (AES). The cipher encrypts/decrypts a 128-bit data block with a
variable-length key up to 256 bits (with increment by a multiple of 32 bits) by iterating a fully par-
allelizable round function 12 times. The decryption process can be made identical to the encryption
process by applying different round keys generated by different key schedules. CRYPTON is designed
to make full use of increasing software/hardware parallelisms in today’s microprocessor designs. It
uses only very simple operations, such as logical ANDs, ORs, XORs, Shifts and table lookups. Fur-
thermore, the two 8 x 8 S-boxes were carefully chosen by taking into account hardware efficiency.
As a result, CRYPTON can achieve very high performances in various platforms, such as software
implementations on 8-bit, 16-bit, 32-bit and 64-bit microprocessors and a dedicated hardware imple-
mentation. Our C language implementation could achieve the speed of about 6.4 Mbytes/sec on a
200 MHz Pentium Pro PC, running Windows 95. Key scheduling is also very simple and takes less
time than encrypting one 128-bit data block. Based on our preliminary analysis we conjecture that
there is no known attack on the 12-round CRYPTON faster than exhaustive key search. For example,
differential and linear cryptanalysis can be shown to require more ciphertexts than available. This
paper present various aspects on the design, analysis and implementation of CRYPTON.
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1 Introduction

Most block ciphers have been designed based on the Feistel structure, e.g., DES, LOKI, Blowfish, CAST,
etc. In these Feistel-type ciphers, the plaintext is divided into two equal sub-blocks, and in each round one
sub-block is transformed by some nonlinear function and then exclusive-ored with the other sub-block.
Such round function is repeated sufficiently many times to achieve adequate security.

On the other hand, some other block ciphers were designed using round functions allowing parallel
nonlinear processing on the whole data block. For example, the ciphers IDEA, SAFER, 3-Way, SHARK
and SQUARE belong to this category. The advantage of this approach is that the resulting cipher
is highly parallelizable and easy to analyze the security against differential and linear cryptanalysis.
Parallelizability is of great importance for maximizing speed, since most modern processors are supporting
more and more parallelisms in software and/or hardware.

The block cipher CRYPTON is designed based on the latter approach. In fact, its design is much
influenced by SQUARE. CRYPTON processes each data block by representing it into a 4 X 4 byte array
as in SQUARE. The round transformation of CRYPTON consists of four parallelizable steps: byte-wise
substitutions, column-wise bit permutation, column-to-row transposition, and then key addition. The
encryption process invloves 12 repetitions of (essentially) the same round transformation. The decryption
process can be made the same as the encryption process, except that different subkeys are applied in
each round. Figure 1 shows the high level structure of CRYPTON.

Input : 4 32-bit words

Encryption Round keys | | | |
(or Decryption Round Keys) ¥

Round Key 0 —>| Key Addition |

'

Byte Substitution
Round Key 1 [eememmee e e

» | Bit permutation and Byte Transposition

Key Addition

!

| Output Transformation |

Output : 4 32-bit words

repeat this round

function 12 times

Round Key 12

Figure 1: The structure of CRYPTON

The block cipher CRYPTON has the following features:
e 12-round self-reciprocal cipher with block length of 128 bits.

e Key lengths supported: 64 + 32k (0 < k < 6) bits (may allow any number of key length up to 256
bits).

e Identical process for encryption and decryption (with different subkeys).

e Strong security against existing attacks: e.g, differential and linear cryptanalysis require more
ciphertexts than available.

e High parallelism for fast implementation in both software and hardware.

e Tradeoffs between speed and memory: Standard software implementation of CRYPTON requires
512 bytes of storage for two 8 x 8 substitution boxes (S-boxes for short) and thus well suited
to the environment with limited computing resources, such as smart cards and other portable
devices. Using 4 Kbytes of memory, the speed can be substantially increased. In the case of VLSI



implementation, the S-boxes can be efficiently implemented using a relatively small number of nand
gates.

e Ease of implementation in various platforms: easy to implement on 8-bit, 16-bit or 32-bit processors,
also very efficient for hardware implementation.

We believe that CRYPTON meets all the requirements for the Advanced Encryption Standard (AES).
In this paper we present a complete specification of the proposed cipher CRYPTON and our prelim-
inary analysis for its security and efficiency.

2 Algorithm Specification

2.1 Symbols and Notation

Throughout this paper we will use the following symbols and notation:

e We use the term ‘word’ to denote a 32-bit number (note however that DWORD is used in C source

code). A number is usually represented in hexadecimal (with prefix ‘0x’).

e We follow the little endian convention for byte ordering in char string <» word conversion. That is,
the first character is always placed in the least significant position.

o We write A = (A[3], A[2], A[1], A[0])? when the data variable A represent a 4 X 4 byte array, where
Al7] (0 € i < 3) is a 4-byte word represented by A[i] = a;3 || @iz || @i || aio. Here || denote
concatenation of two bit strings and the superscript ¢ in a vector or array denotes transposition.

e ROL(z,n) denotes left-rotation of integer z by n-bit positions. We also use the notation z<"

interchangeably, whenever convenient.
e f o g denotes composition of functions f and g, i.e., (f o g)(z) = f(g(z)).
e A,V,®: bit-wise logical operations for AND, OR and XOR. (exclusive-or), respectively.

e 7z denotes the bit-wise complement of z.

2.2 Basic Building Blocks
2.2.1 Nonlinear Substitution v

CRYPTON uses two 8 x 8 S-boxes, Sy and S, for a nonlinear transformation. The two S-boxes were
constructed from three 4 x 4 S-boxes using a 3-round Feistel structure so that So(S1(z)) = S1(Se(z)) = =
for any 8-bit number x. The construction and property of these S-boxes will be described in more detail
in Sect.3.1.

The S-box transformation v consists of byte-wise substitutions on a 4 X 4 byte array (see Figure 2).
Two different transformations are used alternatively in successive rounds: 7, in odd rounds and 7. in
even rounds.

¢ S-box transformation v, for odd rounds (i.e., rounds 1, 3, etc.): B = 7,(A) defined by

B[0] = Si(ao3) || So(aoz) || S1(ao1) || So(aoo),
B[1] + So(a13) || S1(az) || So(air) || Si(awo),
B[2] + Si(aszs) || So(azz) || Si(az1) [l Solasz),
B[3] < So(ass) || Si(as2) || So(asy) || Si(aso).
¢ S-box transformation 7. for even rounds (i.e., rounds 2, 4, etc.): B = 7.(A) defined by
B[0] + So(ao3) || S1(aoz) || Solao1) || Si(aoo),
B[1] + Si(a13) || So(aiz2) || Si(a11) || So(a1o),
B[2] + So(azs) || Si(azz) || So(az1) || Si(az),
B3] + Si(ass) || So(asz) || Si(as1) || Solaso)-



Note that two S-boxes are arranged so that v,(7.(A4)) = 7o(7.(A4)) = A for any 4 X 4 byte array A.
This property will be used to derive the identical process for encryption and decryption.

A[0] | @3 | @02 | @01 | aoo B[0] | Si(aes) | Solae2) | Si(ao1) | So(aoo)
A[l] aiz | ai12 aii aio Yo B[l] 50(013) Sl(alz) 50(6611) 51(010)
A[Q] Q23 | @G22 | @21 | G20 | = B[Q] S1 (023) So (022) 51(6121) So (azo)
A[3] a3z | G32 | G31 | G430 B[3] So (033) S (032) 50(6131) S1 (aso)

] ao3 | Go2 | Qo1 | Qoo B[O] 50(003) Sl(a02) 50(6101) Sl(aoo_)
A[l] | a13 | @12 | @11 | a0 | ve B[1] | Si(ais) | So(aiz) | Silai1) | Solaio)
]
]

Q23 | G2 | Q21 | G20 | == B[Q] 50(023) 51(@22) 50(021) 51(020)
a33 | G32 | A31 | 3¢ B[3] 51(a33) So(a32) 51(1131) 50(6130)

Figure 2: The S-box transformation vy

2.2.2 Linear Transformations m and 7

As linear transformations, CRYPTON uses a bit-wise permutation and a byte-wise transposition in
sequence. The bit permutation m mixes four bytes in each byte column of a 4 x 4 byte array and the byte
transposition 7 transposes the resulting byte columns into byte rows.

For bit-extraction we define the four masking words (M3, My, M1, My) as

Mo = mg||lmz|lmi|lme = 0x3fcff3fc,
M; = mg||ms||msz|/m; = 0xfc3fcff3,
My = my|mg|lms|lms = 0xf3fc3fcf,
Ms = mgy||mi||me||ms = 0xcf£3fc3t,
where mg = 0xfc,m; = 0xf3,ms = O0xcf,m3 = 0x3f. We will use two versions of m to make the

encryption and decryption processes identical: 7, is used in odd rounds and 7. is used in even rounds.
They are defined as follows:
e Bit permutation 7, for odd rounds: B = m,(A) defined by
B[0] + (A[0] A Mo) ® (A[1] A M1) © (A[2] A M2) @ (A[3] A M3),
B[1] + (A[0] A M1) @ (A[1] A M3) @ (A[2] A M3) @ (A[3] A M),
B[2] + (A[0] A M) @ (A[1] A M3) @ (A[2] A My) @ (A[3] A M),
B[3] + (A[0] A M3) @ (A[1] A Mo) @ (A[2] A M) @ (A[3] A Mo).

e Bit permutation 7, for even rounds: B = w.(A) defined by
Bl0] + (A[0] A M1) @ (A[1] A M2) @ (A[2] A M3) @ (A[3] A M),
B[1] + (A[0] A M2) @ (A[1] A M3) @ (A[2] A My) @ (A[3] A M7),
B[2] = (A[0] A M) © (A[1] A My) & (A[2] A M1) & (A[3] A Ma),
B3] + (A[0] A M) @ (A[1] A M1) @ (A[2] A M3) @ (A[3] A M3).

~— O~ —
P

Note that 7, and 7, can be implemented by the same function as follows:
e ((A[3], A[2], A[1], A[0])") = mo((A[2], A[1], A[0], A[3])").

The bit permutation 7 may be viewed as consisting of two steps: Each byte column is rearranged in
such a way that each byte in the same byte column contributes two bits to each new byte and then the
mod-2 sum of the four input bytes is exclusive-ored with each new byte to form the final output byte.



For example, the expression for 7, can be rewritten as follows (see also Figure 3 for graphical view of 7,
where addition of T is omitted.):

T = Al0]® A[l] e A2 @ A[3],
B[0] « (A[0JAMI) @ (A[I]AMIL) &
Bl1] « (A[0JAMIL)® (A[l]AMI) &
B2] « (A[0JAMDL)e& (A[l]AMI3) @
B[3] <« (A[0)AMIs) & (A[l]A M) &

A2 A ML) &
A2]AMIs) &
A[2] A MIg) &
A2JAMI) &

ABIAMI) @ T,
ABIAMI) ®T,
ABIAML)®T,
ABIAML)®T,

—~ o~ o~ o~
o~ e~ .~

where MI; is the bit-wise complement of M;, i.e.,

MI, = 0xc0300c03 = 11000000 00110000 00001100 000000112,
MI, = 0x03c0300c = 00000011 11000000 00110000 000011005,
MI, = 0x0c03c030 = 00001100 00000011 11000000 001100005,
MI; = 0x300c03c0 = 00110000 00001100 00000011 11000000 (2.
24 16 8 0 bits

A[0]

Al1]

Al2]

A[3]

B[]
B[1]
B[2]
B[3]

Figure 3: The bit permutation 7, (adding exclusive-or sum omitted)

As shown above, the bit permutation 7, (7, resp.) consists of column-wise permutations. Let A* be
the i-th byte column of A, i.e., Al = (asi, asi,a1i,a0;)t. And Let 7; be the bit permutation of the i-th
column induced by 7. Then we can rewrite m, and 7. as

mo(A) = (m3(A%), m3(A%), m (A"), m0(A%))",
me(A) = (mo(A%), m3(A%), my(AY), m1 (A%))".

The component column-permutation 7; can be easily derived from the description of w. For example,
B = my(A?) is given by

boo + (ago Amg) ® (a0 Amy) @ (azo Amz) ® (azg A ms),
bio <+ (ago Amy)® (arg Amz) & (azo Ams) ® (azg A myg),
bao 4 (aoo Ama) ® (a0 Ams) @ (az A mg) ® (azo Amy),
bso <+ (aoo Ams) ® (a0 Amg) ® (az0 Ami1) ® (aso A ma).

It is also easy to see that if 7o ([d, ¢,b,a]?) = [h, g, f,€]t, then

ﬂ-l([da c,b,a]t) = [eahagaf]ta
ﬂg([d, cabaa]t) = [fﬂe’hﬂ g]ta
ﬂg([d, c,b,a]t) = [gafaeah]t'

The byte transposition 7 simply rearranges a 4 x 4 byte array by moving the byte at the (z, j)-th
position to the (7,7)-th position.



e Byte transposition 7: B = 7(A), where b;; = a;;. That is,
B[0] 4= asq || azo || a0 || aoo,
B[1] ¢ asy || az1 || a11 || ao1,
B[2] = as; || azz || a12 || ao2,
]

B[3] < as3 || aszs || a13 || aos.

A[O] o3 | Go2 | Qo1 | Qoo B[O] azp | G20 | Gio0 | Goo
All] a1z | a2 | a1 [ aw | 7  B[l] | as1 | az1 | a1 | ao1
A[2] Q23 | G22 | G21 | Q20 | = B[2] azz | G22 | Q12 | Go2
A[3] | ass | asz | as1 | aso B[3] | as3 | azs | ai3 | ass

Figure 4: The byte transposition 7

2.2.3 Key Addition o

Key mixing is performed by simply exclusive-oring round keys with data words as follows:

e Key addition ox : B =0k (A) is defined by
B[0] « A0] ® K[0],
B[1] + A[l] ® K[1],
B[2] + A[2] ® K[2],
B[3] + A[3] ® K[3].

2.2.4 Round Transformation p

One round of CRYPTON consists of applying in sequence S-box transformation, bit permutation, byte
transposition and key addition. That is, the encryption round functions used for odd and even rounds
(the round number is denoted by r) are defined by

pok(A) = (ogoTom,09,)(A) forr=1,3,--- etc.,
pek(A) = (ogoTom,0q.)(A) forr=24,--- etc.,

where K = (K[3],K[2], K[1], K[0])! is a 4-word round key and A = (A[3], A[2], A[1], A[0])? is a 4-word
input data (both key and data are regarded as 4 X 4 byte arrays).

Notice the inverse relations of each component functions. All component functions except for 7, and
v are involutions. That is, 7,2 = 7. (77! = 7o), 7t =7, (7]t = m.), 77! = 7 and o' = ok.
Therefore, the decryption round transformation is given by

.0511{(14) = (Yeom0To0K)(A),

per(A) = (YoomeoTook)(A).
With this decryption round we can decrypt the ciphertext by applying encryption round keys in reverse
order. However, it would be better to be able to decrypt ciphertexts by using the same encryption process.

This is possible in CRYPTON, as can be seen below. Of course, for this we have to generate decryption
round keys using a different key schedule.

2.3 Encryption and Decryption

Let K! be the i-th encryption round key consisting of 4 words, derived from a user-supplied key K using
the encryption key schedule described later. The encryption transformation Eg of r-round CRYPTON



under key K consists of an initial key addition and r/2 times repetitions of p, and p. and then a final
output transformation (we assume 7 is even). Eg can be described as
Ek =¢e°Png°PoK;_'—1 0+ 9 Pek?2 O PoK! ©OKO, (1)

where ¢, is the output transformation to make the encryption and decryption processes identical and is
given by
e =TOTeOT.

Similarly we define ¢, as ¢, = T om, 0 7. The corresponding decryption transformation Dg can be shown
to have the same form as Ek, except for using suitably transformed round keys:
Dk = ¢e 0 peky, O Pog=1 © O Pek? © PoKl © TKGs (2)

where the decryption round keys are defined by

r—i __ ¢e(Ké) fori=0,2,4,...’
Kd - { ¢0(K2) for 1 = 1,3,5’..._ (3)

This shows that encryption and decryption can be performed by the same code (logic) if different round
keys are applied.
Notice that

¢e o O-K;_' = UqSE(K;) o ¢e = UK;—i o ¢6 for i = 072747 )

¢O°UK§: = Ogo(K)) o¢0 = O-K;_i O¢° for 1 = 1,3,5,---.
Using this property, we can incorporate the output transformation ¢, into the final round as follows:

(f)eOPng = QSeOO'K:O'TOTFeO’)/e
= a o OT OT, O
K9 ¢e e © Ve
= OK9OTO%.
Also note that Toy =vyo .

We next explain how the decryption process is derived. For simplicity, we consider a 2-round version
of CRYPTON (r = 2). The encryption process of this two round version can be rewritten as:

Ex = ¢eopex? ©poki © OKo
= ¢e°(¢e°UKg°¢e°T°7Te°’)’e)°(¢o°UKé°¢o°T°7ro°’Yo)°UKg
(0K 07 07) 0 (o 0 Tg1 070 70) 0 i
= kg0 (T om0 TOTk) 0 (70T 00Ky
= a'Kgo(a'K(lioTowooyo)flo(a-KgoTo'ye)*l
= (0k9) 7" 0 (pox1) T 0 (¢e 0 pegz)

Therefore, the decryption process of the reduced version is given by

—1
Dg = Eg" = ¢ © pex2 © pokc © O KO-

Thus we have shown that the decryption process can be the same as the encryption process, except that
¢-transformed round keys are applied in reverse order.

2.4 Key Scheduling

The purpose of key scheduling is to securely generate from a given short secret key as many subkeys as
needed during the encryption/decryption process. R-round CRYPTON requires total 4 x (r 4+ 1) round
keys of 32 bits. These round keys are generated from a user key of 64 4+ 32k(k = 0,1,---,6) bits in two
steps (we just restricted the key length to a multiple of 32 bits to avoid the inconvenience of handing the



key in bits or bytes): first nonlinear-transform the user key into 8 expanded keys and then generate the
required number of round keys from these expanded keys using simple linear operations. This two-step
generation of round keys may be advantageous in case where storage requirements do not allow to store
the whole round keys (e.g., implementation in a portable device with restricted resources). In such a
circumstance, we may store only the 8 expanded keys and generate the round keys from these expanded
keys each time of encryption/decryption.

Generation of Expanded Keys

1. Let K = ky_1 ---k1ko be the user key of v bytes (v = 8+ 44,7 =0,1,---,6). prepend (left-extend)
as many zeros as needed to make K to 256 bits.

2. convert the resulting user key into 8 32-bit words U[i](0 < i < 7): Ul[i] = kaiyskaitokait1ka;.
3. compute 8 expanded keys E,[i] using the basic transformations described before as follows:

(V€[3]7 V€[2]7 V6[1]7 Ve[o])t = (Tov,00po0 "TO)((U[G]a U[4]? U[2]7 U[O])t)a
(V€[7]7 V€[6]7 V6[5]7 Ve[4])t (Toneo 0Q° "Te)((U[7]7 U[5]’ U[3]7 U[l])t)v

T, = Veo]@Ve[l] @ Ve[2] @ Ve[3],
Ty = Ve[d] @ Ve[5] @ Ve[6] @ Ve[T],
E[i] = V.]i]®T fori=0,1,2,3,
EJi] = V.[i]®Te fori=4,56,7,

where P = (Ps, P>, P, Py)t and Q = (Q3,Q2,Q1,Qo)? are constants given by

Py = 0xbb67ae85 P; = 0x3c6ef372 P, = 0xab4ffb3a Ps; = 0x510e527f
Qo = 0x9b05688¢c ()1 = 0x1f83d9ab ()2 = 0x5be0cd19 ()3 = Oxcbbb9d5d

These constants were obtained from the fractional parts of the first 8 odd primes, e.g., Py is the
integer part of 232(v/3 — 1) and Qy is the integer part of 232(1/23 — 4).

Generation of encryption round keys

1. Let K¢ = (K [4i+ 3], K [4i + 2], K [4i + 1], K [4i])? be the i-th round keys (the initial key addition
step is considered as the 0-th round). Set the first 4 expanded keys to K? and the second 4 expanded
keys to K.

2. The round keys K22 (K213, resp.) for i > 0 are successively derived from the round keys K2’
(K% resp.) by constant additions and rotations. More specifically, two of the 4 round keys in
K?' are updated to the corresponding two keys in K212 by left-rotation by some multiples of 8 and
the remaining two keys by constant addition. Table 1 shows the rotation amounts and constants
used in successive evolutions. The constants RC;’s are define by

RCy = 0%x01010101 RC(C; = 0x02020202 R(C3; = 0x04040404
R(C5 = 0x08080808 R(C4 = 0x10101010 R(C5 = 0x20202020.

For example, the evolution of K? to K2 is:

K.[8] = ROL(K.[0],8),
K.9] = RC,® K.[1],
K.[10] = ROL(K.[2],16),
K.11] = RC, ® K.[3],

where ROL(X,n) denotes left rotation of X by n-bit positions.



K2 o K272 Y

3 | 2 | 1 | 0 3 | 2 | 1 | 0
RCo 16 RCo 8 24 RCo 16 RCy
8 RCy 24 RCy RCy 16 RCy ]
RC» 24 RC> 16 8 RC> 24 RCy

16 RC3 8 RC3 RC3 24 RC3 16
RC4 8 RC4 24 16 RC4 8 RC4
24 RCs5 16 RCS5

QY| W N | O] =-

Table 1: Rotation amounts and constants for updating encryption round keys

Table 11 in Appendix A shows the encryption round keys expressed in terms of expanded keys. This
table will be useful for key schedule cryptanalysis.

Let Kb = (K4[4i+3], K4[4i+2], Kq[4i+1], K 4[4i])¢ be the i-th round decryption keys. The decryption
round keys may be derived from encryption round keys by component-wise transformations under ¢, /
¢,, as mentioned in the previous section (see eq. 3). However, using some properties of ¢, we can derive
a more efficient version of decryption key schedule.

First observe that the transformations ¢, = 701, o 7 and ¢, = 7 0 e 0 T are actually row-wise bit
permutations and can be rewritten as

$o(A) = (d3(A[3]), p2(A[2]), $1(A[L]), o (A[O])",
be(A) (¢o(A[3], b3(A[2]), P2 (A[L]), ¢1(A[0])",

where the component transformation ¢; is actually the same as m;, except that 4 input bytes are now
arranged in row vector (see Sect.2.2.2). Also note the shift property of ¢;

$:(ROL(X,8k)) = ROL(¢i(X),32 —8k) for k =1,2,3,
$i(X) = ROL(¢;(X),8) for j =i+ 1 mod 4,

and the linear property under exclusive-oring

di(Alj] ® C) = ¢i(A[5]) @ $:(C).
In particular, ¢;(C) = C if C consists of 4 identical bytes.

Generation of decryption round keys
1. compute the expanded key E, for decryption using ¢, / ¢. as follows:
{Ea[3], Ea[2], Ea[1], Ea[0]} = {do(Kc[51]), ¢3(K[50]), ha (K[49]), ¢1 (K [48])},
{Ea[7], Ea[6], Ea[5], Ea[4]} = {¢3(Kc[47]), p2(K[46]), p1 (K[45]), po(K[44])}

Since K[j]’s can be expressed in terms of E.[i]’s (see Table 11 in Appendix A), one can transform
E, into E,4 using the shift and linear properties of ¢; as follows:

Eq[0] ¢3(E.[0]) ® RC1 & RC3 & RCs,
E4[l] = ¢o(E.[1]) @ RCo ® RCy ® RC4,
Eq2] = ¢:1(E[2]) ® RC, @ RC; & RCs,
Eq[3] = ¢2(E.[3]) ® RCo ® RC> & RCi,
Eql4] = ¢3(E[4]) ® RCy ® RC & RCs,
Eq[5] = ¢3(E.[5]) ® RC1 ® RC3,

E 6] = ¢3(E.[6]) ® RCo ® RC> & RC,,
Eql7] $1(E.[7]) ® RCy ® RCs.

2. Set the first 4 expanded keys to K5 and the second 4 expanded keys to K3. Then, derive the
decryption round keys K = {K4[4i+3], Kq[4i+2], Kq[4i+1], K4[4i]} (: = 0,1, - -, 12) successively,
as in the encryption key schedule, using the constants and rotation amounts shown in Table 2.

Table 12 in Appendix A shows how the decryption round keys can be expressed in terms of expanded
keys.



K2' — K22 K2 g2

3 ] 27T 1 1 0 3 ] 2 [T 1 17 0
24 RC5 16 RC5 16 RC4 8 RCy
RC4 8 RC4 24 RC3 24 RC3 16

16 RC3 8 RC3 8 RC> 24 RC>
RC> 24 RC, 16 RC, 16 RC, 8

8 RC, 24 RC, 24 RCy 16 RCo
RCy 16 RCy 8

QY | W[N] = O] =

Table 2: Rotation amounts and constants for updating decryption round keys

3 Security Analysis

We first investigate the diffusion property of linear transformations and the differential and linear charac-
teristics of S-boxes together with their construction method. We then analyze the security of CRYPTON
against various possible attacks.

3.1 Diffusion Property of Linear Transformations

Due to memory requirements, small size S-boxes are commonly used in most block cipher designs and
thus the diffusion of S-box outputs by linear transformations plays a great role in providing resistance
against various attacks such as the differential and linear attacks.

From Sect.2.2.2, we can see that it suffices to consider any one component transformation m; of 7 to
examine the diffusion property of 7, since 7 acts on each byte column independently. Consider mq, for
example. It is easy to see that any column vector with n (n < 4) nonzero bytes is transformed by my into
a column vector with at least 4 — n nonzero bytes (this number 4 is called a diffusion order). This is due
to the operation of exclusive-or sum in 7. More important is that the number of such input vectors giving
minimal diffusion is very limited. This is due to the masked bit permutation. Exhaustive search shows
that there are only 204 values among 232 possible values that achieve the minimum diffusion order 4.
Furthermore, the nonzero bytes in input vector should have the same value to achieve minimal diffusion
(see Tables 13 - 15 in Appendix B).

Input: (d,c,b,a)t Round Possible values
Class [ Type 1[2[3[4[5]6]7]8 of z,y (in hexa)
Class 1 | (0,0,0,z)
0,0z,0) [ 1|39 |3]1]3]|9]3
(0,2,0,0) T
(2,0,0,0) 01,02,03; 04,08,0c
Class 2 | (0,0,z,2) 10,20,30; 40,80,c0
(01 I,E,O)
(m’m’ 0, 0) y :
(z,0,0,z) |[2|2]6|6|2]|2]6]6 /01,0203 04,080¢
(0,,0,9) 10,20,30; 40,80,c0
(,0,9,0) 11,12,13; 21,22,23
Class 3 | (z,z,z,0) 31,32,33; 44,48,4c
(z,z,0,z) 311|393 |1|3]9]| 84,88,8c;c4,c8,cc
(E’O.’ I’ z)
0,2,2,z)

Table 3: Number of nonzero bytes in S-box inputs in each round

Let us examine the diffusion effect of 7w through consecutive rounds. This analysis can be done by
assuming that in each round the S-box output can take any desired value, irrespective of the input value.
This assumption is to take into account the probabilistic nature of S-box transformation combined with
unknown round keys. Since it suffices to consider worst-case propagations, we only examine the inputs
with 1, 2, or 3 nonzero bytes in any one byte column, say the first byte column (see Appendix B). These
input values can be divided into 3 classes as shown in Table 3. The sum of the number of nonzero
bytes throughout the evolution is of great importance to ensure resistance against differential and linear



cryptanalysis. Table 3 shows that the number of nonzero bytes per round is repeated with period 4 and
their sum up to 8 rounds is at least 32.

3.2 S-boxes Construction and their Property

The S-boxes for a block cipher should be chosen to have two important requirements: differential unifor-
mity and nonlinearity. Combined with the diffusion effect of linear transformations used, they directly
affect the security of the block cipher against differential and linear cryptanalysis (DC and LC, for short)
[1, 15].

Following the formalization by Matsui [16], we define the differential and linear approximation prob-
abilities of an S-box S (DPs and LPs for short) as follows. Let X and Y be a set of possible 2™
inputs/outputs of S, respectively. Then, DPs and LPg, respectively, are defined by

o X|S(z)® S Az)=A
DPs Lf max #ie € X|S(2) & S(z @ Av) y}’ (4)
Az#£0,Ay 2n
. X|zeTz = Ty} —2n=1\?
LPg e max (#{I € Xjoolz = 5(z) e Ty} ) , (5)
Tz, Ty£0 n—1

where a @ b denotes the parity of bit-wise product of a and b.

The nonlinear transformation adopted in CRYPTON is byte-wise substitution using two 8 x 8 S-boxes,
So and S;. We first constructed an S-box Sy from three 4 x 4 S-boxes, Py, P;, P,, using a 3-round Feistel
cipher. That is, y = So(z) is obtained by

zi||z, = z, where |z,| = |z;| =4,
Yr = z,® Pz ® Po(,)),
yo= 21O P(zr) ® Py,
y = yilly-

Then the S-box S; is derived from Sy as (see Figure 5) Si(z) = So(z) ' for z = 0,1,---,255. This
technique to generate a larger S-box from smaller S-boxes was first introduced in MISTY [17] and also
used in CS-cipher [21]. According to Nyberg and Knudsen [19], the S-boxes constructed as above will
have DPs, < 2p? (LPs, < 2p?, resp.) if each P; is bijective with DPp, < p (DPp, < p, resp.).

7 g

PL =D P1 =)
- M
Pt P (am Y
0 S1

Figure 5: Construction of 8 x 8 S-boxes Sy and S from 4 x 4 S-boxes P; (j =0,1,2)

The 4 x 4 S-boxes shown in Table 4 were found in some restricted search space of 4-bit functions
according to the following criteria:

e The S-boxes should have good differential and linear characteristics. More specifically, DPp, =
LPp, < 272, Furthermore, the number of difference pairs (selection patterns, resp.) with the best
differential (linear approximation, resp.) probability in the resulting 8 x 8 S-boxes should be as
small as possible when the input is restricted to the minimal diffusion set under 7 (see Table 3).
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e The S-boxes Py and P; need not be one-to-one mappings. However, P; should be one-to-one for S;’s

constructed from P;’s to achieve good differential and linear characteristics.

We further required

P; to satisfy the strict avalanche criterion (SAC).

e The S-boxes should be implemented in hardware using as small gates as possible.

The algebraic

degree of the component functions for Py and P» is restricted to two and that for P, to three for
hardware efficiency.

| [ o1 2 3 45 6 7 8 91011 12 13 14 15
Py[[156 9 6 8 9 9 412 6 2 610 1 3 5 15
P, [[1016 4 7 5 214 6 9 312 8 13 1 11 0
Py 0 4 8 4 215 813 1 115 7 2 11 14 15
Table 4: 4 x 4 S-boxes Py, P; and P;
P() Yo = (Iz/\il}g)V(ilil /\E)
y1 = (zo A z3) V (To A Z32)
y2 = (z1 A z2) V (To A Z32)
Y3 = (TO /\.’.61) \Y (Tl /\E)
P\ yo= (23 A(Z1V (To A 22))) V ((Zo ATz) A ((To A1) V (T2 A T3)))
v = (e A (B V (T AT2)) V (@ AT3) A ((F5 Awy) V (73 A T3)))
Yo = (21 A (T3 V (To A 22))) V ((Zo A Z2) A ((To A1) V (22 A T3)))
yo = (23 A (75 V (21 A 73)) V (1 AT2) A (7o Aza) V (73 A 75))
Py || yo = (zo Ama) V(T2 Aas)
Yy = (11,1 /\ wa) V (1L1 /\ 1132)
Y2 = (11 A afs) \Y (lo /\E)
Yys = (1130 A mz) \% (11,0 A 1111)
Table 5: Boolean expressions for y = P;(z) (y = y3y2Y1Y0,T = T3T2T1T0)

The selected 4-bit S-boxes P;’s have the following DC and LC characteristics:

DPp, = DPp, = 273,
LPp, = LPp, = 2_2,
DPp, = LPp, = 272,

The boolean expressions for implementing P;’s are given in Table 5. It is easy to see that Py and P; can
be implemented using 16 nand gates and P; using 27 nand gates.

The two 8 x 8 S-boxes constructed from the selected 4-bit S-boxes are presented in Appendix C.
The S-box Sy has one fixed point and S; has two. Table 6 shows their statistics on the distribution of
input-output difference/linear approximation pairs, where the entry value is the number computed by
the numerator of equation (4) (equation (5) in the case of linear approximations).

Difference distribution

entry value 0 2 4 6 8
no of entries || 41503 | 16592 | 6576 | 560 | 304
Linear approx. distribution
entry value 0 8 16 24 | 32
no of entries || 26655 | 31200 | 7232 | 288 | 160

Table 6: Distribution of nonzero entries in the difference/linear approx. tables of S;
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From the table, we can see that for 2 = 0,1

def 8 _

Pa = DPSi = ﬁ =2 57 (6)
def 2-32, _

p = LPs, = (%)2 = 274, (7)

and that there are 304 input-output difference pairs achieving the best characteristic probability pg (160
input-output selection patterns achieving the best linear approximation probability p;). However, if the
input is restricted to the minimal diffusion set shown in Table 3, there are only 2 such pairs (8 such pairs
in the case of linear approx.). Table 7 shows such pairs in each S-box.

DC || (80, 88) (80, c8)
So | LC || (2, 80) ( 4, 80) ( 8, 10) (12, 8)
(12, 11) (88, 2) (88, 84) (8c, 4)
DC || (88, 80) (c8, 80)
S: [ LC | (2, 88) ( 4, 8c) ( 8, 12) (10, 8)
(80, 2) (80, 4) (11, 12) (84, 88)

Table 7: Selected I/O pairs with maximum entry value in the difference/linear approx. tables of S;

3.3 Differential Cryptanalysis

Differential cryptanalysis is a chosen plaintext attack introduced by Biham and Shamir [1], which tries
to find the subkey of the last round by examining changes in the ciphertext bits in response to con-
trolled changes in the plaintext bits. Differential cryptanalysis relies on the existence of highly probable
characteristics/differentials. An r-round characteristic consists of a sequence of (input difference, output
difference) pairs in each round up to round r, while an r-round differential only considers an input differ-
ence at the 1st round and an output difference at the r-th round [13]. Thus the probability of an r-round
differential with input difference a and output difference 3 is equal to the sum of the probabilities of all
r-round characteristics with input difference a and output difference 3. Therefore, it would be right to
consider differentials, rather than characteristics, to prove security against differential attacks.

Let us first evaluate the best r-round characteristic probability for CRYPTON. It can be shown (e.g.,
see [3]) that the probability of any characteristic in CRYPTON is completely determined by the number
of active S-boxes and their characteristic probabilities. For worst-case analysis, suppose that the smallest
active S-boxes involved in an r-round characteristic is a and all the S-boxes involved have the best
characteristic probability pg. Then, under the assumption of independent and uniform distribution for
plaintexts and round keys, the probability pc, for the r-round characteristic is given by

pc, =pq-

From Table 3, we know that the best 8-round characteristic should involve at least 32 active S-boxes. (In
the context of differential cryptanalysis the nonzero bytes in Table 3 should be thought of as input/output
differences.) Therefore, the probability pc, that the best 8-round characteristic could take is at most

— 2—160

pcy )

since our S-boxes have pg = 27°. This figure shows that any differential attack based on the characteristic
would require at least 2160 known plaintexts (more than available) and thus impossible. Furthermore, we
can easily see from Table 7 and Tables in Appendix B that there exist no such characteristic.

Next, consider the best r-round differential probability pp,. Given a pair of input and output dif-
ferences, there may be a relatively large number of characteristics starting with the input difference and
ending with the output difference. With a little close examination of the diffusion property of linear
transformations m and 7, we can obtain a very loose bound on the number of possible characteristics
that can reside in any differential involving the smallest possible S-boxes. In fact, the number of such
characteristics for 8-round CRYPTON can be bounded by 158 x 42 x 35 x 23 ~ 2%7%, This figure was
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obtained by assuming that each S-box can take any desired output difference for a given input difference.
Even though we assume the existence of such number of best characteristics, the best 8-round differential
probability is sufficiently small, i.e., pp, = 271122,

Note that the above figures were obtained by assuming that all S-boxes involved can take maximum
possible values for differential and linear approximation probabilities (i.e., 27° and 2%, resp.). Actual fig-
ures will be much lower, since our S-boxes each have only 2 input/output difference pairs giving pg = 2~°
when difference values are limited to those with minimum diffusion (see Table 7) and linear transforma-
tions between rounds would make it impossible to form a chain only with best S-box characteristics.

The above analysis shows that we can get strong enough resistance against DC only with 10 rounds
(assuming a 2R-attack). Though it is assumed in this analysis that the plaintexts and round keys are
independent and uniformly random, which does not hold in practice, such an analysis has been found to
provide a reasonable estimation on the security against DC.

3.4 Linear Cryptanalysis

Linear cryptanalysis is a known plaintext attack introduced by Matsui [15]. The key point in this attack is
to find an effective linear approximation involving some bits of the plaintext (selected by input selection
patterns), some bits of the ciphertext (selected by output selection patterns) and the associated key
bits. If this linear approximation holds with some probability biased from %, then the correct value of
the combination of key bits, thus equivalent one-bit key information, can be extracted by testing the
satisfiability of the linear approximation with sufficiently many plaintext-ciphertext pairs. Obviously, the
greater the bias, the fewer the number of plaintext-ciphertext pairs required to determine the correct key
bit value.

In the context of linear cryptanalysis the nonzero bytes in Table 3 should be thought of as input/output
selection patterns. Note that the S-boxes chosen for CRYPTON has the best linear approximation proba-
bility of p; = 27%. The overall linear approximation involves a number of S-box linear approximations and
the number of such S-boxes (i.e., active S-boxes) determines the complexity of linear cryptanalysis. As in
differential cryptanalysis, it is known that the probability py, for the best r-round linear approximation
can be approximated by

PL, =Dl

under the assumption that the plaintext and key bits are distributed independently and uniformly at
random, where a denotes the total number of active S-boxes involved. Therefore, the best linear approx-
imation probability for 8-round CRYPTON is approximated by

pr, = 27128
Again this value is a very loose upper bound. Actually there will be no linear approximation achieving
this probability, considering the linear characteristic of S-boxes and the linear transformations involved
(see Table 7 and the related tables in Appendix B).

As in the differential attack, we may use multiple linear approximations to improve the basic linear
attack [10, 11]. Suppose that one can derive N linear approximations involving the same key bits with
the same probability. Then the complexity of a linear attack can be reduced by a factor of N, compared
to a linear attack based on a single linear approximation [10]. However, a large number of linear approxi-
mations involving the same key bits are unlikely to be found in most ciphers, in particular in CRYPTON.
Multiple linear approximations involving different key bits may be used to derive the different key bits
in the different linear approximations simultaneously with almost the same complexity [11]. However,
this will be of little help to improve the basic linear attack, since we already have a linear approximation
probability far beyond a practical attack. Therefore, we believe that there will be no linear attack on
10-round CRYPTON with a complexity significantly lower than 2128,

3.5 Security against Other Possible Attacks

There are some variants to the basic differential attack discussed above. Knudsen introduced the idea of
truncated differentials [7]. A truncated (or partial) differential is a differential that predicts only part of
the difference (not the entire value of difference). The existence of good truncated differentials and their
usefulness depend on specific cipher algorithms. Knudsen demonstrated that this variant of DC may be
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more effective against some kind of ciphers than the basic differential attack and may be independent of
the S-boxes used [9]. Our preliminary analysis shows that truncated differentials are not much useful for
differential cryptanalysis of CRYPTON compared to ordinary differentials.

Another variant of DC is the higher order differential attack considered by Lai [12]. This variant
is also quite effective for some ciphers [7, 4]. Let d be the polynomial degree of (r — 1)-round output
bits expressed as polynomials of plaintext bits. Then the higher order differential attack allows us to
find some key bits of the last round key for an r-round cipher using about 2%t chosen plaintexts [4].
Obviously the success of this attack depends on the nonlinear order of S-box outputs. Since CRYPTON
uses S-boxes with nonlinear order 5, the polynomial degree of output bits after 4 rounds increases to
5% > 128. Therefore, the higher order differential attack on CRYPTON will be completely infeasible
after 4 rounds.

On the other hand, Jacobsen and Knudsen presented an interesting algebraic attack on block ciphers
called the interpolation attack [4]. This attack exploits the fact that the ciphertext can be expressed as a
polynomial of the plaintext with a fixed number (say n) of unknown coefficients and thus the encryption
polynomial can be reconstructed given n pairs of plaintexts/ciphertexts encrypted under a fixed key K.
This polynomial should then be equivalent to an encryption algorithm under the key K. Clearly the
complexity of this attack depends upon the number of S-boxes applied throughout encryption and/or the
polynomial degree of S-box outputs. The S-boxes used in CRYPTON do not allow a simple algebraic
description. Furthermore, the bit permutation 7 in each round destroys any potential algebraic structure
through the bit-wise mixing of the S-box outputs and encryption involves a large enough number of S-
box applications. Therefore, we believe that CRYPTON also provides strong resistance against algebraic
cryptanalysis, such as the interpolation attack.

3.6 Key Schedule Cryptanalysis

Key schedule cryptanalysis is another important category of attacks on block ciphers. Typical weaknesses
exploited in key schedule cryptanalysis include weak keys or semi-weak keys, key collisions (equivalent
keys), linear factors, simple relations such as the complemetation property existing in DES, etc. (for
details, see e.g. [8, 5, 6]). These weaknesses can be exploited to speed up an exhaustive key search or to
mount related key attacks. Though most of these attacks on key schedules are not practical in normal
use, they may be a serious flaw in certain circumstances (e.g., when a block cipher is used a basic building
block for hash functions).

The key schedule for CRYPTON is designed with the above known weaknesses in mind. There is no
weak keys or semi-weak keys. Weak keys exist in CRYPTON if there exist round keys such that

K [4k + j] = K.[48 — 4k +] (0 < k <5, 0 < j < 3).

Referring to Table 11, we can easily check that there are no weak keys (This is mainly due to the use of
different round constants in each round). There are no semi-weak keys either, since no weak keys exist
whatever values the expanded keys take.

The 8 expanded keys are derived from a user key via an invertible transformation and thus no different
user keys can produce the same expanded keys. This guarantees that there is no equivalent keys.

There is no complementation property either, since both key expansion and encryption processes
involve parallel nonlinear substitutions. The same reason ensures that there will be no other simple
relations between different user keys.

We also believe that there are no related keys that can be used to mount related-key differential attacks.
First, a user-supplied key is transformed into expanded keys by a nonlinear bijective transformation,
ensuring that any controlled change in the user key should result in at least one-byte change in one of the
expanded keys. Second, the same 8 expanded keys are used six or seven times throughout encryption,
each time at least two round keys being rotated and thus applied to different locations of data array.
Finally, parallel nonlinear substitutions in each round make it difficult for an attacker to exploit any
controlled change in an expanded key.

The CRYPTON key schedule is designed to be very efficient in both software and hardware imple-
mentation. In hardware the 8 expanded keys can be retained in registers and updated at each round by
rotations and constant additions. In software the whole round keys can be generated and stored for use
in multiple blocks of encryption.
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4 Implementation and Efficiency

The cipher CRYPTON is designed to be highly parallelizable, considering the current trend of micro-
processor technology and the efficiency of hardware implementation. Today’s most microprocessors are
adopting multiple levels of pipelining and a certain amount of parallelism to maximize their performances.
Thus parallelizability has been one of important design criteria in modern algorithm designs. The round
function of CRYPTON actually consists of three steps of parallelizable operations. Therefore we can
expect that CRYPTON will be extremely fast in both software and hardware implementation.

4.1 Implementation on 32-bit Microprocessors

The round transformation of CRYPTON can be efficiently implemented on a 32-bit microprocessor using
table lookups, if we use 4 KBytes of storage in addition. The idea is to precompute and store 4 tables of
256 words (0 < j < 255) as follows:

SSol7] = Sols] Ams || So[5] Ama || Sols] Ama || Sols] Ama,
§S81[7]1 = Si[il Amo || Sils]Ams || S1[5] A ma || Si[5] Ama,
§S2[5] = Sols]Ama || So[5]Amao [| Sols] Ams || Sols] Amea,
SSs[3] = SililAme || Sils]Ama || Sils] Ame || Si[i] A ms.

Then it is easy to see that the odd round function B = p,g(A) can be implemented by

By = 85o[aoo] @ SS1[a10] @ §S2[az] © SSs[ase] ® K|0],
B; = SSi[aol] ® SS2[a11] ® SSs[az] & SSolas1] ® K[1],
By = SS[a0s] ® SSs[a1a] @ SSo[azs] ® SSi [azs] B K[2],
B; = SSs[ags] ® SSolais] ® SSi[azs] @ SS2[ass] ® K[3].

Similarly, the even round B = p.x(A) can be implemented by

By = S51[ao] ® SSz2[a10] ® SSs[az] & SSo[ase] ® K[0],
By = SS:[ao1] ® SSsla11] ® SSo[az] & SSi[as1] ® K[1],
By = S83[ao2] ® SSo[a12] B SS1[az] ® SS:[as:] ® K[2],
B; = SSolaos] ® SSi[ais] ® SSa[aqs] @ SSs[ass] ® K[3].

Therefore, one round of CRYPTON can be performed using 20 table lookups (16 to SS-boxes, 4
to round keys), 16 XORs, 12 shifts and 16 ANDs (for byte extraction). (If there are a number of
registers available, as in most RISC machines, it may be more efficient to use the 8 expanded keys during
encryption/decryption instead of round keys, since we only need 2 XORs and 2 rotates for round key
computation from expanded keys. This method of partial key schedule is also expected to yield a better
performance in the case of frequent key change, e.g., when CRYPTON is used for hashing.) Due to the
parallel processing of data, 8 intermediate data variables cannot be managed by registers on most PCs
and thus some of these variables should be loaded/stored from/to memory.

We have implemented CRYPTON on 200 MHz Pentium Pro running Windows 95 (with 32 Mbytes
of RAM) and on 167 MHz UltraSparc running Solaris 2.5 (the two C codes are a little different.) The
result is shown in Table 8 (These timings were obtained using our core routines without including AES-
API overheads. The codes submitted to NIST were not fully optimized due to our tight time schedule.
The presented timings were obtained with the latest version of our optimized codes. The updated codes
are available from my home page at http://crypt.future.co.kr/” chlim). Our optimized C code runs quite
fast, giving an encryption rate of about 6.4 Mbytes/sec on Pentium Pro. The partial assembly code can
encrypt/decrypt about 7.8 Mbytes per second, running about 20 % faster than the optimized C code.
(Only the encryption routine is implemented in-line assembly.) We expect that a full assembly language
implementation will be a little faster. On UltraSparc, CRYPTON runs somewhat slower, achieving an
encryption rate of about 4.1 Mbytes/sec.

The key setup time of CRYPTON is different for encryption and decryption. Decryption key setup
requires a little more computations, i.e., transformation of expanded keys. Our encryption key schedule
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is very fast, taking much less time than one-block encryption. As a result, CRYPTON is very efficient
even in the case of encrypting/decrypting only a few blocks of data. Note that the key setup time remains
almost the same for different sizes of user keys.

CRYPTON should be initialized with a table for S-boxes at the first time of use. Once generated, these
S-boxes are embedded into the code. The table generation (P;(j = 0,1,2) = S, 51 — 55;(0 < i < 3))
takes a relatively large amount of time compared to key scheduling. But this will cause no problem in
practice, since it is required only once at the algorithm setup time. (Actually we need not generate SS-
boxes. In most cases, it suffices to write into a file (to be included in the encryption routine) appropriately
masked versions of S-boxes, as described above.)

| Language\Clocks || Alg. setup | Key setup (enc/dec) | Enc/Dec ]

In-line Asm (PC) N/A N/A 390 / 390
MSVC 5.0 (PC) 9740 325 / 360 475 [ 475
GNU C (UltraSparc) 11460 470 / 520 615 / 615

Table 8: Speed of CRYPTON on Pentium Pro and UltraSparc

4.2 Implementation on 8-bit Microprocessors

Since CRYPTON essentially processes data byte by byte, it is very simple and efficient to implement on
8-bit microprocessors. It uses only simple operations, such as logical ANDs, XORs and table lookups.
The 8-bit S-boxes S; (2 = 0,1) take 512 bytes of EEPROM and intermediate data variables require only
20 bytes of RAM. Furthermore, it is reasonable to assume that 32-byte expanded keys can reside within
RAM during encryption, so there may be no need to generate round keys. This will be of great advantage
when implemented on small portable devices such as smart cards.

If a target microprocessor cannot accommodate even 512 bytes of storage, each S-box table entry can
be directly computed from three 4 x 4 S-boxes P; (1 = 0,1,2). In this case the table needs only 48 bytes
of memory (or even can be packed to 24 bytes if a few more operations are used to access the table entry).
Then, we can obtain one S-box table entry by using 10 operations (3 table lookups, 3 XORs, 2 AND/OR
and 2 shifts (to extract/combine two 4-bit values from/to a byte value)).

We do not have access to an 8-bit microprocessor, so we simply estimate the number of required
instructions (cycles) under the following computing model:

e The microprocessor has two Accumulator registers and sufficient memory (EEPROM) to hold the
two 8 x 8 S-boxes.

e Destination of any instruction must be Accumulator. Therefore, data must be first loaded into
Accumulator, processed there using other data in a register or memory and then stored back into
memory.

e We only use three kinds of instructions, each of which is assumed to take 3 clock cycles: register-
to-memory /memory-to-register MOV, register-to-register /memory-to-register XOR and immediate-
to-register/memory-to-register AND. Note that some instruction (e.g., memory access by indexed
addressing) may require more clock cycles, while some other instructions (e.g., AND/XOR with
immediate data) take less cycles. By averaging, we made a uniform 3 cycle assumption to simplify
the speed estimation.

We estimated two cases of encryption/decryption time. If a microprocessor has a sufficient RAM space
for intermediate data variables and round keys, and if many data blocks need to be encrypted/decrypted,
then we can generate and store the encryption/decryption round keys from a user-supplied key. After
then, data can be encrypted/decrypted using the round keys stored in RAM. On the other hand, if only
a small amount of RAM is available, then we have to encrypt/decrypt data together with in-line key
scheduling. Table 9 shows the resource requirements and the estimated speeds for each scenario. We did
not try any optimization for this estimation. Note that component functions of encryption/decryption are
re-grouped into different round transformations to facilitate the estimation. The difference in the number
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of instructions (416) between one-time encryption and decryption exactly corresponds to the operations
needed to transform expanded keys (two times of 7 o m o 7 and constant additions, see Sect.2.4).

RAM 20 (data) + 208 (round keys) = 228 bytes
EEPROM 512 bytes for S-boxes
# of instructions | # of cycles notes
Yoo 64 192 round 1
YoooToT 224 672 round 2 - 11
gOTOYOgOTOT 240 720 round 12
Total Enc/Dec 2544 7632 Round keys in RAM
Key Expansion 576 1728 from 32-byte UserKey
Enc Round key Gen. 520 1560 from 32-byte ExpKey
Dec Round key Gen. 670 2010 from 32-byte ExpKey
Total Enc Key Setup 1096 3288
Total Dec Key Setup 1246 3738
RAM 20 (data) + 32 (UserKey) = 52 bytes
EEPROM 512 bytes for S-boxes
# of instructions | # of cycles notes
Key Expansion 576 1728
Trans. of ExpKeys 416 1248 E, = E4
RoundKey Update 40 120 11 times
TOTOT 192 576 for final round keys
Total Encryption 3752 11256 with In-line Key Scheduling
Total Decryption 4168 12504 with In-line Key Scheduling

Table 9: Estimated speed of CRYPTON on an 8-bit microprocessor

4.3 Software Implementations on Other Platforms

CRYPTON can also be efficiently implemented on other platforms using the table lookup method de-
scribed above, for example, on 16-bit or 64-bit microprocessors or digital signal processors. It can be
expected that CRYPTON will run a little faster on a 64-bit microprocessor than on a 32-bit micro-
processor, since eight 32-bit data variables can be managed with four 64-bit registers. The number of
required operations is almost the same if we use 12 Kbytes of storage. Also, CRYPTON will be ideal to
be implemented on DSPs which have multiple execution units such as TMS320C6x. We are working on
implementation on TMS320C6x.

4.4 VLSI Implementation

CRYPTON is designed by taking into account efficient hardware implementations. The 4 x 4 S-boxes P
and P, can be implemented using 16 nand gates of depth 3 and P; needs 27 nand gates of depth 5 (see
Table 5). Thus, each S-box can be implemented using 107 nand gates of depth 20. Therefore, we can see
that one round of CRYPTON can be implemented using 3248 nand gates with depth 26. The initial key
addition and the special final round together can be implemented using 2736 nand gates. We also need
two 128-bit registers as input and output data buffers.

Generation of 8 expanded keys (for encryption) requires the circuit equivalent in gate count to two
round encryptions plus 14 XORs of 32-bit words. This amounts to 8288 nand gates. We also need 2048
nand gates for conversion of expanded keys. Round key generation (from round 2) only needs 32 nand
gates per round. There also should be two 128-bit registers to buffer 256-bit expanded keys and one
32-bit register to update a round constant. Therefore, the whole key scheduling part can be implemented
using 10688 nand gates and a 288-bit register.
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With a cheap technology we may implement just two rounds of encryption and iterate this circuit 6
times to encrypt one block. In this case, we also need to implement the initial key addition (512 nand
gates) and the final output transformation (7o m. o 7; 1024 nand gates). This circuit can be implemented
using 8032 nand gates and a 384-bit register, where we assume that pre-computed round keys are applied
to the circuit and thus only one 128-bit register is counted for key scheduling.

On the other hand, we can implement the full 12-round CRYPTON, including the complete key
scheduling part, for high speed applications such as ATM, HDTV, B-ISDN and PCI bus, etc. This
circuit can be implemented using 49152 nand gates and a 544-bit register. Table 10 summarizes the
number of nand gates required for this full implementation. Note that the time to pass the key expansion
part corresponds to an initial key setup delay in hardware implementation. For multiple blocks of
encryption/decryption, the expanded keys can be retained in registers for later use. We have not yet
carried out any simulation to estimate the required number of clocks.

# of nand gates depth note
Initial KeyAdd 512 3
Round Trans 3248 26 round 1 - 11
Final round 2224 23
| Total Enc/Dec || 38464 | 312 | + 256-bit register |
Key Expansion 8288 35
RoundKey Update 32 3 round 2-12
ExpKey Trans 2048 6
| Total Key Schedule || 10688 | doesn’t matter | + 288-bit register |

Table 10: Estimated gate count for a full parallel implementation of CRYPTON

5 Other Considerations and Discussions

5.1 The Number of Rounds and Possible Variants

Our preliminary analysis shows that the complexity of differential and linear attacks on 10-round CRYP-
TON would require more ciphertexts than available. We thus propose to use 12 rounds for CRYPTON,
with a margin of two more rounds. We believe that this number of rounds will be far sufficient to thwart
any known attack against block ciphers. Nevertheless, if desired, we may increase the number of rounds
to, say, 16 by extending the key scheduling process. Also, the number of rounds may be increased as
the size of a user key increases. However, in this version of proposal, we did not consider such a variable
number of rounds.

Though we designed CRYPTON with a fixed 128-bit block size, it is quite easy to modify it into a
cipher with other block size. In fact, the bit permutation 7 is better suited for use in a 64-bit or 512-bit
block cipher. For example, we can design a 64-bit block cipher using four 4-bit S-boxes and a variant
of m in which a new 4-bit nibble is formed by extracting just one bit from each XORed nibble in the
same column. This variant will have better differential and linear characteristics, since there are smaller
number of characteristics constituting a differential. For fast bulk encryption on a 64-bit microprocessor,
we may use a variant of 512-bit block size. This variant processes a 512-bit data block by representing it
in 8 x 8 byte array.

5.2 Advantages and Limitations

Simplicity and Easy Analysis: The simplicity of CRYPTON allows easy analysis against various
known attacks, including differential and linear cryptanalysis. This simple analysis in turn enables us
to determine the number of rounds required to guarantee high enough security against those attacks.
Though we couldn’t carry out a complete analysis against all possible attacks, its simple design will make
it easier to perform various security evaluations.
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Efficiency in both HW and SW: CRYPTON uses only very simple instructions (AND, XOR, rotate
by a multiple of 8 and table lookups), which allows very efficient implementations in both large micropro-
cessors and small microprocessors. Various tradeoffs are possible between speed and memory (e.g., with
memory of 48, 512, 1K, 2K, 4K, 12K, 512K bytes etc.). The S-boxes were carefully designed to enable
efficient implementation with a simple hardware logic. All the other components of CRYPTON can be
implemented in hardware only using XOR, gates (1 XOR gate = 4 nand gates). Our estimation on the
gate count shows that CRYPTON can be implemented very efficiently in hardware. We also made much
effort to make the encryption and decryption processes identical. This greatly reduces the code size (in
software) and the gate count (in hardware).

Fast Key Scheduling: The key scheduling algorithm is also very efficient and appears to be secure
against various attacks on key schedules. It is designed by taking into account various applications: Two
step generation of round keys will be very useful in the environment with limited resources. Fast key
setup time makes CRYPTON very advantageous when used for a few blocks of encryption (in particular,
for hashing). The CRYPTON key schedule allows to use any size of a user key (Key size is restricted to
minimum 64 bits for security) and can be easily extended as the number of rounds increases.

CRYPTON has a fixed block size of 128 bits. However, it is possible to modify CRYPTON to operate
in other block sizes as mentioned before. We may also double the block length by using the Luby-Rackoff
construction [14].

5.3 Mode of Operations

CRYPTON can be used as a building block for various applications. These include collision-resistant hash
functions, pseudo-random number generators, stream ciphers and message authentication codes (MACs).

Hash Functions: There have been proposed a lot of methods to construct hash functions from block
ciphers (e.g., see [20]). Some well-known constructions include the Matyas-Meyer-Oseas construction
and the Davies-Meyer construction. A hash function based on a block cipher is in general much slower
than the underlying block cipher due to the key schedule overhead. One block hashing typically requires
one-time key schedule and one block encryption. Our key schedule runs very fast, taking much less time
than one block encryption. Actually we could achieve a hashing speed of about 60 % of the encryption
speed with our C implementation. For a longer hash code we may use double-length hash constructions

(for 256-bit hash code in the case of CRYPTON), such as the one described in ISO/IEC 10118-2.

Message Authentication Codes: Block ciphers are widely used to generate a MAC. The most popular
method is to encrypt a message in CBC mode and take the last ciphertext (or part of it) as a MAC (CBC-
MAC). CRYPTON can also be used for this purpose.

Stream Ciphers: CRYPTON can be used to generate a keystream for a stream cipher. For example,
we can use CRYPTON as a synchronous stream cipher by running it in OFB (output feedback) mode,
or as a self-synchronizing stream cipher by running it in CFB (cipher feedback) mode.

Pseudo-random Number generators: Block ciphers are often used for pseudo-random number gen-
eration. The simplest such generator is to run a block cipher in counter mode or in OFB mode. There
also exist cryptographically more strong PRN generators, such as the PRN generator suggested in ANSI
X.9.17. CRYPTON can be used for this purpose as well.

5.4 Historical Remarks

The overall structure of CRYPTON is borrowed from Square [2]. However, CRYPTON completely differs
from Square in its bit-permutation and S-box construction. These two components are essential parts in
block cipher designs. We decided to start with the parallel structure of Square, considering its efficiency
in modern microprocessors implementing more and more parallelisms. One disadvantage of this structure
is that more registers are needed for handling intermediate variables.
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The bit permutation 7 has diffusion order 4, while the MDS matrix multiplication used in Square has
diffusion order 5. However, our bit permutation is very simple and efficient (it can be implemented only
using XORs) and, since it is involution (i.e., 7 = 77!), we could make the encryption and decryption
processes identical. There are a lot of choices for a masking vector M for 7. We did not test all possible
values for masking bytes m;’s. Our choice is made based on the ease of analysis (systematic diffusion
property when rotated) and the number of minimal diffusion elements.

There were some changes in S-box construction. At a first time, we tried to use just one 8 x 8 S-
box constructed from an inverse polynomial over GF(28), since such an S-box is self-invertible and has
very good differential and linear characteristics [18]. However, such S-boxes can only be implemented in
hardware using ROM or EEPROM. Then, the speed of a cipher will be limited by the memory access
time. The speed limitation may be even worse, considering parallel accesses to the S-boxes in CRYPTON.
Therefore, we wanted the S-boxes to be efficiently implemented with a simple hardware logic. The final
S-box Sy was constructed so that it can be implemented using as small number of nand gates as possible.

5.5 Future Directions

We are currently working toward some improvements in security with minor changes in the algorithm.
One direction is to find better S-boxes. For example, we have a little uneasy feeling for the bit/byte
permutation used in CRYPTON. The bit permutation only mixes the bits in the same bit column (i.e.,
unchanges the bit positions in bytes). Though the byte substitution nonlinearly transforms the resulting
bytes into (presumably) new random bytes (combined with key addition), this fact might be a weak point
if the S-boxes would have some relevant, unidentified weakness. We have found no weakness yet, but in
the next revision we will reflect the following change in S-boxes.

The present version uses just two S-boxes, i.e., Sp and 57 = SO_I. In the revised version we will add
two more variants of Sy to make it more difficult to form a chain of good characteristics. The four S-boxes
are constructed as: Sp, S1(z) = So(x)<C for z € [0,256), S2 = Sy, and S3 = S;'. We decided to use
variants of one S-box, instead of independent S-boxes, to allow greater flexibility in memory requirements
(in particular, considering the environment with limited resources, such as smart cards). Actually we
have already updated this change in both the code and document. (This revised version is available from
my home page at hitp://crypt.future.co.kr/~ chlim.) This change increases the storage requirement for
8-bit microprocessors (512 bytes to 1024 bytes). With the same 512 bytes of EEPROM we would need 8
rotations per round in addition. However, it does not affect the efficiency on large microprocessors or in
hardware.

Another direction is to find a better masking vector for bit permutation. For example, we may use
different bit permutations in odd and even rounds. Finally, the use of essentially the same round keys
in the initial and final key addition steps may be exploited to speed up some variants of differential
cryptanalysis, as is often the case in the existing algorithms. The key scheduling algorithm will also be
carefully reviewed in the next revision. We will continue to improve/ analyze the security and efficiency
of CRYPTON and reflect any improvement found in the next revision.

6 Conclusion

We have described a new 128-bit block cipher CRYPTON proposed as a candidate algorithm for AES
and analyzed its security. CRYPTON uses the same algorithm for encryption and decryption with
different key schedules, and supports variable key-length up to 256 bits. Its high parallelism allows fast
implementation in both software and hardware. Our analysis shows that 12-round CRYPTON is secure
against most known attacks. At present the best attack on CRYPTON appears to be exhaustive key
search. However, as usual, more extensive analysis should be done before practical applications of a newly
introduced cipher, so we strongly encourage the reader to further investigate CRYPTON with various
ways of attack. We would greatly appreciate reports of any weakness found.
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A Encryption/Decryption Round Keys in Terms of Expanded

Keys
Tables 11 and 12 show the encryption/decryption round keys expressed in terms of 8 expanded keys.

K.[0] = E.[0] K. = E.[4]

K [1] = E[1] K.[5] = E.[5]

K.[2] = E.[2) K.[6] = E.[6]

K.[3] = E.[3] K.[7] = E.[7]

K.[8] = ROL(E.[0],9) K.[12] = E.[4]® RCo

K.[9] = E.[1]® RCo K.[13] = ROL(E.[5], 16)

K.[10] = ROL(E.[2], 16) K.[14] = E.[6] ® RCo

K.[11] = E2[3] & RCo K.[15] = ROL(E.[7], 24)

K.[16] = ROL(E.[0],8) ® RC: K.[20] = ROL(E.[4],8) ® RCo
K.[17] = ROL(E.[1],24) ® RCo K.[21] = ROL(E.[5],16) @ RC:
K.[18] = ROL(E.[2],16) & RC1 K.[22] = ROL(E.[6],16) @ RCo
K.[19] = ROL(E.[3],8) ® RCo K.[23] = ROL(E.[7],24) ® RC:
K.[24) = ROL(E.[0],24) ® RC; | K.[28] = ROL(E.[4],8) ® RCoz
K.[25] = ROL(E.[1],24) ® RCy2 | K.[29] = ROL(E.[5],8) ® RC1
K.[26] = ROL(E.[2],8) ® RC: K.[30] = ROL(E.[6],16) @ RCo2
K.[27] = ROL(E.[3],8) ® RCo2 K.[31] = E.[7]® RC1

K.[32] = ROL(E.[0],24) ® RC13 | K.[36] = ROL(E.[4],24) ® RCy2
K.[33] = E¢[1] ® RCo2 K.[37] = ROL(E.[5],8) ® RC13
K.[34] = ROL(E.[2],8) ® RC13 K.[38] = ROL(E.[6],8) & RCo2
K. [35] = ROL(Ee [3], 24) @ RCyo K. [39] = F, [7] @ RC13

K [40] = ROL(E.[0],16) ® RC13 | Kc[44] = ROL(E.[4],24) ® RCo4
K. [41] = Ee[l] ® RCoa K. [45] = ROL(Ee [5], 16) @ RC13
K.[42] = ROL(E.[2],16) @ RC13 | K.[46] = ROL(E.[6],8) ® RCo4
K.[43] = ROL(E.[3],24) ® RCos | K.[47) = ROL(E.[7],16) ® RC13
K.[48] = ROL(E,[0],16) ® RC1s
K.[49] = ROL(E.[1].16) ® RCos
Ka [50] = ROL(Ee [2]1 16) @ RCIS
Ka [51] = ROL(Ee [3]1 16) 5 RC04

Notes :
RCo2 = RCy @ RC,, RC.13 = RC: @& RCj;,
RCyy = RCy ® RC, & RCy, RC;5 = RC, & RC3z ® RCs.

Table 11: Encryption round keys in terms of expanded keys

B The Minimal Diffusion Set Under 7,

The bit permutation m; (acting on a 4-byte column vector) has the property that the sum of the number
of nonzero bytes in input and output is at least 4. (We call this sum as the diffusion order of the
permutation.) Below are given all possible input/output vectors achieving such minimal diffusion under
mo. There are 48 values giving 1-t0-3 (or 3-to-1) propagation (see Table 13) and 108 values giving 2-to-2
propagation (see Table 15). Note that in each of these input/output pairs the value of nonzero bytes is
always the same. Any input vector with nonzero bytes of different values has a diffusion order greater
than 4.

Note that there are 30 possible nonzero byte values in the case of 2-to-2 propagation with separated
nonzero bytes. All the other cases have only 12 possible values. Thus, it would be better to choose an
input/output difference pair from the former case in order to maximize the number of characteristics
residing in a particular differential.

C CRYPTON S-boxes

The two 8 X 8 S-boxes used in CRYPTON are given in Tables 16 and 17.
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Kq[0] = E4[0]
Kq[1] = Eq4[1]
Kq[2] = Eq4[2]
Kq[3] = Eq4[3]

Kql4] = Eq[4]
K4[5] = Eq4[5]
Kq[6] = Eq[6]
Kq[7] = Eq[7]

K4[8] = Eq[0) ® RCs
K9] = ROL(E,[1], 16)
K4[10] = E4[2] ® RCs
K4[11] = ROL(E2[3), 24)

Kd[12] = Ed[4] @ RC4
Ka[13] = ROL(Eq[5],8)
K4[14] = E4(6] ® RC4
K4[15] = ROL(E,[7], 16)

K4[16] = ROL(E,[0], 24) ® RC5
K4[17] = ROL(E4[1],16) ® RC4
K4[18] = ROL(E,4[2],8) ® RCs

K4[19] = ROL(E,4[3],24) ® RC4

K4[20] = ROL(E,4[4],16) @ RC4
K4[21] = ROL(E4[5],8) ® RC3

K4[22] = ROL(E,[6],24) ® RCy
K4[23] = ROL(E,[7],16) ® RC3

K4[24] = ROL(E4[0],24) ® RC3s5
K4[25] = ROL(E;[1],24) & RC4
Kd[26] = ROL(Ed[Q], 8) ® RC35
K4[27] = ROL(E;4[3],8) ® RC4

R[28] = ROL(E4[4], 16) ® RCas
K4[29] = E4[5] ® RC3

K4[30] = ROL(E[6],24) ® RC24
K4[31] = ROL(E4[7],24) ® RC3

K4[32) = ROL(E4[0],8) ® RCas
K4[33] = ROL(E4[1],24) @ RCa4
Kd[34] = Ed[Q] @ RC35

K4[35] = ROL(E4[3],8) ® RCoaq

K4[36] = ROL(E;[4],24) ® RCo24
K4[37] = E4[5) ® RC13

K4[38] = ROL(E;4[6],8) ® RC24
K4[39] = ROL(E4[7],24) ® RC13

Kd[40] = ROL(Ed[O], 8) ® RCi15
K4[41] = ROL(E4[1],16) & RC24
Kd[42] = E'd[2] @ RC15

Kd[43] = ROL(Ed[3], 16) ® RCay

K,[44] = ROL(E4[4],24) ® RCos
K 4[45] = ROL(E,4[5],16) & RC13
Kd[46] = ROL(Ed[ﬁ], 8) @ RCos

K4[47] = ROL(E;4[7],16) ® RC13

)
K4[48] = ROL(E4[0],16) ® RC1s
K4[49] = ROL(E4[1],16) & RCo4

] =
K4[50] = ROL(E;[2],16) & RC15
K,4[51] = ROL(E4[3],16) ® RCos
Notes :
RCy3 = RCy © RC3, RCy4 = RCy & RCy,
RCas = RCs ® RCs, RCos = RCo ® RC> ® RCy,
RC,5 = RC, ® RCs & RCs.

Table 12: Decryption round keys in terms of expanded keys

inputs outputs inputs outputs
0 0 0 1 11 1 0 0 0 1 0 o 1 1 1
0O 0 0 2 2 2 2 0 0 0 2 0 0 2 2 2
0O 0 0 3 3 3 3 0 0 0 3 0 0 3 3 3
0O 0 0 4 4 4 0 4 0 0 4 O 4 4 4 0
0O 0 0 8 8 8 0 8 0 0 8 0 8 8 8 0
0 0 0 ¢ c ¢ 0 ¢ 0 0 ¢ O c ¢c ¢ O
0O 0 010 10 O 10 10 0 010 O 10 10 0 10
0O 0 020 | 20 O 20 20 0 020 0 | 20 20 O 20
0O 0O 030 | 30 0 30 30 0 030 0| 3030 O 30
0 0 0 40 0 40 40 40 0O 040 O | 40 O 40 40
0O 0 0 80 0 80 80 80 0O 08 O | 80 0 80 80
0O 0 0 cO 0 cO cO cO 0 0cO O cO 0 cO cO
01 0 O i 0 1 1 1 0 0 O 11 0 1
0 2 0 O 2 0 2 2 2 0 0 O 2 2 0 2
0 3 0 O 3 0 3 3 3 0 0 O 3 3 0 3
0 4 0 O 0 4 4 4 4 0 0 O 4 0 4 4
0 8 0 O 0 8 8 8 8 0 0 O 8 0 8 8
0 ¢c 0 O 0 ¢c ¢ ¢ c 0 0 O c 0 ¢ ¢
010 0 O 10 10 10 O 10 0 0 O 0 10 10 10
020 0 0| 202020 O 20 0 0 O 0 20 20 20
030 0 0| 303030 O 30 0 0 O 0 30 30 30
040 O O | 40 40 0 40 40 O O O | 40 40 40 O
08 O O | 8080 0 80 80 O O O | 808080 O
0cO O O cO cO 0 cO cO 0 0 O cO cO cO O

Table 13: 1-to-3 / 3-to-1 propagations by mq
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Table 14: 2-to-2 propagations by m: consecutive nonzero bytes

outputs

2 0 2 0
3 0 3 0
0 4 0 4
0 8 0 8

10 010 O

11

011 O

12 012 O
13 013 O
20 020 O

21

021 0

22 022 0
23 023 0
30 030 O

31

031 0

32 032 0
33 033 0

0 40 0 40
044 0 44
0 48 0 48

0 4c

0 4c

0 80 0 80
084 0 84

0 88 0 88

0

0 8c

8c

0 cO O cO

0cd4d O ch

0 c8 O c8

0

0 cc

cc

inputs

2 0 2 0
3 0 3 0
4 0 4 O

8 0 8 0

10 010 O

11

0

0 11

12 012 0
13 013 0
20 020 O

21

0

021

22 022 0

23 023 0

30 030 O

31

0

0 31

32 032 0

33 033 0
40 040 O
44 044 O

48 048 O

4c

0

0 4c

80 080 O

84 084 O

88 088 O

8c

0

0 8c

cO 0cO O

cd 0c4d O

c8 0c8 O

0

0 cc

cc

outputs

0 2 0 2

0 3 0 3

4 0 4 O

8 0 8 0

0 10 0 10

0

0 11

11

012 0 12

013 0 13

020 0 20

0

021

21

022 0 22

023 0 23

0 30 0 30

0

0 31

31

032 0 32

0 33 0 33
40 040 O

44 044 O

48 0 48 O

4c

0

0 4c

80 080 O

84 084 0

88 088 0

8c

0

0 8c

c0O 0cO O

cd O0c4 O

c8 0c8 O

0

0 cc

cc

inputs

0 2 0 2
0 3 0 3
0 4 0 4

0O 8 0 8

010 0 10

0

0 11

11

012 0 12

013 0 13

020 0 20
0 21

021

022 0 22

023 0 23

030 0 30
0 31

0 31

0 32 0 32

0 33 0 33

0 40 0 40

0 44 0 44
0 48 0 48
0 4c

0 4c

0 8 0 80

084 0 84
0 838 0 88
0 8c

0 8c

0 cO 0 cO

O cd 0 c4
0 c8 0 c8

0

0 cc

cc

Table 15: 2-to-2 propagations by m: separate nonzero bytes
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0 1 2 3 4 56 6 7 8 9

a

b

d

£

HOAOODE OONNHWNRFO

f0 12 4c 7a 47 16 3 3a e6 9d
9b 98 54 90 3d ac 74 56 9e de
91 a9 97 6f 9¢ d 78 cc fd 43
74 1d 50 cb b8 b9 70 27 aa 96
a8 dO a6 2e 26 f4 2c 6e c b7
8c ec c¢5 52 d9 d8 9 b4 cf 8f
d3 bl 18 £f8 d4 5 a2 db 82 6¢
99 1a ad b3 1f e 71 4f c7 2b
f6 fe f9 19 6b ea bb c2 a3 55
8e 7b 72 3c ee ff 7 ab e8 f1
d2 b6 3f £7 73 b2 54 79 35 80
b5 d5 93 14 20 61 76 31 c9 6a
e7 13 4e c6 d6 87 7f bd 84 62
4 64 4a 11 1 40 65 8 bO e9
ef a7 fb dd f2 33 ba 63 cl e4
fa 9f d1 85 9a 1b be 30 eb c8

44
5c
bf
48
ce
8d

0
eb
al

a
17
ab
26
32
c3
89

7
£3

2
88
e0
8b
46
2a
df
ic
41
34
95
cd
ae
49

ca

92
d7

23
af
68
45
el
Te
ad
4d
66
fc
c0

c4
3e
42
67
e3
bec

69

ed
ba
28
5b
10

Table 16: The S-box Sy

0 1 2 3 4 5 6 7 8 9

a

b

c

d

e

£

H O AODE ©OONDDAHWNRO

6a d4 2b 6 d0 65 7f 96 d7 56
ef d3 1 c1 b3 be 5 aa 62 83
b4 9f fe 654 be 44 ca 37 cf 6e
f7 b7 da e5 bb a8 ee fc 3c 1d
d5 ab 3f 29 a 8d 6b 4 3a fb
32 4e 53 c 12 89 17 de 7d 5¢c
3e b5 c9 e7 d1 d6 dd 4f 2e 8f
36 76 92 a4 16 9c b6 b 26 a7
a9 dc 68 9e c8 f3 1c cb 3b fa
13 20 2d b2 ac cb 39 22 11 70
bc 8a 66 88 bd 97 42 el 40 21
d8 61 ab 73 57 b0 al 49 34 35
fd e8 87 ea 1f 52 c3 78 f9 b8
41 f2 a0 60 64 bl c4 34 55 54
4b 9d 7c 5f €9 7a 8 cO 98 49
0 99 e4 1b 45 ff 80 a3 63 82

9a
71
7b

7
d2
eb
b9

3
6¢c
f4
38
bf

d
Te
85
f0

4d
5
79
le
2c
df
84
91
5b
10
ba
86
33
67
£8
e2

48
9b
46

25
31
ce
14
cd
a6
cc
30
ba

9
72
c7
db
e3
af
28

f
74
8e
a2
77
23
8c
cé
59
f1
6d
2a
58
8b
e0
95

Table 17: The S-box S;




