{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Couldn't import dot_parser, loading of dot files will not be possible.\n"
]
}
],
"source": [
"%matplotlib inline\n",
"from matplotlib import pylab as plt\n",
"import matplotlib.dates as mdates\n",
"plt.rcParams['figure.figsize'] = (15.0, 8.0)\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"\n",
"from IPython.display import SVG\n",
"from keras.utils.vis_utils import model_to_dot"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from pandas.tseries.holiday import USFederalHolidayCalendar as calendar"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"
\n",
"
Loading BokehJS ... \n",
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/javascript": [
"\n",
"(function(global) {\n",
" function now() {\n",
" return new Date();\n",
" }\n",
"\n",
" var force = \"1\";\n",
"\n",
" if (typeof (window._bokeh_onload_callbacks) === \"undefined\" || force !== \"\") {\n",
" window._bokeh_onload_callbacks = [];\n",
" window._bokeh_is_loading = undefined;\n",
" }\n",
"\n",
"\n",
" \n",
" if (typeof (window._bokeh_timeout) === \"undefined\" || force !== \"\") {\n",
" window._bokeh_timeout = Date.now() + 5000;\n",
" window._bokeh_failed_load = false;\n",
" }\n",
"\n",
" var NB_LOAD_WARNING = {'data': {'text/html':\n",
" \"\\n\"+\n",
" \"
\\n\"+\n",
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
" \"
\\n\"+\n",
" \"
\\n\"+\n",
" \"re-rerun `output_notebook()` to attempt to load from CDN again, or \\n\"+\n",
" \"use INLINE resources instead, as so: \\n\"+\n",
" \" \\n\"+\n",
" \"
\\n\"+\n",
" \"from bokeh.resources import INLINE\\n\"+\n",
" \"output_notebook(resources=INLINE)\\n\"+\n",
" \"\\n\"+\n",
" \"
\"}};\n",
"\n",
" function display_loaded() {\n",
" if (window.Bokeh !== undefined) {\n",
" Bokeh.$(\"#428726d7-a0ae-4a09-873b-cfb976255192\").text(\"BokehJS successfully loaded.\");\n",
" } else if (Date.now() < window._bokeh_timeout) {\n",
" setTimeout(display_loaded, 100)\n",
" }\n",
" }\n",
"\n",
" function run_callbacks() {\n",
" window._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n",
" delete window._bokeh_onload_callbacks\n",
" console.info(\"Bokeh: all callbacks have finished\");\n",
" }\n",
"\n",
" function load_libs(js_urls, callback) {\n",
" window._bokeh_onload_callbacks.push(callback);\n",
" if (window._bokeh_is_loading > 0) {\n",
" console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
" return null;\n",
" }\n",
" if (js_urls == null || js_urls.length === 0) {\n",
" run_callbacks();\n",
" return null;\n",
" }\n",
" console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
" window._bokeh_is_loading = js_urls.length;\n",
" for (var i = 0; i < js_urls.length; i++) {\n",
" var url = js_urls[i];\n",
" var s = document.createElement('script');\n",
" s.src = url;\n",
" s.async = false;\n",
" s.onreadystatechange = s.onload = function() {\n",
" window._bokeh_is_loading--;\n",
" if (window._bokeh_is_loading === 0) {\n",
" console.log(\"Bokeh: all BokehJS libraries loaded\");\n",
" run_callbacks()\n",
" }\n",
" };\n",
" s.onerror = function() {\n",
" console.warn(\"failed to load library \" + url);\n",
" };\n",
" console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n",
" }\n",
" };var element = document.getElementById(\"428726d7-a0ae-4a09-873b-cfb976255192\");\n",
" if (element == null) {\n",
" console.log(\"Bokeh: ERROR: autoload.js configured with elementid '428726d7-a0ae-4a09-873b-cfb976255192' but no matching script tag was found. \")\n",
" return false;\n",
" }\n",
"\n",
" var js_urls = ['https://cdn.pydata.org/bokeh/release/bokeh-0.12.2.min.js', 'https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.2.min.js', 'https://cdn.pydata.org/bokeh/release/bokeh-compiler-0.12.2.min.js'];\n",
"\n",
" var inline_js = [\n",
" function(Bokeh) {\n",
" Bokeh.set_log_level(\"info\");\n",
" },\n",
" \n",
" function(Bokeh) {\n",
" \n",
" Bokeh.$(\"#428726d7-a0ae-4a09-873b-cfb976255192\").text(\"BokehJS is loading...\");\n",
" },\n",
" function(Bokeh) {\n",
" console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-0.12.2.min.css\");\n",
" Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.2.min.css\");\n",
" console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.2.min.css\");\n",
" Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.2.min.css\");\n",
" }\n",
" ];\n",
"\n",
" function run_inline_js() {\n",
" \n",
" if ((window.Bokeh !== undefined) || (force === \"1\")) {\n",
" for (var i = 0; i < inline_js.length; i++) {\n",
" inline_js[i](window.Bokeh);\n",
" }if (force === \"1\") {\n",
" display_loaded();\n",
" }} else if (Date.now() < window._bokeh_timeout) {\n",
" setTimeout(run_inline_js, 100);\n",
" } else if (!window._bokeh_failed_load) {\n",
" console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
" window._bokeh_failed_load = true;\n",
" } else if (!force) {\n",
" var cell = $(\"#428726d7-a0ae-4a09-873b-cfb976255192\").parents('.cell').data().cell;\n",
" cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
" }\n",
"\n",
" }\n",
"\n",
" if (window._bokeh_is_loading === 0) {\n",
" console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
" run_inline_js();\n",
" } else {\n",
" load_libs(js_urls, function() {\n",
" console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n",
" run_inline_js();\n",
" });\n",
" }\n",
"}(this));"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from bokeh.charts import TimeSeries, output_file, show\n",
"from bokeh.io import output_notebook\n",
"output_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Preparation\n",
"Eleven months data from one bed one bath apartment unit in San Jose, CA region was picked for this experiment. The electricity consumption is recorded in 15 minutes interval by the energy supply company. The raw data contains information such as type, date, start time, end time, usage, units, cost and notes fields. The start time and end time is the measurement interval. In this data, the interval is 15 minutes. The usage in 15 minutes interval is provided in kWh unit, and the cost for the consumption is presented in the dollar. Before we deep dive into the data, some quick feature engineering steps are done to enrich the data with more features. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" TYPE \n",
" DATE \n",
" START TIME \n",
" END TIME \n",
" USAGE \n",
" UNITS \n",
" COST \n",
" NOTES \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:00 \n",
" 0:14 \n",
" 0.07 \n",
" kWh \n",
" $0.01 \n",
" NaN \n",
" \n",
" \n",
" 1 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:15 \n",
" 0:29 \n",
" 0.05 \n",
" kWh \n",
" $0.01 \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" TYPE DATE START TIME END TIME USAGE UNITS COST NOTES\n",
"0 Electric usage 11/1/16 0:00 0:14 0.07 kWh $0.01 NaN\n",
"1 Electric usage 11/1/16 0:15 0:29 0.05 kWh $0.01 NaN"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_csv(\"D202.csv\")\n",
"data.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Creating Date and Time Filed"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data[\"DATE_TIME\"] = pd.to_datetime(data.DATE + \" \" + data[\"END TIME\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Working Day or Not"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data[\"DAY_TYPE\"] = data.DATE_TIME.apply(lambda x: 1 if x.dayofweek > 5 else 0 )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Finding Fedaral Holidays"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"cal = calendar()\n",
"holidays = cal.holidays(start = data.DATE_TIME.min(), end = data.DATE_TIME.max())\n",
"data[\"IS_HOLIDAY\"] = data.DATE_TIME.isin(holidays)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" TYPE \n",
" DATE \n",
" START TIME \n",
" END TIME \n",
" USAGE \n",
" UNITS \n",
" COST \n",
" NOTES \n",
" DATE_TIME \n",
" DAY_TYPE \n",
" IS_HOLIDAY \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:00 \n",
" 0:14 \n",
" 0.07 \n",
" kWh \n",
" $0.01 \n",
" NaN \n",
" 2016-11-01 00:14:00 \n",
" 0 \n",
" False \n",
" \n",
" \n",
" 1 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:15 \n",
" 0:29 \n",
" 0.05 \n",
" kWh \n",
" $0.01 \n",
" NaN \n",
" 2016-11-01 00:29:00 \n",
" 0 \n",
" False \n",
" \n",
" \n",
" 2 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:30 \n",
" 0:44 \n",
" 0.06 \n",
" kWh \n",
" $0.01 \n",
" NaN \n",
" 2016-11-01 00:44:00 \n",
" 0 \n",
" False \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" TYPE DATE START TIME END TIME USAGE UNITS COST NOTES \\\n",
"0 Electric usage 11/1/16 0:00 0:14 0.07 kWh $0.01 NaN \n",
"1 Electric usage 11/1/16 0:15 0:29 0.05 kWh $0.01 NaN \n",
"2 Electric usage 11/1/16 0:30 0:44 0.06 kWh $0.01 NaN \n",
"\n",
" DATE_TIME DAY_TYPE IS_HOLIDAY \n",
"0 2016-11-01 00:14:00 0 False \n",
"1 2016-11-01 00:29:00 0 False \n",
"2 2016-11-01 00:44:00 0 False "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head(3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Previous Five Observations"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"for obs in range(1,6):\n",
" data[\"T_\" + str(obs)] = data.USAGE.shift(obs)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" TYPE \n",
" DATE \n",
" START TIME \n",
" END TIME \n",
" USAGE \n",
" UNITS \n",
" COST \n",
" NOTES \n",
" DATE_TIME \n",
" DAY_TYPE \n",
" IS_HOLIDAY \n",
" T_1 \n",
" T_2 \n",
" T_3 \n",
" T_4 \n",
" T_5 \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:00 \n",
" 0:14 \n",
" 0.07 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 00:14:00 \n",
" 0 \n",
" False \n",
" 0.00 \n",
" 0.00 \n",
" 0.00 \n",
" 0.00 \n",
" 0.00 \n",
" \n",
" \n",
" 1 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:15 \n",
" 0:29 \n",
" 0.05 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 00:29:00 \n",
" 0 \n",
" False \n",
" 0.07 \n",
" 0.00 \n",
" 0.00 \n",
" 0.00 \n",
" 0.00 \n",
" \n",
" \n",
" 2 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:30 \n",
" 0:44 \n",
" 0.06 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 00:44:00 \n",
" 0 \n",
" False \n",
" 0.05 \n",
" 0.07 \n",
" 0.00 \n",
" 0.00 \n",
" 0.00 \n",
" \n",
" \n",
" 3 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:45 \n",
" 0:59 \n",
" 0.05 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 00:59:00 \n",
" 0 \n",
" False \n",
" 0.06 \n",
" 0.05 \n",
" 0.07 \n",
" 0.00 \n",
" 0.00 \n",
" \n",
" \n",
" 4 \n",
" Electric usage \n",
" 11/1/16 \n",
" 1:00 \n",
" 1:14 \n",
" 0.03 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 01:14:00 \n",
" 0 \n",
" False \n",
" 0.05 \n",
" 0.06 \n",
" 0.05 \n",
" 0.07 \n",
" 0.00 \n",
" \n",
" \n",
" 5 \n",
" Electric usage \n",
" 11/1/16 \n",
" 1:15 \n",
" 1:29 \n",
" 0.03 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 01:29:00 \n",
" 0 \n",
" False \n",
" 0.03 \n",
" 0.05 \n",
" 0.06 \n",
" 0.05 \n",
" 0.07 \n",
" \n",
" \n",
" 6 \n",
" Electric usage \n",
" 11/1/16 \n",
" 1:30 \n",
" 1:44 \n",
" 0.03 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 01:44:00 \n",
" 0 \n",
" False \n",
" 0.03 \n",
" 0.03 \n",
" 0.05 \n",
" 0.06 \n",
" 0.05 \n",
" \n",
" \n",
" 7 \n",
" Electric usage \n",
" 11/1/16 \n",
" 1:45 \n",
" 1:59 \n",
" 0.06 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 01:59:00 \n",
" 0 \n",
" False \n",
" 0.03 \n",
" 0.03 \n",
" 0.03 \n",
" 0.05 \n",
" 0.06 \n",
" \n",
" \n",
" 8 \n",
" Electric usage \n",
" 11/1/16 \n",
" 2:00 \n",
" 2:14 \n",
" 0.04 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 02:14:00 \n",
" 0 \n",
" False \n",
" 0.06 \n",
" 0.03 \n",
" 0.03 \n",
" 0.03 \n",
" 0.05 \n",
" \n",
" \n",
" 9 \n",
" Electric usage \n",
" 11/1/16 \n",
" 2:15 \n",
" 2:29 \n",
" 0.03 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 02:29:00 \n",
" 0 \n",
" False \n",
" 0.04 \n",
" 0.06 \n",
" 0.03 \n",
" 0.03 \n",
" 0.03 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" TYPE DATE START TIME END TIME USAGE UNITS COST NOTES \\\n",
"0 Electric usage 11/1/16 0:00 0:14 0.07 kWh $0.01 0 \n",
"1 Electric usage 11/1/16 0:15 0:29 0.05 kWh $0.01 0 \n",
"2 Electric usage 11/1/16 0:30 0:44 0.06 kWh $0.01 0 \n",
"3 Electric usage 11/1/16 0:45 0:59 0.05 kWh $0.01 0 \n",
"4 Electric usage 11/1/16 1:00 1:14 0.03 kWh $0.01 0 \n",
"5 Electric usage 11/1/16 1:15 1:29 0.03 kWh $0.01 0 \n",
"6 Electric usage 11/1/16 1:30 1:44 0.03 kWh $0.01 0 \n",
"7 Electric usage 11/1/16 1:45 1:59 0.06 kWh $0.01 0 \n",
"8 Electric usage 11/1/16 2:00 2:14 0.04 kWh $0.01 0 \n",
"9 Electric usage 11/1/16 2:15 2:29 0.03 kWh $0.01 0 \n",
"\n",
" DATE_TIME DAY_TYPE IS_HOLIDAY T_1 T_2 T_3 T_4 T_5 \n",
"0 2016-11-01 00:14:00 0 False 0.00 0.00 0.00 0.00 0.00 \n",
"1 2016-11-01 00:29:00 0 False 0.07 0.00 0.00 0.00 0.00 \n",
"2 2016-11-01 00:44:00 0 False 0.05 0.07 0.00 0.00 0.00 \n",
"3 2016-11-01 00:59:00 0 False 0.06 0.05 0.07 0.00 0.00 \n",
"4 2016-11-01 01:14:00 0 False 0.05 0.06 0.05 0.07 0.00 \n",
"5 2016-11-01 01:29:00 0 False 0.03 0.05 0.06 0.05 0.07 \n",
"6 2016-11-01 01:44:00 0 False 0.03 0.03 0.05 0.06 0.05 \n",
"7 2016-11-01 01:59:00 0 False 0.03 0.03 0.03 0.05 0.06 \n",
"8 2016-11-01 02:14:00 0 False 0.06 0.03 0.03 0.03 0.05 \n",
"9 2016-11-01 02:29:00 0 False 0.04 0.06 0.03 0.03 0.03 "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.fillna(0.00,inplace=True)\n",
"data.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data.IS_HOLIDAY = data.IS_HOLIDAY.astype(\"int\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" TYPE \n",
" DATE \n",
" START TIME \n",
" END TIME \n",
" USAGE \n",
" UNITS \n",
" COST \n",
" NOTES \n",
" DATE_TIME \n",
" DAY_TYPE \n",
" IS_HOLIDAY \n",
" T_1 \n",
" T_2 \n",
" T_3 \n",
" T_4 \n",
" T_5 \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:00 \n",
" 0:14 \n",
" 0.07 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 00:14:00 \n",
" 0 \n",
" 0 \n",
" 0.00 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 1 \n",
" Electric usage \n",
" 11/1/16 \n",
" 0:15 \n",
" 0:29 \n",
" 0.05 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2016-11-01 00:29:00 \n",
" 0 \n",
" 0 \n",
" 0.07 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" TYPE DATE START TIME END TIME USAGE UNITS COST NOTES \\\n",
"0 Electric usage 11/1/16 0:00 0:14 0.07 kWh $0.01 0 \n",
"1 Electric usage 11/1/16 0:15 0:29 0.05 kWh $0.01 0 \n",
"\n",
" DATE_TIME DAY_TYPE IS_HOLIDAY T_1 T_2 T_3 T_4 T_5 \n",
"0 2016-11-01 00:14:00 0 0 0.00 0.0 0.0 0.0 0.0 \n",
"1 2016-11-01 00:29:00 0 0 0.07 0.0 0.0 0.0 0.0 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Clean Data"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"clean_data = data[['DAY_TYPE', 'IS_HOLIDAY', 'T_1','T_2', 'T_3', 'T_4', 'T_5','USAGE']]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" DAY_TYPE \n",
" IS_HOLIDAY \n",
" T_1 \n",
" T_2 \n",
" T_3 \n",
" T_4 \n",
" T_5 \n",
" USAGE \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0.00 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.07 \n",
" \n",
" \n",
" 1 \n",
" 0 \n",
" 0 \n",
" 0.07 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.05 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" DAY_TYPE IS_HOLIDAY T_1 T_2 T_3 T_4 T_5 USAGE\n",
"0 0 0 0.00 0.0 0.0 0.0 0.0 0.07\n",
"1 0 0 0.07 0.0 0.0 0.0 0.0 0.05"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clean_data.head(2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Let's Explore"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/jagan/anaconda2/lib/python2.7/site-packages/bokeh/core/json_encoder.py:33: FutureWarning: pandas.tslib is deprecated and will be removed in a future version.\n",
"You can access Timestamp as pandas.Timestamp\n",
" if pd and isinstance(obj, pd.tslib.Timestamp):\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_show = TimeSeries(data,x=\"DATE_TIME\",y=[\"USAGE\"],legend=True,plot_width=900, plot_height=350)\n",
"show(all_show)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### A Week ! Yes X'Mas Week"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"xmask = (data.DATE_TIME >= pd.to_datetime(\"12/20/2016\")) & (data.DATE_TIME <= pd.to_datetime(\"12/27/2016\"))"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"xmas_week = data.loc[xmask]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"xmas_show = TimeSeries(xmas_week,x=\"DATE_TIME\",y=[\"USAGE\"],legend=True,plot_width=900, plot_height=350)\n",
"show(xmas_show)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### A Day ! New Year 2017"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"dmask = (data.DATE_TIME >= pd.to_datetime(\"01/01/2017\")) & (data.DATE_TIME < pd.to_datetime(\"01/02/2017\"))\n",
"nyd = data.loc[dmask]"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"nyd_show = TimeSeries(nyd,x=\"DATE_TIME\",y=[\"USAGE\"],legend=True,plot_width=900, plot_height=350)\n",
"show(nyd_show)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Train and Test Data"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"training_data = data[data.DATE_TIME < pd.to_datetime(\"08/01/2017\")]"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"val_mask = (data.DATE_TIME >= pd.to_datetime(\"08/01/2017\")) & (data.DATE_TIME < pd.to_datetime(\"09/01/2017\"))\n",
"val_data = data.loc[val_mask]"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"test_data = data[data.DATE_TIME >= pd.to_datetime(\"09/01/2017\")]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" TYPE \n",
" DATE \n",
" START TIME \n",
" END TIME \n",
" USAGE \n",
" UNITS \n",
" COST \n",
" NOTES \n",
" DATE_TIME \n",
" DAY_TYPE \n",
" IS_HOLIDAY \n",
" T_1 \n",
" T_2 \n",
" T_3 \n",
" T_4 \n",
" T_5 \n",
" \n",
" \n",
" \n",
" \n",
" 26006 \n",
" Electric usage \n",
" 7/31/17 \n",
" 23:15 \n",
" 23:29 \n",
" 0.12 \n",
" kWh \n",
" $0.02 \n",
" 0 \n",
" 2017-07-31 23:29:00 \n",
" 0 \n",
" 0 \n",
" 0.15 \n",
" 0.10 \n",
" 0.27 \n",
" 0.44 \n",
" 0.12 \n",
" \n",
" \n",
" 26007 \n",
" Electric usage \n",
" 7/31/17 \n",
" 23:30 \n",
" 23:44 \n",
" 0.11 \n",
" kWh \n",
" $0.02 \n",
" 0 \n",
" 2017-07-31 23:44:00 \n",
" 0 \n",
" 0 \n",
" 0.12 \n",
" 0.15 \n",
" 0.10 \n",
" 0.27 \n",
" 0.44 \n",
" \n",
" \n",
" 26008 \n",
" Electric usage \n",
" 7/31/17 \n",
" 23:45 \n",
" 23:59 \n",
" 0.10 \n",
" kWh \n",
" $0.02 \n",
" 0 \n",
" 2017-07-31 23:59:00 \n",
" 0 \n",
" 0 \n",
" 0.11 \n",
" 0.12 \n",
" 0.15 \n",
" 0.10 \n",
" 0.27 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" TYPE DATE START TIME END TIME USAGE UNITS COST NOTES \\\n",
"26006 Electric usage 7/31/17 23:15 23:29 0.12 kWh $0.02 0 \n",
"26007 Electric usage 7/31/17 23:30 23:44 0.11 kWh $0.02 0 \n",
"26008 Electric usage 7/31/17 23:45 23:59 0.10 kWh $0.02 0 \n",
"\n",
" DATE_TIME DAY_TYPE IS_HOLIDAY T_1 T_2 T_3 T_4 T_5 \n",
"26006 2017-07-31 23:29:00 0 0 0.15 0.10 0.27 0.44 0.12 \n",
"26007 2017-07-31 23:44:00 0 0 0.12 0.15 0.10 0.27 0.44 \n",
"26008 2017-07-31 23:59:00 0 0 0.11 0.12 0.15 0.10 0.27 "
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_data.tail(3)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" TYPE \n",
" DATE \n",
" START TIME \n",
" END TIME \n",
" USAGE \n",
" UNITS \n",
" COST \n",
" NOTES \n",
" DATE_TIME \n",
" DAY_TYPE \n",
" IS_HOLIDAY \n",
" T_1 \n",
" T_2 \n",
" T_3 \n",
" T_4 \n",
" T_5 \n",
" \n",
" \n",
" \n",
" \n",
" 28984 \n",
" Electric usage \n",
" 9/1/17 \n",
" 0:00 \n",
" 0:14 \n",
" 0.03 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2017-09-01 00:14:00 \n",
" 0 \n",
" 0 \n",
" 0.03 \n",
" 0.03 \n",
" 0.04 \n",
" 0.04 \n",
" 0.05 \n",
" \n",
" \n",
" 28985 \n",
" Electric usage \n",
" 9/1/17 \n",
" 0:15 \n",
" 0:29 \n",
" 0.04 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2017-09-01 00:29:00 \n",
" 0 \n",
" 0 \n",
" 0.03 \n",
" 0.03 \n",
" 0.03 \n",
" 0.04 \n",
" 0.04 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" TYPE DATE START TIME END TIME USAGE UNITS COST NOTES \\\n",
"28984 Electric usage 9/1/17 0:00 0:14 0.03 kWh $0.01 0 \n",
"28985 Electric usage 9/1/17 0:15 0:29 0.04 kWh $0.01 0 \n",
"\n",
" DATE_TIME DAY_TYPE IS_HOLIDAY T_1 T_2 T_3 T_4 T_5 \n",
"28984 2017-09-01 00:14:00 0 0 0.03 0.03 0.04 0.04 0.05 \n",
"28985 2017-09-01 00:29:00 0 0 0.03 0.03 0.03 0.04 0.04 "
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test_data.head(2)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clean_train = training_data[['DAY_TYPE', 'IS_HOLIDAY', 'T_1','T_2', 'T_3', 'T_4', 'T_5','USAGE']]\n",
"clean_test = test_data[['DAY_TYPE', 'IS_HOLIDAY', 'T_1','T_2', 'T_3', 'T_4', 'T_5','USAGE']]\n",
"clean_val = val_data[['DAY_TYPE', 'IS_HOLIDAY', 'T_1','T_2', 'T_3', 'T_4', 'T_5','USAGE']]"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" DAY_TYPE \n",
" IS_HOLIDAY \n",
" T_1 \n",
" T_2 \n",
" T_3 \n",
" T_4 \n",
" T_5 \n",
" USAGE \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0.00 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.07 \n",
" \n",
" \n",
" 1 \n",
" 0 \n",
" 0 \n",
" 0.07 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.05 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" DAY_TYPE IS_HOLIDAY T_1 T_2 T_3 T_4 T_5 USAGE\n",
"0 0 0 0.00 0.0 0.0 0.0 0.0 0.07\n",
"1 0 0 0.07 0.0 0.0 0.0 0.0 0.05"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clean_train.head(2)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" DAY_TYPE \n",
" IS_HOLIDAY \n",
" T_1 \n",
" T_2 \n",
" T_3 \n",
" T_4 \n",
" T_5 \n",
" USAGE \n",
" \n",
" \n",
" \n",
" \n",
" 28984 \n",
" 0 \n",
" 0 \n",
" 0.03 \n",
" 0.03 \n",
" 0.04 \n",
" 0.04 \n",
" 0.05 \n",
" 0.03 \n",
" \n",
" \n",
" 28985 \n",
" 0 \n",
" 0 \n",
" 0.03 \n",
" 0.03 \n",
" 0.03 \n",
" 0.04 \n",
" 0.04 \n",
" 0.04 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" DAY_TYPE IS_HOLIDAY T_1 T_2 T_3 T_4 T_5 USAGE\n",
"28984 0 0 0.03 0.03 0.04 0.04 0.05 0.03\n",
"28985 0 0 0.03 0.03 0.03 0.04 0.04 0.04"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clean_test.head(2)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" DAY_TYPE \n",
" IS_HOLIDAY \n",
" T_1 \n",
" T_2 \n",
" T_3 \n",
" T_4 \n",
" T_5 \n",
" USAGE \n",
" \n",
" \n",
" \n",
" \n",
" 26009 \n",
" 0 \n",
" 0 \n",
" 0.1 \n",
" 0.11 \n",
" 0.12 \n",
" 0.15 \n",
" 0.10 \n",
" 0.10 \n",
" \n",
" \n",
" 26010 \n",
" 0 \n",
" 0 \n",
" 0.1 \n",
" 0.10 \n",
" 0.11 \n",
" 0.12 \n",
" 0.15 \n",
" 0.10 \n",
" \n",
" \n",
" 26011 \n",
" 0 \n",
" 0 \n",
" 0.1 \n",
" 0.10 \n",
" 0.10 \n",
" 0.11 \n",
" 0.12 \n",
" 0.08 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" DAY_TYPE IS_HOLIDAY T_1 T_2 T_3 T_4 T_5 USAGE\n",
"26009 0 0 0.1 0.11 0.12 0.15 0.10 0.10\n",
"26010 0 0 0.1 0.10 0.11 0.12 0.15 0.10\n",
"26011 0 0 0.1 0.10 0.10 0.11 0.12 0.08"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clean_val.head(3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Let's Model and Predict"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.preprocessing import StandardScaler,MinMaxScaler\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from sklearn.metrics import r2_score,mean_squared_error"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"X_train,y_train = clean_train.drop([\"USAGE\"],axis=1),clean_train.USAGE\n",
"X_test,y_test = clean_test.drop([\"USAGE\"],axis=1),clean_test.USAGE\n",
"X_val,y_val = clean_val.drop([\"USAGE\"],axis=1),clean_val.USAGE"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"scaler = StandardScaler()\n",
"#scaler = MinMaxScaler(feature_range=(-1, 1))\n",
"rfr = RandomForestRegressor(random_state=2017,verbose=2,n_jobs=5)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_train_scaled = scaler.fit_transform(X_train)\n",
"X_test_scaled = scaler.fit_transform(X_test)\n",
"X_valid_scaled = scaler.fit_transform(X_val)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"building tree 1 of 10\n",
"building tree 2 of 10\n",
"building tree 3 of 10\n",
"building tree 4 of 10\n",
"building tree 5 of 10\n",
"building tree 6 of 10\n",
"building tree 7 of 10\n",
"building tree 8 of 10\n",
"building tree 9 of 10\n",
"building tree 10 of 10\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[Parallel(n_jobs=5)]: Done 7 out of 10 | elapsed: 0.1s remaining: 0.1s\n",
"[Parallel(n_jobs=5)]: Done 10 out of 10 | elapsed: 0.1s finished\n"
]
},
{
"data": {
"text/plain": [
"RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,\n",
" max_features='auto', max_leaf_nodes=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=5,\n",
" oob_score=False, random_state=2017, verbose=2, warm_start=False)"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rfr.fit(X_train_scaled,y_train)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[Parallel(n_jobs=5)]: Done 7 out of 10 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=5)]: Done 10 out of 10 | elapsed: 0.0s finished\n"
]
},
{
"data": {
"text/plain": [
"0.26352935135691857"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rfr.score(X_val,y_val)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[Parallel(n_jobs=5)]: Done 7 out of 10 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=5)]: Done 10 out of 10 | elapsed: 0.0s finished\n"
]
},
{
"data": {
"text/plain": [
"0.32707009777378615"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rfr.score(X_test,y_test)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[Parallel(n_jobs=5)]: Done 7 out of 10 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=5)]: Done 10 out of 10 | elapsed: 0.0s finished\n",
"/Users/jagan/anaconda2/lib/python2.7/site-packages/ipykernel/__main__.py:1: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
" if __name__ == '__main__':\n"
]
}
],
"source": [
"test_data[\"RF_PREDICTED\"] = rfr.predict(X_test_scaled)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" TYPE \n",
" DATE \n",
" START TIME \n",
" END TIME \n",
" USAGE \n",
" UNITS \n",
" COST \n",
" NOTES \n",
" DATE_TIME \n",
" DAY_TYPE \n",
" IS_HOLIDAY \n",
" T_1 \n",
" T_2 \n",
" T_3 \n",
" T_4 \n",
" T_5 \n",
" RF_PREDICTED \n",
" \n",
" \n",
" \n",
" \n",
" 28984 \n",
" Electric usage \n",
" 9/1/17 \n",
" 0:00 \n",
" 0:14 \n",
" 0.03 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2017-09-01 00:14:00 \n",
" 0 \n",
" 0 \n",
" 0.03 \n",
" 0.03 \n",
" 0.04 \n",
" 0.04 \n",
" 0.05 \n",
" 0.021306 \n",
" \n",
" \n",
" 28985 \n",
" Electric usage \n",
" 9/1/17 \n",
" 0:15 \n",
" 0:29 \n",
" 0.04 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2017-09-01 00:29:00 \n",
" 0 \n",
" 0 \n",
" 0.03 \n",
" 0.03 \n",
" 0.03 \n",
" 0.04 \n",
" 0.04 \n",
" 0.060113 \n",
" \n",
" \n",
" 28986 \n",
" Electric usage \n",
" 9/1/17 \n",
" 0:30 \n",
" 0:44 \n",
" 0.06 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2017-09-01 00:44:00 \n",
" 0 \n",
" 0 \n",
" 0.04 \n",
" 0.03 \n",
" 0.03 \n",
" 0.03 \n",
" 0.04 \n",
" 0.048081 \n",
" \n",
" \n",
" 28987 \n",
" Electric usage \n",
" 9/1/17 \n",
" 0:45 \n",
" 0:59 \n",
" 0.03 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2017-09-01 00:59:00 \n",
" 0 \n",
" 0 \n",
" 0.06 \n",
" 0.04 \n",
" 0.03 \n",
" 0.03 \n",
" 0.03 \n",
" 0.061000 \n",
" \n",
" \n",
" 28988 \n",
" Electric usage \n",
" 9/1/17 \n",
" 1:00 \n",
" 1:14 \n",
" 0.03 \n",
" kWh \n",
" $0.01 \n",
" 0 \n",
" 2017-09-01 01:14:00 \n",
" 0 \n",
" 0 \n",
" 0.03 \n",
" 0.06 \n",
" 0.04 \n",
" 0.03 \n",
" 0.03 \n",
" 0.028246 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" TYPE DATE START TIME END TIME USAGE UNITS COST NOTES \\\n",
"28984 Electric usage 9/1/17 0:00 0:14 0.03 kWh $0.01 0 \n",
"28985 Electric usage 9/1/17 0:15 0:29 0.04 kWh $0.01 0 \n",
"28986 Electric usage 9/1/17 0:30 0:44 0.06 kWh $0.01 0 \n",
"28987 Electric usage 9/1/17 0:45 0:59 0.03 kWh $0.01 0 \n",
"28988 Electric usage 9/1/17 1:00 1:14 0.03 kWh $0.01 0 \n",
"\n",
" DATE_TIME DAY_TYPE IS_HOLIDAY T_1 T_2 T_3 T_4 T_5 \\\n",
"28984 2017-09-01 00:14:00 0 0 0.03 0.03 0.04 0.04 0.05 \n",
"28985 2017-09-01 00:29:00 0 0 0.03 0.03 0.03 0.04 0.04 \n",
"28986 2017-09-01 00:44:00 0 0 0.04 0.03 0.03 0.03 0.04 \n",
"28987 2017-09-01 00:59:00 0 0 0.06 0.04 0.03 0.03 0.03 \n",
"28988 2017-09-01 01:14:00 0 0 0.03 0.06 0.04 0.03 0.03 \n",
"\n",
" RF_PREDICTED \n",
"28984 0.021306 \n",
"28985 0.060113 \n",
"28986 0.048081 \n",
"28987 0.061000 \n",
"28988 0.028246 "
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test_data.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Prediction with Random Forest Model in Test Data"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pred_show = TimeSeries(test_data,x=\"DATE_TIME\",y=[\"USAGE\",\"RF_PREDICTED\"],legend=True,plot_width=800, plot_height=350)\n",
"show(pred_show)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Prediction Single Day in Test Data"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sep_30m = test_data[test_data.DATE_TIME >= pd.to_datetime(\"09/30/2017\")]\n",
"\n",
"sep_30rf = TimeSeries(sep_30m,x=\"DATE_TIME\",y=[\"USAGE\",\"RF_PREDICTED\"],legend=True,plot_width=900, plot_height=350)\n",
"show(sep_30rf)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### LSTM Modelling"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from keras.models import Sequential\n",
"from keras.layers import Dense\n",
"from keras.layers import LSTM"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### LSTM Model"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"model_k = Sequential()\n",
"model_k.add(LSTM(1, input_shape=(1,7)))\n",
"model_k.add(Dense(1))\n",
"model_k.compile(loss='mean_squared_error', optimizer='adam')"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"G \n",
"\n",
"\n",
"120866850192 \n",
"\n",
"lstm_1_input: InputLayer \n",
" \n",
"\n",
"120866849360 \n",
"\n",
"lstm_1: LSTM \n",
" \n",
"\n",
"120866850192->120866849360 \n",
"\n",
"\n",
" \n",
"\n",
"120866849680 \n",
"\n",
"dense_1: Dense \n",
" \n",
"\n",
"120866849360->120866849680 \n",
"\n",
"\n",
" \n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVG(model_to_dot(model_k).create(prog='dot', format='svg'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reshape the data to 3D"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_t_reshaped = X_train_scaled.reshape((X_train_scaled.shape[0], 1, X_train_scaled.shape[1]))"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"X_val_resaped = X_valid_scaled.reshape((X_valid_scaled.shape[0], 1, X_valid_scaled.shape[1]))"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"##### Fit the Model"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train on 26009 samples, validate on 2975 samples\n",
"Epoch 1/10\n",
"2s - loss: 0.0757 - val_loss: 0.0165\n",
"Epoch 2/10\n",
"1s - loss: 0.0605 - val_loss: 0.0191\n",
"Epoch 3/10\n",
"1s - loss: 0.0506 - val_loss: 0.0166\n",
"Epoch 4/10\n",
"1s - loss: 0.0421 - val_loss: 0.0207\n",
"Epoch 5/10\n",
"1s - loss: 0.0370 - val_loss: 0.0267\n",
"Epoch 6/10\n",
"1s - loss: 0.0339 - val_loss: 0.0307\n",
"Epoch 7/10\n",
"1s - loss: 0.0321 - val_loss: 0.0357\n",
"Epoch 8/10\n",
"1s - loss: 0.0309 - val_loss: 0.0394\n",
"Epoch 9/10\n",
"1s - loss: 0.0303 - val_loss: 0.0396\n",
"Epoch 10/10\n",
"1s - loss: 0.0298 - val_loss: 0.0413\n"
]
}
],
"source": [
"history = model_k.fit(X_t_reshaped, y_train, validation_data=(X_val_resaped, y_val),\\\n",
"epochs=10, batch_size=96, verbose=2)"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFJCAYAAAChG+XKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd8VNed///XFI3ajHoXqIAkMEVI\nFAPGwsYYXBN3Gyshm032m6y//u1uvEmc/TqNJLbXzjYnu4l3s0mchBQgcew4wRWbmCYwCAQGLIEK\nklCXUBuV6b8/hIWJMTJG0h1J7+fjwUOjuVM+9zCa99wz555jCgQCAURERCRomI0uQERERM6ncBYR\nEQkyCmcREZEgo3AWEREJMgpnERGRIKNwFhERCTJWowt4V1tb76g+XmxsBJ2d/aP6mPJ+aufxoXYe\nH2rn8aO2hsRExwdum7RHzlarxegSpgS18/hQO48PtfP4UVtf3KQNZxERkYlK4SwiIhJkFM4iIiJB\nRuEsIiISZBTOIiIiQUbhLCIiEmQUziIiIkFG4SwiIlOey+Xij398/kPd9sUX/8iuXW+OaT0KZxER\nmfLOnOn40OF8880f4+qrrxnTeoJm+k4RERGALW9Usr+8dVQfc8nsJO69LucDt//iFz/l1KkaioqW\nsHjxlQwMDPBP//R1Xn55K+Xlx+nv7ycrK5tHHvkmP/nJ/xAfH09GRha/+tUvCAmx0tTUyHXXreGv\n/uqzo1LvpAznYzVnyPYFiLCYjC5FREQmgE996jNUVVWydOlyent7+cIXvkRfnxOHw8FTT/0Qv9/P\n+vX30tZ2/oeGlpYmfvaz3+DxeLj99hsVzhfzoz8ew2ox8+3PXklkWIjR5YiIyCW497qcix7ljrWM\njEwAQkPD6Ozs5JvffISIiAgGBgbwer3n3XbGjBysVitWq5XQ0LBRq2FSfue8dsl0OntdbH6j0uhS\nRERkAjCZzAQCfgDM5qFe1717d9Pa2sK3vvU4n/vcg7hcgwQCgb+439jUMynD+YYrM5iRFs2uI00c\nO3XG6HJERCTIxcbG4vF4cblcw9ddccVcGhsb+NznPs3Xv/4V0tLSaW9vG5d6TIG//BhgkNFez7nb\n5eOLT+0gLiqU73x2KaE2LU82FhITHaP+fyfvp3YeH2rn8aO2nqLrOedMi+GGpdNp7x7kuZ3VRpcj\nIiLyoU3acAa4bUU2ybHhvLa/nqqGbqPLERER+VAmdTjbQix8+qbZBICfvVSO1+c3uiQREZERTepw\nBpiVEcu1hek0tPextaTW6HJERERGNOnDGeCea2cS6wjlT3tOcbrNaXQ5IiIiFzUlwjk81MqnbpiF\nzx/gZy+V4/cHxQB1ERGRC5oS4QywICeBpXOSqW7sYVvpaaPLERGRIHIpq1K9q6zsIJWVJ8eknikT\nzgD3X5+LPTyE3++oorVrwOhyREQkSFzKqlTv2rr1hTGblGRSzq39QaIibBRfn8uP/nicn79UzpfW\nFWAaq7nXRETkI/l95Z841Pr2qD5mYdJ87sy59QO3v7sq1U9/+iOqqyvp7h46/fYLX/gyM2fm8Nhj\nG2hoOI3b7eb++z9Jevp09u0r4cSJcrKyZpCSkjKq9U6pcAZYOieZvcdbOFLVwa4jTRQtSDO6JBER\nMdi7q1INDg6yaNGV3HHH3dTX1/H449/i3/7t+xw8eIAf/3gjJpOJt97ay+zZV7B06XJWr1476sEM\nUzCcTSYTn7phFl/98T42v1HJ/JnxxNhDjS5LRETOujPn1ose5Y6l6upKDh48wOuvvwpAb28vERGR\nPPTQw3z3u4/R39/H2rU3jXkdUy6cAeKiwrj32plsfPUEv3r1BA/eOd/okkRExEDvrkqVmZnF2rVz\nWLv2Rjo7z/DHPz5Pe3s7FRXv8M///K+4XC7uuusWbrjhZkwm0/BKVqNtSoYzwDWF6ew73kLpiTYO\nlLeyeHaS0SWJiIhB3l2Vqr+/n+3bX+OFF35Pf38fn/nM54iPj+fMmQ7++q+LCQ+PYN26T2K1Wpkz\nZx7//d//RWpqOllZ2aNaz6RdlerDrHjSfKafb/zkLSLCrDz2f5YSGRYyqjVMBVpZZnyonceH2nn8\nqK2n6KpUH0ZKXAS3XZ1FT5+bza9XGl2OiIgIMMXDGeCGKzPISLaz6+0mjtWcMbocERERhbPVYuav\nb7oCs8nEz18ux+X2GV2SiIhMcVM+nAEyUxzcuDSD9u5Bfr+j2uhyRERkilM4n/XxFVkkx0Ww7UA9\nVQ3dRpcjIiJTmML5LFuIhU/fOIsA8MxL5Xi8Y3PumoiIyEhGPM/Z7/ezYcMGKioqsNlsPProo2Rm\nZg5v37JlC5s2bcJqtfLAAw+watUqHnvsMcrLywFoa2sjKiqKLVu2jN1ejJJZGbGsKkxn+6EGtpac\n4vaiGUaXJCIiU9CI4bxt2zbcbjebN2+mrKyMJ554gqeffhoYCt6NGzfy7LPP4nK5KC4uZsWKFXz1\nq18FwOPxUFxczHe+852x3YtRdPe1MymrbGdrSS2LZyUxLcludEkiIjLFjNitXVpaSlFREQAFBQUc\nPXp0eNuRI0coLCzEZrPhcDjIyMgYPmIG+OUvf8mKFSuYNWvWGJQ+NsJDrXzqhln4/AGeeakcvz8o\n5mgREZEpZMQjZ6fTid1+7ujRYrHg9XqxWq04nU4cjnMznERGRuJ0OgFwu91s2rSJ3/3udx+qkNjY\nCKxWy6XWf1EXm33lYq5PdFBWdYY3D52mpLyN26+ZOap1TTYftZ3l0qidx4faefyorT/YiOFst9vp\n6+sb/t3v92O1Wi+4ra+vbzisS0pKWLJkyXnhfTGdnf2XVPhILndquDuKsigtb2Hji8fJTXOQFBM+\nitVNHpqCb3yonceH2nn8qK0vc/rOhQsXsmPHDgDKysrIy8sb3pafn09paSkul4ve3l6qqqqGt+/Z\ns4eVK1debu2GiYqwUbwmF7fXz89fKidIpiAXEZEpYMQj5zVr1rB7927WrVtHIBDg8ccf55lnniEj\nI4PVq1ezfv16iouLCQQCPPTQQ4SGDq2NXFNTw+233z7mOzCWll6RzN5jLRyp6mDXkSaKFqQZXZKI\niEwBU3pVqg/jTM8gX/vxPkwmE4/+zVJiHaGjUN3koa6p8aF2Hh9q5/GjttaqVJclLiqMe1blMODy\n8qvXThhdjoiITAEK5w/hmoI08qbHcPBEGwfKW40uR0REJjmF84dgNpn49E2zsVrM/PK1EzgHPEaX\nJCIik5jC+UNKiYvg9qJsevrcbH7jpNHliIjIJKZwvgQ3XDmdzGQHu99u5mhNh9HliIjIJKVwvgQW\ns5m/vnk2ZpOJX7xcwaDba3RJIiIyCSmcL1FGsoOblmXQ3j3I73dUG12OiIhMQgrnj+DjK7JIjovg\n9QOnqWzoNrocERGZZBTOH0GI1cJf3zSbAPCzl8rxeP1GlyQiIpOIwvkjypsew6qF6TS297G15JTR\n5YiIyCSicL4Md18zk7ioULaW1HK61Wl0OSIiMkkonC9DeKiVT90wC58/wDMvvYPfHxTTlIuIyASn\ncL5M+TMTWDY3mZqmXl47UG90OSIiMgkonEfB/atzsYeH8NyOalo7+40uR0REJjiF8yhwRNj4xJo8\n3F4/P3+5giBZhVNERCYohfMoufKKJBbMjOed2k52HmkyuhwREZnAFM6jxGQysf6GWYTZLGx+o5LO\nXpfRJYmIyASlcB5FcVFh3LsqhwGXl1++qu5tERH5aBTOo2xlQRp502M4dLKd0oo2o8sREZEJSOE8\nyswmE5++aTYhVjO/fLUC54DH6JJERGSCUTiPgZS4CG6/Opuefg+bXz9pdDkiIjLBKJzHyNorp5OZ\n7GD30WaO1nQYXY6IiEwgCucxYjGb+eubZ2M2mfj5SxUMur1GlyQiIhOEwnkMZSQ7uGlZBh09g/z+\nzWqjyxERkQlC4TzGPr4ii5S4CF4vPU1lQ7fR5YiIyASgcB5jIVYLn75pNgHgmRffweP1G12SiIgE\nOYXzOMibHsN1C9Np6ujnT3tOGV2OiIgEOYXzOLnrmpnERYXy4t5a6ludRpcjIiJBTOE8TsJDrXzq\nhtn4/AGeefEdfH51b4uIyIUpnMdR/sx4ls9N5lRzL6/tP210OSIiEqQUzuNs3epcHBEhPL+zmtbO\nfqPLERGRIKRwHmeOCBufWJOH2+vnZy+Va+UqERF5H4WzAZbMTqIgJ4Hyui52HmkyuhwREQkyCmcD\nmEwmPrk2j/BQC5vfqKSz12V0SSIiEkQUzgaJiwrjnlU5DLi8/PLVCnVvi4jIMIWzgVYuSGPW9BgO\nnWznQEWb0eWIiEiQUDgbyGwy8embZhNiNfOrVytwDniMLklERILAiOHs9/v5xje+wX333cf69eup\nra09b/uWLVu48847uffee9m+fTsA/f39PPzwwxQXF3PPPfdw5MiRsal+EkiOi+D2omx6+j1sfKUC\nv7q3RUSmPOtIN9i2bRtut5vNmzdTVlbGE088wdNPPw1AW1sbGzdu5Nlnn8XlclFcXMyKFSv4yU9+\nQm5uLt/97ncpLy+nvLyc/Pz8Md+ZiWrtkukcOtHO/vJWwkMtfOrGoXWgRURkahrxyLm0tJSioiIA\nCgoKOHr06PC2I0eOUFhYiM1mw+FwkJGRQXl5Obt27SIkJITPfvaz/PCHPxy+v1yYxWzmH+7JJzPZ\nwY7DTfxSR9AiIlPaiOHsdDqx2+3Dv1ssFrxe7/A2h8MxvC0yMhKn00lnZyc9PT385Cc/4brrruPJ\nJ58cg9Inl8iwEL64roCMJDt/LmvkV6+e0AhuEZEpasRubbvdTl9f3/Dvfr8fq9V6wW19fX04HA5i\nYmK47rrrAFi1ahU/+tGPRiwkNjYCq9VyyTtwMYmJjpFvFEQSgX/+/4r46tO72X6ogcgIG5+7Yz6m\nIO/inmjtPFGpnceH2nn8qK0/2IjhvHDhQrZv387NN99MWVkZeXl5w9vy8/N56qmncLlcuN1uqqqq\nyMvLY9GiRbz55pvMmzeP/fv3k5OTM2IhnaM8z3RiooO2tt5Rfczx8oV78vmX3xziT7trGHR5uH91\nbtAG9ERu54lE7Tw+1M7jR2198Q8npsAIfad+v58NGzZw4sRQN+vjjz/Ojh07yMjIYPXq1WzZsoXN\nmzcTCAT4/Oc/zw033EBXVxdf+9rXaGtrw2q18uSTTzJt2rSLFjna/0kT/T++p8/Nd39ziMb2PtYu\nmc591+UEZUBP9HaeKNTO40PtPH7U1pcZzuNF4fx+3X1uvvvrgzR19HPT0gzuvnZm0AX0ZGjniUDt\nPD7UzuNHbX3xcNYkJEEsOtLGw/cXkhIXwUv76vj9jmoNEhMRmQIUzkEu2h7Kl+8vJDk2nK0ltTy3\ns0YBLSIyySmcJ4BYRygPFy8kKTacP+05xR921RhdkoiIjCGF8wQR6wjl4fsLSYwJ44Xdp3hhtwJa\nRGSyUjhPIHFRYTx8/0ISosN4fmcNf9pzyuiSRERkDCicJ5j46DAevr+Q+KhQfr+jmhf31o58JxER\nmVAUzhNQQkw4DxcvJC4qlN/9uYqX99UZXZKIiIwihfMElRgTzsP3FxLrCGXL9kpefUsBLSIyWSic\nJ7Ck2AgeLi4kxm5j0xuVvHag3uiSRERkFCicJ7jk2AgeLl5ItN3Gb7ad5PXS00aXJCIil0nhPAmk\nxEXw8P2FREXa+NVrJ9h+qMHokkRE5DIonCeJ1PjIoYCOCGHjKxX8uUwBLSIyUSmcJ5G0hEi+fH8h\n9vAQfvFyBTsONxpdkoiIfAQK50kmPdHOw2cD+ucvlbPrSJPRJYmIyCVSOE9C05LsfGldARFhVp55\n8R12v62AFhGZSBTOk1RGsoMvrSskIszKT7e+Q8mxZqNLEhGRD0nhPIllpjj44roCwkOt/PhPx9l7\nXAEtIjIRKJwnuayUKL64roAwm5X//eNx3nqnxeiSRERkBArnKSA7NYp/vG8BYTYLP3rhOAfKW40u\nSURELkLhPEXMTIvmoXsLCAkx8z8vHKO0os3okkRE5AMonKeQnPRo/vHeBVgtZv77D0c5dFIBLSIS\njBTOU0zutBgeuncBFouJHz53lLLKdqNLEhGRv6BwnoLypsfwhbsXYDGb+OFzb3OkSgEtIhJMFM5T\n1OzMWP7h7nxMJhP/9fujHK3uMLokERE5S+E8hV2RFcff352PyQTff/ZtjtWcMbokERFB4Tzlzc2K\n4+/umg/A9589wvFTCmgREaMpnIV52fH83V3zCQQCfP93R3inttPokkREpjSFswAwf0Y8D94xH58/\nwPd+d5iKOgW0iIhRFM4ybEFOwlBA+wI89dsjnKjvMrokEZEpSeEs5ynITeD/3j4Pr8/Pf/z2MJWn\nu40uSURkylE4y/sU5iXyt7fNxePx8+9byqhqUECLiIwnhbNc0KJZSXz+trm4zwZ0dWOP0SWJiEwZ\nCmf5QEtmJ/G5j89h0O3j3zaXUdOkgBYRGQ8KZ7moK69I5v/cOodBt5d/21RGbXOv0SWJiEx6CmcZ\n0bK5KfzNLXMYcHn5102HqGtRQIuIjCWFs3woy+el8JlbrqB/0Mu/biqjvtVpdEkiIpOWwlk+tBXz\nU/n0TbNxDnj4l98c4nSbAlpEZCwonOWSFC1IOy+ga5s1SExEZLSNGM5+v59vfOMb3Hfffaxfv57a\n2trztm/ZsoU777yTe++9l+3btwPQ1dXF0qVLWb9+PevXr+fnP//52FQvhli5II1P3TCL3n4Pj/xw\nN5U6D1pEZFRZR7rBtm3bcLvdbN68mbKyMp544gmefvppANra2ti4cSPPPvssLpeL4uJiVqxYwfHj\nx7n11lv5+te/PuY7IMa4tjAds9nEL16p4Lu/PsT/+dgclsxOMrosEZFJYcQj59LSUoqKigAoKCjg\n6NGjw9uOHDlCYWEhNpsNh8NBRkYG5eXlHD16lGPHjvHJT36Sv//7v6e1tXXs9kAMs3JBGl//zFIs\nFhNPP3+Ul/bWEggEjC5LRGTCG/HI2el0Yrfbh3+3WCx4vV6sVitOpxOHwzG8LTIyEqfTyYwZM5g3\nbx5XXXUVL7zwAo8++ijf//73L/o8sbERWK2Wy9iV90tMdIx8I7ksiYkO/uXvivjWj/fy2z9X0evy\n8bd3zMdi0XCG0abX8/hQO48ftfUHGzGc7XY7fX19w7/7/X6sVusFt/X19eFwOMjPzyc8PByANWvW\njBjMAJ2d/Zdc/MUkJjpoa9P5uGMtMdGBPcTMI59cxPd+e5iXS05xuqWHB26bR3joiC8v+ZD0eh4f\naufxo7a++IeTEQ9vFi5cyI4dOwAoKysjLy9veFt+fj6lpaW4XC56e3upqqoiLy+Pr33ta7zyyisA\nlJSUMHfu3MvdBwlysY5QvvKJhcyfEc/R6jM88auDnOkZNLosEZEJyRQY4UtCv9/Phg0bOHHiBIFA\ngMcff5wdO3aQkZHB6tWr2bJlC5s3byYQCPD5z3+eG264gfr6eh555BEAwsPDefTRR0lKuvhgodH+\nBKVPZePjL9vZ5/fzq9dO8udDDcTYbXzhngVkJKvr6nLp9Tw+1M7jR2198SPnEcN5vCicJ6YLtXMg\nEOCVt+rZsr2SUJuFB26bS/7MBIMqnBz0eh4faufxo7a+zG5tkUtlMpm4cWkG//f2efj9Ab73uyNs\nP3ja6LJERCYMhbOMmcWzk3j4/kLs4SFsfPUEW96oxB8cHTUiIkFN4SxjamZ6NF/91GJS4iJ4+a06\nnn7+KG6Pz+iyRESCmsJZxlxSTDiPrF/ErOkxlFa08S+/OURPn9voskREgpbCWcaFPTyEf7yvgOVz\nk6lq7OHRXxygqaNv5DuKiExBCmcZNyFWM39z6xw+viKL9u5BHt9YSkVdp9FliYgEHYWzjCuTycTt\nRTP47C1XMOj28a+byig52mx0WSIiQUXhLIZYMT+Vf7x3AbYQC//7p+O8sKtGi2aIiJylcBbDXJEV\nxyPrFxEfFcbzu2r46dZ38Pr8RpclImI4hbMYKj0hkq99ahHZqQ52H23m3zeX0T/oMbosERFDKZzF\ncNH2UB4uXkhhbgLldV08trGU9q4Bo8sSETGMwlmCQmiIhQfvmM/aJdNp6ujn0V8coLqxx+iyREQM\noXCWoGE2m1i3OpdPrMmjd8DDd399kIMn2owuS0Rk3CmcJeisXjSNv7srH0zwg9+/zatv1Wkkt4hM\nKQpnCUoFOQn8v08sIspuY9MblfzqtRP4/BrJLSJTg8JZglZmioOvrV9MemIkbxxs4L+efZtBt9fo\nskRExpzCWYJafHQY/+8Ti5ibFcvhqg6e+NVBOntdRpclIjKmFM4S9CLCrPzDPQtYuSCVuhYnj208\nwOlWp9FliYiMGYWzTAhWi5m/unE2d10zgzM9Lh7/ZSlHazqMLktEZEwonGXCMJlM3LI8i89/fC5e\nX4Cnthxhx+FGo8sSERl1CmeZcJbOSebL9xcQEWblZy+V8+ybVfh1qpWITCIKZ5mQcqfF8NX1i0iK\nDWdrSS0/euEYHq/P6LJEREaFwlkmrOS4CL66fhE506J5651W/mVTGb39bqPLEhG5bApnmdAcETa+\nvK6AK69IovJ0N49tLKXlTL/RZYmIXBaFs0x4IVYLn/v4XG5Znklr5wCPbSzlRH2X0WWJiHxkCmeZ\nFMwmE3ddM5NP3zSb/kEv/7rpEPuOtxhdlojIR6Jwlkll5YI0vnBvPlaLmf954RhbS05p0QwRmXAU\nzjLpzMuO55FPLiIuKpRn36zmZy+V4/Vp0QwRmTgUzjIpTUuy89X1i8lMdrDzSBPf++1h+ge1aIaI\nTAwKZ5m0Yh2hfOUThSyYGc+xU538869K6egeNLosEZERKZxlUguzWfm7u/JZvXAaDW19PPqLA5xq\n7jG6LBGRi1I4y6RnNpsoXpPLutW59PS5eewXpfzilQrO9OgoWkSCk9XoAkTGg8lkYu2S6aTEhfOb\nbSf586EGdh1pYlVhOjcvzyQ60mZ0iSIiwxTOMqXkz0xgbnYce44288KuU7x2oJ43Dzdw/aLp3Lg0\nA3t4iNEliogonGXqsZjNFOWnsXxuCjsPN/LHPad4cW8t2w+dZu2SDNYumU54qP40RKYyn99HS38b\njX3NNDib6Bg4w+qMlWRGTR+X59c7kExZVouZVQunsWJ+Kn8+1MDWvbX8YVcN2w7Uc9OyTFYvnEao\nzWJ0mSIyhgKBAD3uXhqcTcNB3OhsprmvBW/g/JXu5sbPVjiLjBdbiIW1V2awsiCN10tP89LeOn73\n5ypefauOW5ZncW1hGiFWhbTIROf2uWnqaxkO4HcD2enpO+92IeYQ0u1ppNlTSLenkhaZQpo9BYfN\nPm61KpxFzgqzWblleRarCtN5dX89r+yv5zevn+Tlt+r42FVZXJ2fitWiExxEgp0/4KdjoJOGvqbh\nIG50NtE20EGA86fzTQiPZ2ZMNmmRQ0Gcbk8hITwes8nYv/URw9nv97NhwwYqKiqw2Ww8+uijZGZm\nDm/fsmULmzZtwmq18sADD7Bq1arhbfv37+dLX/oSb7755thULzIGIsJCuL1oBqsXTePlfXW8Xnqa\nX7xSwYt7a7nt6myWzU3GYlZIiwSDPk8/jc4mGt5zJNzY14zbd/7a7hHWcHJiskmzp5IemUKaPZXU\nyGTCrKEGVX5xI4bztm3bcLvdbN68mbKyMp544gmefvppANra2ti4cSPPPvssLpeL4uJiVqxYgc1m\no6mpiZ/+9Kd4vZoyUSYmR4SNe1blsHbJdLaW1PLnsgZ+svUdtpbUcntRNotnJ2E2mYwuU2RK8Pq9\ntPS3va9LusvVfd7tLCYLyRGJZ4+CU4e7pqNtUZgm0N/riOFcWlpKUVERAAUFBRw9enR425EjRygs\nLMRms2Gz2cjIyKC8vJxZs2bxzW9+k+985zvceeedY1e9yDiItodSvCaPG5dm8Mc9p9h1pIn//sMx\npu2p5Y6ibApyEybUH71IMAsEAnS5ut8/QKu/FX/g/AVsYkKjmRs/e7hLOs2eQnJEIlbzxP/GdsQ9\ncDqd2O3nvgS3WCx4vV6sVitOpxOHwzG8LTIyEqfTybe//W0+85nPkJyc/KELiY2NwDrKg24SEx0j\n30gu21Rp58REB7NmJvKJ9j42vVbBn0vr+c/fv03O9BjW33gFhbMSxzSkp0o7G03tPH4cMSHUdTdS\n191AXVcjtd0N1HWdps8zcN7tQq2hzIzLJDM6nYyYdDKi08mIScNuizSo8rE3Yjjb7Xb6+s6NZPP7\n/Vit1gtu6+vrIyQkhAMHDlBXV8cPfvADuru7eeihh/iP//iPiz5PZ2f/R92HC0pMdNDW1juqjynv\nNxXb2Qp88vpcritI4w+7athf3so3/7eEvGnR3LFyBrMyYkf9OadiOxthsrezP+DH5/fhC/jwBfxD\nP9/93f+e6wI+fP73Xj63ze/34b3Abfzvvf1fPo/fe97zuf0e2gfbaelrP68+EyYSI+LJi8k5r0s6\nLiz2fQO0Brr9DDCx/68u9kFwxHBeuHAh27dv5+abb6asrIy8vLzhbfn5+Tz11FO4XC7cbjdVVVXk\n5+fzyiuvDN9mxYoVIwazyESUlhDJA7fP45aWXp7fWUNZZTtP/voQc7JiuaNoBjPTo40uUSaxzsEu\n9jUf5FjHO7h8bnwBP/73BKL3PYHoPxuufzlS2UiOUDt5sTmk21NIjxwK4tTIZGwWTaULHyKc16xZ\nw+7du1m3bh2BQIDHH3+cZ555hoyMDFavXs369espLi4mEAjw0EMPERoanCPfRMZKRrKDv787n+rG\nHp7bWc2xmjMcP1XKgpnx3LFyBhnJ6iaV0eHxeTjcfoy9TQcoP3OSAAHMJjM2sw2L2YzFZMFismA1\nWwm1hGIxmbGYLWevP7vdfPay2XruOpPlvPub33N56PGG7mM2W95z/V889nu3mS/wfMOXhx5vekoi\n7e1Oo5s0aJkCgUBQfJQa7a6kyd49FSzUzu9XUdfJczuqOXF6aBTp4lmJ3FY0g/SEj/79mNp5fARj\nOwcCAWp76ylpOkBpy2EGvEPfx2ZHZbAsdTGLkhcQbg03uMpLF4xtPd4uq1tbRC7NrIxYvvKJhRw7\ndYbndtRwoKKN0oo2ls1N5ratqtzqAAAgAElEQVSrs0mKjTC6RJkAul297G85SEnTAZr7WgCItjm4\nOuNalqUuJiUyyeAKZSwpnEXGgMlkYl52PHOz4iirbOe5HTWUHGth3/FWrs5P4WNXZRMfHWZ0mRJk\nvH4vR9vfoaTpAMfPVOAP+LGaLBQm5bM8dTGzY3OxmDWV7FSgcBYZQyaTicLcRBbkJHCgvJU/7Kph\nx+Em9hxt5poF6dxyVSYxdo3TmOrqexvZ27Sf/S2H6PMMnbmS4UhnaepiFicXYA+ZvKcMyYUpnEXG\ngdlk4sorklk8K4mSY838YVcNrx88zc4jjVy3cBo3LcvAEaFRqlOJ093H/pZD7G06wGlnIwD2kEiu\nm17EstTFpNtTDa5QjKRwFhlHZrOJFfNTWTonmV1vN/HH3ad4+a06tpc1sGbxdG68cjoRYSFGlylj\nxOf3cfxMBXubDvB2+zv4Aj7MJjP5CXNZlrqYefGz1W0tgMJZxBBWi5lrC9JZMS+FP5c1srWklj/t\nOcUbpae5YWkG1y+aRnio/jwni6a+Fkqa9vNW80F63UOnD6VFprA8dTFLUhaO61KEMjHor1/EQCFW\nC2sWT2dlfhpvHDzNi3treW5HNa/tr+fmZZlctzAdW4iOpCaifk8/B1oOs7fpALW99cDQykjXTLuK\nZSmLme5I15zs8oEUziJBINRm4aZlmVxbmM5r++t5ZX8dW7ZX8sr+Om5dnsVd1+eN/CBiOH/AT/mZ\nk+xtOsDh9mN4/V5MmJgTP4vlqUuYnzCHkEmwKIOMPU1CIpdF7Tw2nAMeXnmrjm0HTuPy+IiLCqUw\nJ5HCvATypsdgtWg96bHwUV/PLf1t7GsqZV9z6fAShskRiSxLXcyVKQuJCdVUrn9J7x0Xn4RE4SyX\nRe08tnr63Ly4t5Y9R5txDngAiAyzkj8zgYV5iczLjiPUpm7v0XIpr+dB7yAHW49Q0nSA6u5TAIRZ\nwliUvIDlqYvJispQt/VF6L1D4SxjSO08PmLjItlzsJ6DJ9o5eLKNzl4XADarmbnZcRTmJlKQm4A9\nXCO9L8dIr2d/wE9lVzUlTQcoa30bt9+DCROzYnNYmrqIgsR5WrjhQ9J7h6bvFJnwrBYzV2TFcUVW\nHMVrcjnV3Muhk20cPNHOoZND/0wmmDU9hsLcoe7vhOiJN99ysOoYOMPepgPsay6lY7ATgISwuLPd\n1ouIDx/9ZUJlalM4i0wwJpOJ7NQoslOjuHPlTJrP9J8N6jbK67oor+viN6+fJDPZQWHeUPd3ekKk\nulgvkcvnpqz1bfY2HeBEVxUANouNZSmLWZa6mJyYbLWpjBmFs8gElxIXwU1LM7lpaSZdThdlJ4e6\nvt851Unt2bWmk2LCh4N6Zlo0ZrNC5UICgQBVXafY27Sfg61HGPQNfX2QE5PNstQlFCbOJ8yq6VZl\n7Ok7Z7ksaufx8VHauX/Qy9vVHRw80caR6g5cbh8AUREhFOQmsjAvgSsy4wixauS31++lpOkAbzbs\nosnZCkBsaAzLUhexNGUxiRHxBlc4+ei9Q985i0xJEWFWls5JZumcZDxeP+/UnuHgiXbKTrax43Aj\nOw43EmqzkD8jnoV5icyfEU9E2NR6S/D5fextPsDLp97gzGAnIWYri5MLWJ66hLzYmZhN+uAixpha\nf4kiU1SI1Uz+zATyZybgv2EWVY3dHDwx9D31/vJW9pe3YjGbuCIrloW5iRTmJhA9iVfL8vl9vNVy\niJdqttExeAar2cqq6Vdzf+GteJwKZDGeurXlsqidx8dYtXMgEKChrY+DZweU1bUMzftsAmakR7Ew\nL5GFuYkkx0WM+nMbwef3caCljJdObaNtoAOrycKK9KWszVxFTGi0Xs/jSG2tbm0R+QAmk4lpSXam\nJdn5+Ips2rsHOHSinUMn26io76KqoYffbq8iPSGSwrwECnMTyUpxTLhRyv6An9KWw7x46jVa+9ux\nmCwUpS/nhsxVxIbFGF2eyPvoyFkui9p5fBjRzr39bg5XDg0oO3bqDB6vH4BYRygLzw4oyw3yqUT9\nAT+HWo/wYs02mvtbMZvMLE9dwg2Z113w3GS9nseP2lpHziLyETgibFydn8rV+am43D6O1nRw8EQ7\nhyvbef3gaV4/eJrIMCsLcoaOqOfNiCM0SFbQ8gf8lLUd5aWabTT2NQ+H8o1Zq0kIjzO6PJERKZxF\nZEShNguLZiWxaFYSXp+fE/VdHDzRxqGT7ew52syeo83DU4kuzEtkQY4xU4kGAgGOtB9ja81rNDib\nMGFiacoibsq6XqdDyYSicBaRS2K1mJmTFcecrDg+sSaPU829wyO/351K1GwykZMeRVZqFBnJdjKS\nHKTER4xZF3ggEOBoxztsrX6VemcjJkwsSV7ITdmrSY5IHJPnFBlLCmcR+cjeO5XoXdfMpKmjb2iG\nshNtnDzdzYnT3cO3tVrMpCdGkpFkJyPZwfQkO9OT7ISHfvS3oUAgwLGOcrbWvEZd72lMmFicXMBN\nWdeTEpk0GrsoYgiFs4iMmtT4SFLjI7lpWSYDLi8NbX3UtvRS39pLXYuT02191Db3Ak3D90mKDScj\nyc70ZAeZyXamJzmIsdsuOiI8EAjwzpkTbK15jVM9dQAUJuVzc9b1pNlTxno3RcacwllExkR4qJWc\nadHkTIsevs7n99PU0U99i5O6s4Fd19LLgYo2DlS0Dd/OEREyHNjD3eJxEZhMUNFZydaaV6nurgWg\nIHEeN2evId2eOu77KDJWFM4iMm4sZjPTEu1MS7SznKEj3EAgQGevayioW3upb3FS29LLsVOdHDvV\nOXxfW0wnYRnVeMKGQnymPY/bc25gRtx0Q/ZFZCwpnEXEUCaTibioMOKiwijITRi+vn/QQ32rk4ON\nFRzu3UOvpRkP4OtMxNOQw9H+aI69cZLkuIaho+tkx/DRdnSkzbgdEhkFCmcRCUrNrgZe7XiN8v6T\nYIE5cbO4MfN6Qtxx1LcOHV0PdY87eeudVt56p3X4vtGRtqGwTh4adJaR7CApNhzzBJvZTKYuhbOI\nBJWa7jq21rzKO2dOADA7NpdbZqxlRnTm8G0ykh2smD/0HXMgEKCje5C61qHvr+tanNS39vJ2dQdv\nV3cM3yc0xDI0QjzZPjxiPD0hEluQTJwi8l4KZxEJCrU99WyteY1jHeUA5MXmcEv2GnJisi96P5PJ\nREJMOAkx4SzMO3dOs3PAQ31L79nQHgrs6sYeKhvOnd5lNplIjY84G9gO5uYmYiNArCNUoS2GUjiL\niKHqexvYWvMab7cfByAnJptbsteSFzvzsh7XHh7CFVlxXJF1brpOj9dHQ3vfUFi/O2K81UlDex97\nj7XA9srh2zoiQoiLCiM+Kow4R+jQ5ehzl6PtNnWTy5hROIuIIRqcTWyteY3DbUcBmBGdxa1nQ3ms\nVr0KsVrISokiKyVq+Dp/IEBb1wD1LU46+z3UN/XQ0TPImV4Xje3vnpf9fhazidh3QzsqdHhQ2/Bl\nRxgRYXqLlY9GrxwRGVeNzmZerHmNQ21vA5AdlcEtM9YyOzbXkKUozSYTybERJMdGvG+lpEAgQO+A\nh84eFx09g3T0DA5fPnM2wE/Wd3HiAx47PNQyHNTnAjx06Gg8KoxYR2hQr+olxlE4i8i4aO5r4cWa\nbRxsPUKAAJmO6dwyYw1z4mYF7frQJpOJqAgbURE2MlMuvLyf1+enq9fFmd5zod3R4xoK77OXG9r6\nLvz4QJTddn7X+dkAf/eyIyIkaNtHxo7CWUTGVEt/Gy/VbONASxkBAkx3pHNL9hrmxV8xKULHajEP\nD0j7IAMu77nQ7j0b2t0uOnuHjsZrm4cGq33Q45872g4dOgqPPnc5LiqU0BDLpGhLOUfhLCJjorW/\nnZdPvc5bzQcJECDdnsot2WvJT5gz5YIkPNRKeqKd9ET7Bbf7AwF6+9zDR9xDR+Dvudzr4p3azgve\nF8BqMREZFkJkeAgRYVbsYUM/I8NCiAyzEhk+9DMiLITI8HPXR4RZsZjVrR6MFM4iMmoCgQAnu6rZ\n2VBCWdtR/AE/aZEp3JK9hvzEuZhNCoILMZtMRNtDibaHMiMt6oK38Xh9nOl1nR/aZ4/E+wa89A96\n6Olz09TRRyDw4Z87PNRC5AXD/NzliNBzAR95NuB1tD62Rgxnv9/Phg0bqKiowGaz8eijj5KZeW4y\ngC1btrBp0yasVisPPPAAq1atoq2tjS996Ut4PB4SExN54oknCA//4C4fEZnYBrwD7Gs6yM6GEpr7\nh2bqSotM4cas1RQmzVcoj4IQq2V44NrF+AMBBl0++gY99A96cZ792TfgoW/QQ9/Zy/2DXvoGPTgH\nvPS7PLScGcDlcX7oeixm0wWPxoeD/rwwP3+bBsGNbMRw3rZtG263m82bN1NWVsYTTzzB008/DUBb\nWxsbN27k2WefxeVyUVxczIoVK/jRj37EHXfcwe23385//ud/snnzZj796U+P9b6IyDir6z3NztN7\nOdByCLffg8VkYXFyAUXpy5kZnaUjKwOYTSYiznZZXyqvz39eeA8Fu4e+Ae+5YH9P2DvP/t7aOYD/\nEg7XQ0MsRIRZCbGaCQ2xEGqzEBpiISzEgi3EQtjZ39+9PjTEfO7y8HVDl9+9T6jNMqnOOx/xf6+0\ntJSioiIACgoKOHr06PC2I0eOUFhYiM1mw2azkZGRQXl5OY888giBQAC/309TUxNZWVljtgMiMr7c\nPg8HWw+zo6GE2p56AOLDYrk6bRnL05bgsF34e1UJflaLmehI2yUvHBIIBBh0Dx2tv9vF/m6Q9w0f\ntZ8f7B5/YLgr3uXxXVJX/AexWT8gxM8Gvu0vfr435N/9EBBms2I7+zM0xIwtxGLIkf6I4ex0OrHb\nz/2xWSwWvF4vVqsVp9OJw3Hu9ILIyEicTicmkwmv18ttt92Gy+XiwQcfHLGQ2NgIrNbRnS4vMfHC\npz7I6FI7jw+j27mpt5XXKnew/VQJfe5+TJhYmDaftTNXUpAyB/MkGVhkdDtPRYFAALfXz6DLy6Db\nx6Dbi8vtY8B17ue71w+6vQy6fOf/dL/n59nbdjvdDLp9eH3+y67PajFjDw/hwXsWsGze+KwbPmI4\n2+12+vrOnaPn9/uxWq0X3NbX1zcc1iEhIbz44ovs2bOHr3zlK/zyl7+86PN0dvZ/pB34IH85mYCM\nDbXz+DCqnX1+H293vMPO0yWUd54EwBFi54bM61iRtpT48FgAOjoufB7vRKPX8/j5oLY2AxEWExHh\nVmLDL3/Mstfnx+3xMej24fKc/Td82f+ey0O3cf/Fz3e3+XwBBgfco/r6uNgHwRH3fOHChWzfvp2b\nb76ZsrIy8vLyhrfl5+fz1FNP4XK5cLvdVFVVkZeXx4YNG7jxxhtZtmwZkZGR+t5JZILpcnWzu/Et\n9jS+RZdraKGInJhsitKXU5A4D6tZJ3rIxGC1mLFazESEhRhdyiUZ8S9szZo17N69m3Xr1hEIBHj8\n8cd55plnyMjIYPXq1axfv57i4mICgQAPPfQQoaGhrF+/ng0bNvCDH/wAs9nMhg0bxmFXRORyBAIB\nKjor2dlQwpH24/gDfsIsoVwz7SquTltGmj3F6BJFpgxTIDAaX8NfvtHuSlL31PhQO4+PsWznfk8/\ne5sOsLNxL6397QBMs6dRlL6MxcmFhFlDx+R5g5Fez+NHbX2Z3doiMjnV9tSz43QJpa1lePxerGYr\nS1MWUZS+jKyoDH0dJWIghbPIFOL2uTnQUsbOhhLqehsASAiPpyh9GctSF2MPiTS4QhEBhbPIlNDc\n18rOhhL2NZcy4B3EhIkFCXMpSl/OrLgczeAlEmQUziKTlM/v43D7MXaeLuFEVxUA0TYH12atYEXa\nUmLDYgyuUEQ+iMJZZJLpHOxiV+M+9jS+RY97aMBNXmwORenLWJAwF4t5dCf7EZHRp3AWmQT8AT/l\nZ06ys2Evb7cfJ0CAcGs4q6ZfTVHaMpIjk4wuUUQugcJZZAJzuvsoadrPrsZ9tA90AJDhmEZR+nIW\nJy/AZrm0OZJFJDgonEUmmEAgQE1PHTsbSjjYegSv30uIOYTlqUsoSl9GZtR0o0sUkcukcBaZIAa9\nLva3HGJnQwkNziYAkiMSuTp9GctSFhERcvF1fkVk4lA4iwS59oEOXijdyps1exn0uTCbzBQmzqco\nfTl5sTM1WYjIJKRwFglSbp+HV2u381rdn/H6vcSERrM6YyVXpV1JTGi00eWJyBhSOIsEobfbj/Pb\nEy/QMXiGaFsUf7XwLnLC8nQalMgUoXAWCSLtA2f43ckXeLv9OGaTmdUZK7k563qmpyZO+UUCRKYS\nhbNIEPD4vWyrfZNXal/H4/eSGzODe/Nu1zKNIlOUwlnEYMc7Kthy4nnaBjqIsjn4RM6tLE4u0EAv\nkSlM4SxikM7BLn538o+Utb2N2WRm1fSruSV7DeHWcKNLExGDKZxFxpnX7+WN+p28VLMNt9/DjOgs\n7su7nWmONKNLE5EgoXAWGUcVZyrZfOJ5WvpbsYdEct+sO7gyZaGWbBSR8yicRcZBl6ub35/8E6Wt\nhzFhYmX6VXxsxlrN6iUiF6RwFhlDPr+PP5/ezdaaV3H53GRFZXDfrNvJcEwzujQRCWIKZ5ExcrKz\nmi0nnqexr5nIkAjuyv0Yy1OXqAtbREakcBYZZd2uXp6r3Mr+loOYMLEibSkfn3kj9pBIo0sTkQlC\n4SwySnx+HzsaSvhT9asM+gbJcKRz36w7yIrKMLo0EZlgFM4io6C6+xSbKp6jwdlEuDWc+/Lu4Or0\nperCFpGPROEschl63U6er3qRvU0HAFiWupjbZ96Mw2Y3uDIRmcgUziIfgT/gZ1fDPl6ofpkB7wDp\n9lTuy7uDmTFZRpcmIpOAwlnkEp3qqWNzxXPU9TYQZgnj7tyPszJ9uZZzFJFRo3AW+ZCcnj5eqHqJ\nPY37CRBgSfJC7si5hehQh9Glicgko3AWGYE/4KekaT9/qHqJPk8/qZHJ3Jd3B7mxM4wuTUQmKYWz\nyEXU9Z5mc8XznOqpI9Ri486cW7l22gp1YYvImFI4i1xAv6efP1a/ws6GvQQIsChpAXfm3kpMaLTR\npYnIFKBwFnkPf8DPvuaDPF+5Faenj+SIJO7Nu43ZcblGlyYiU4jCWeSsBmcTmyqeo7r7FDZzCLfN\nvInrphdhNevPRETGl951ZMob8A6wtfo13mzYgz/gpyBxPnfnfozYsBijSxORKUrhLFNWIBBgf8sh\nnqvcSo+7l6TwBO7Ju4058bOMLk1EpjiFs0xJjc5mtpx4npNd1YSYrdyafQPXZ15DiLqwRSQI6J1I\nppRB7yAvntrG9vpd+AN+5ifM4Z7cjxMfHmd0aSIiwxTOMiU097Wwo2Ev+5pKGfQNEh8Wxz15H2d+\nwhyjSxMReZ8Rw9nv97NhwwYqKiqw2Ww8+uijZGZmDm/fsmULmzZtwmq18sADD7Bq1SoaGxt55JFH\n8Pl8BAIBvv3tbzNjhmZTkvHl8/s40n6cHQ0lnOisBCDaFsWazGu5bnoRNkuIwRWKiFzYiOG8bds2\n3G43mzdvpqysjCeeeIKnn34agLa2NjZu3Mizzz6Ly+WiuLiYFStW8L3vfY9PfvKTXH/99ezcuZN/\n//d/57/+67/GfGdEALpdPexu3Meuhn10u3sAyIuZycppV5GfMEeze4lI0BsxnEtLSykqKgKgoKCA\no0ePDm87cuQIhYWF2Gw2bDYbGRkZlJeX85WvfAWHY2gxAJ/PR2ho6BiVLzIkEAhQ2VXNmw0lHG47\nij/gJ8wSxjXTVrAyfRkpkclGlygi8qGNGM5OpxO7/dzC8RaLBa/Xi9Vqxel0DocwQGRkJE6nk7i4\nocE11dXVPPnkk/zgBz8YsZDY2Ais1tE9oklM1GpB48HIdu73DLDj1D5erdzB6Z4mADKj01mbcw1F\nmUsICwkzrLbRptfz+FA7jx+19QcbMZztdjt9fX3Dv/v9fqxW6wW39fX1DYf13r17+da3vsV3v/vd\nD/V9c2dn/yUXfzGJiQ7a2npH9THl/Yxq5wZnEzsb9vJWcykunxuLycLi5AJWpl/FjOhMTCYTvV0e\nevGMe21jQa/n8aF2Hj9q64t/OBkxnBcuXMj27du5+eabKSsrIy8vb3hbfn4+Tz31FC6XC7fbTVVV\nFXl5eezdu5fHHnuMH//4x6Snp4/OXsiU5/V7KWs7yo7TJVR11wAQGxrD2szruCptCVE2fQoXkclh\nxHBes2YNu3fvZt26dQQCAR5//HGeeeYZMjIyWL16NevXr6e4uJhAIMBDDz1EaGgojz/+OB6Ph3/6\np38CIDs7m29/+9tjvjMTkT/gp763gROdVZhNZnJisplmT9OgpffoHOxiV+M+djfuo9ftBOCKuDyK\n0pczL3622kpEJh1TIBAIGF0EMOrdG8HaZRIIBGgdaKfiTCUVnSc50VlFv3fgvNuEWUKZEZNFbswM\ncmNmkOGYFrQBNFbtHAgEqOisZEdDCUfajhEgQLg1nOWpiylKX0ZSROKoP2cwC9bX82Sjdh4/auvL\n7NaWy9ft6qWi8+TZQK6k09U1vC0uLJYFifOYFZtDgAAnO6up7KrmeEcFxzsqALBZbMyIyiQ3dgY5\nMTPIjJo+aaeZ7PcMsK+5lB0Ne2jtbwdguiOdlelXsTh5ATaLzeAKRUTG3uR8hzfYgHeQyq5qys+c\npKKzkqa+luFtkdYICpPymRWbw+zYXBLC4zCZTMPbr0xZCECXq5vKrhpOdlVT2VlNeedJyjtPAhBi\ntpIdlUlO7NCRdXZUBiETfEKN+t4GdpwuYX/LITx+D1azlaUpiyhKX05W1PTz2khEZLJTOI8Cj9/L\nqe5ayjsrqThTSW1vPf6AH4AQcwhXxOUNhXFcLun2VMwm84iPGRMazeLkAhYnFwDQ63YOBXVXNSc7\nqznRVcWJrioArGYrWVHTyY0ZOrKeEZ05IY4wPT4Ph9reZsfpPdT01AEQHxZLUfpylqcuwW6LNLhC\nERFjKJw/An/AT4OzafjIuLKrBo9/6JQds8lMpmM6s+JymB2bQ1Z05qh0QTtsdhYm5bMwKR8Ap6eP\nqvccWVd1naKyqwZ4HYvJQmbUNHLOfmc9IzqTMGvwnO/bMXCGXY372NP4Fk5PHyZMzI2fzcr05cyJ\nn/WhPryIiExmCucPIRAI0D5whvLOoTA+0VlJn+fcedmpkcnDR8Y5MTMIH4cgtIdEsiBxHgsS5wFD\n39VWdb8b1jWc6qmnuruWV2u3YzaZme5IHx5gNjMmi3Br+JjX+F7+gJ93zpxgx+kSjnWUEyBAZEgE\nazKu5er0pSSEx49rPSIiwUzh/AF63L2cODuAq7yzkjODncPbYkNjmJ86h1mxOcyKzSE6NMrASodE\nhIQzP2HO8CpLg95Bqrprh7vBa3vrqe2pZ1vdm5gwMc2RNtwNnhOTTWRIxJjU5fT0sbfpADtPl9A+\neAaArKgMVqYvZ2FS/oT/rlxEZCwonM8a9A5S2VUzFMZnTtLY1zy8LcIaTkHi/LNHxzkkhicE/QCl\nMGsYc+NnMTd+FgAun5ua7lpOvhvWPXXU9zbwRv1OTJhIs6cMd4PnxGTjsNlHeIaLq+2p583Teyht\nPYzX7yXEbGV56hJWpi8nI2raaOyiiMikNWXD2ev3cqqnfvh741M9de8ZxGVldmzu2e+Nc5nmSJvw\n34OGWmzMjstldlwuAG6fh1M9dZzsrOJkVzWneupocDbx5undAKREJp/tBs8mJ2Ym0aEjz77l9nko\nbSljR0MJdb2nAUgMj2dl+nKWpi4es6NzEZHJZsqEsz/gp9HZPPy9cWVXDW6fGwATJjKjpg8fGWdH\nZU767labJYS82Jnkxc4Ehkac1/bUD59nXd19ip19LexsKAEgKSJhuBs8N2YGsWExw4/V2t/Oroa9\nlDTtp987gAkT+QlzWZm+nFlxORP+g42IyHib1DOEvVNXS8XZI+OKzkqcnnOLdKREJDErLodZsbnk\nxswgImR8B0gFO5/fR23vaSo7qznZVU1Vdw2usx9mABLC4siJncFAoJ/DzceBoUFqK9KWsiJtKfHh\nsUaVPilpNqXxoXYeP2rri88QNinD+eVTr7Ov5QCtfR3D18WERg8P4JoVl0NMaPSoPd9U4PP7OO1s\nHP7Ouqq7hgHvIAAzorO4Jn05C5LmT9qZy4ymN7LxoXYeP2rrKTh951vNB3F6+lmQMJdZcbnMis0h\nOSIx6AdxBTOL2UJm1HQyo6ZzfcY1Z8/1biYpIYpQ1+UNHhMRkfNNynD+2tIvkpjgoKOjb+Qby0cy\ndO50GolR+vQrIjLaJuVIHbPJjNk8KXdNRESmACWYiIhIkFE4i4iIBBmFs4iISJBROIuIiAQZhbOI\niEiQUTiLiIgEGYWziIhIkFE4i4iIBBmFs4iISJBROIuIiAQZhbOIiEiQCZolI0VERGSIjpxFRESC\njMJZREQkyCicRUREgozCWUREJMgonEVERIKMwllERCTITKpw9vv9fOMb3+C+++5j/fr11NbWGl3S\npOXxePjyl79McXExd999N6+//rrRJU1qHR0dXHPNNVRVVRldyqT1P//zP9x3333ceeed/Pa3vzW6\nnEnJ4/HwxS9+kXXr1lFcXKzX80VMqnDetm0bbrebzZs388UvfpEnnnjC6JImrRdeeIGYmBh+/etf\n87//+7985zvfMbqkScvj8fCNb3yDsLAwo0uZtPbt28ehQ4f4zW9+w8aNG2lubja6pEnpzTffxOv1\nsmnTJh588EGeeuopo0sKWpMqnEtLSykqKgKgoKCAo0ePGlzR5HXjjTfyD//wD8O/WywWA6uZ3J58\n8knWrVtHUlKS0aVMWrt27SIvL48HH3yQv/3bv+Xaa681uqRJKTs7G5/Ph9/vx+l0YrVajS4paE2q\nlnE6ndjt9uHfLRYLXq9XL4D/v727ZyEuDMA4flko7ylfwKCsrMdgMBhkOYMUyWYRg8hgVL6ATiwK\nI2VjJRaLzRfwkohSkuNM/LMAAAGvSURBVLycZ3jq+Qa6z3N3/baz/TvL1X266/yAzWYD8PedFwoF\nFItFwUVyGo1G8Hg8CIfDaLfbonOkdb1esd/voWkattst8vk8JpMJTCaT6DSpWK1W7HY7xGIxXK9X\naJomOsmwpDo52+123O/3f8/f75fD/EOHwwGZTAaJRALxeFx0jpSGwyGWyyXS6TQ2mw0qlQpOp5Po\nLOm43W4oigKz2QyfzweLxYLL5SI6SzrdbheKomA6nWI8HqNareL5fIrOMiSpxjkYDGI2mwEA1us1\n/H6/4CJ5nc9n5HI5lMtlqKoqOkdag8EA/X4fvV4PgUAAzWYTXq9XdJZ0QqEQ5vM5dF3H8XjE4/GA\n2+0WnSUdp9MJh8MBAHC5XHi/3/h8PoKrjEmqY2U0GsVisUAymYSu62g0GqKTpKVpGm63G1qtFlqt\nFgCg0+nw0hL9lyKRCFarFVRVha7rqNfrvEfxA9lsFrVaDalUCq/XC6VSCVarVXSWIfGvVERERAYj\n1WdtIiIiGXCciYiIDIbjTEREZDAcZyIiIoPhOBMRERkMx5mIiMhgOM5EREQGw3EmIiIymD8A6o2A\n27/gDAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(history.history['loss'], label='train')\n",
"plt.plot(history.history['val_loss'], label='test')\n",
"plt.legend()"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_te_reshaped = X_test_scaled.reshape((X_test_scaled.shape[0], 1, X_test_scaled.shape[1]))"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"res = model_k.predict(X_te_reshaped)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/jagan/anaconda2/lib/python2.7/site-packages/ipykernel/__main__.py:1: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
" if __name__ == '__main__':\n"
]
}
],
"source": [
"test_data[\"DL_PRED\"] = res"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### LSTM Prediction on Test Data"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"keras_show = TimeSeries(test_data,x=\"DATE_TIME\",y=[\"USAGE\",\"RF_PREDICTED\",\"DL_PRED\"],legend=True,plot_width=900, plot_height=350)\n",
"show(keras_show)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### A Day on LSTM Predcted Result"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sep_30m = test_data[test_data.DATE_TIME >= pd.to_datetime(\"09/30/2017\")]\n",
"\n",
"sep_30 = TimeSeries(sep_30m,x=\"DATE_TIME\",y=[\"USAGE\",\"RF_PREDICTED\",\"DL_PRED\"],legend=True,plot_width=900, plot_height=350)\n",
"show(sep_30)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### RMSE Value of Random Forest and LSTM"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"0.16743906314666301"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from numpy import sqrt\n",
"sqrt(mean_squared_error(test_data.USAGE,test_data.DL_PRED))"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"0.18412616700088405"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sqrt(mean_squared_error(test_data.USAGE,test_data.RF_PREDICTED))"
]
}
],
"metadata": {
"anaconda-cloud": {
"attach-environment": true,
"summary": "Time Series Forecasting with LSTM Deep Learning",
"thumbnail": ""
},
"kernelspec": {
"display_name": "Python [conda root]",
"language": "python",
"name": "conda-root-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.13"
}
},
"nbformat": 4,
"nbformat_minor": 1
}