{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Airports of the World\n", "\n", "This notebook visualizes the world's airports, using data made available at http://ourairports.com/data/" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Download data and extract the columns we'll use\n", "\n", "# full_data = pd.read_csv('http://ourairports.com/data/airports.csv')\n", "# data = full_data[['type', 'latitude_deg', 'longitude_deg']]\n", "# data.to_csv('../data/airports.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
| \n", " | type | \n", "latitude_deg | \n", "longitude_deg | \n", "
|---|---|---|---|
| 0 | \n", "heliport | \n", "40.070801 | \n", "-74.933601 | \n", "
| 1 | \n", "small_airport | \n", "59.949200 | \n", "-151.695999 | \n", "
| 2 | \n", "small_airport | \n", "34.864799 | \n", "-86.770302 | \n", "
| 3 | \n", "heliport | \n", "35.608700 | \n", "-91.254898 | \n", "
| 4 | \n", "small_airport | \n", "34.305599 | \n", "-112.165001 | \n", "